summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/latex/curve2e/curve2e.dtx
blob: d85005524427919a8b11add4b3af5a5af1e24c13 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
% \iffalse
% !TEX encoding = UTF-8 Unicode
%<*internal>
\begingroup
\input docstrip.tex
\keepsilent
\preamble

  Copyright (C)  2005--2019 Claudio Beccari  all rights reserved.
  License information appended
  
\endpreamble

\postamble


Distributable under the LaTeX Project Public License,
version 1.3c or higher (your choice). The latest version of
this license is at: http://www.latex-project.org/lppl.txt

This work is "author-maintained"

This work consists of file curve2e.dtx, and the derived files 
curve2e.sty and curve2e.pdf, plus the auxiliary derived files 
README.txt and curve2e-v161.sty.

\endpostamble
\askforoverwritefalse

\generate{\file{curve2e.sty}{\from{curve2e.dtx}{package}}}
\generate{\file{README.txt}{\from{curve2e.dtx}{readme}}}
\generate{\file{curve2e-v161.sty}{\from{curve2e.dtx}{v161}}}

\def\tmpa{plain}
\ifx\tmpa\fmtname\endgroup\expandafter\bye\fi
\endgroup
%</internal>
% \fi
%
% \iffalse
%<*package>
%<package>\NeedsTeXFormat{LaTeX2e}[2019/01/01]
%</package>
%<*driver>
\ProvidesFile{curve2e.dtx}%
%</driver>
%<+package>\ProvidesPackage{curve2e}%
%<+readme>File README.txt for package curve2e
%<*package|readme>
        [2019-12-06 v.2.0.7 Extension package for pict2e]
%</package|readme>
%<*driver>
\documentclass{ltxdoc}\errorcontextlines=9
\hfuzz 10pt
\usepackage[utf8]{inputenc}
\usepackage{lmodern,textcomp}
\usepackage{mflogo}
\usepackage{multicol,amsmath,fancyvrb,graphics,trace}
\usepackage{xcolor,curve2e}
\GetFileInfo{curve2e.dtx}
\title{The extension package \textsf{curve2e}}
\author{Claudio Beccari\thanks{E-mail: \texttt{claudio dot beccari at gmai dot com}}}
\date{Version \fileversion~--~Last revised \filedate.}
\providecommand*\diff{\mathop{}\!\mathrm{d}}
\renewcommand\meta[1]{{\normalfont\textlangle\textit{#1}\textrangle}}
\renewcommand\marg[1]{\texttt{\{\meta{#1}\}}}
\providecommand\Marg{}
\renewcommand\Marg[1]{\texttt{\{#1\}}}
\providecommand\oarg{}
\renewcommand\oarg[1]{\texttt{[\meta{#1}]}}
\providecommand\Oarg{}
\renewcommand\Oarg[1]{\texttt{[#1]}}
\providecommand\aarg{}
\renewcommand*\aarg[1]{\texttt{<\meta{#1}>}}
\providecommand\Aarg{}
\renewcommand\Aarg[1]{\texttt{<#1>}}
\providecommand\parg{}
\renewcommand\parg[1]{\texttt{(\meta{#1})}}
\providecommand\Parg{}
\renewcommand\Parg[1]{\texttt{(#1)}}

\makeatletter

%\newcommand*\Pall[1][1.5]{\def\circdiam{#1}\@Pall}
%   \def\@Pall(#1){\put(#1){\circle*{\circdiam}}}
\NewDocumentCommand\Pall{O{1.5} R(){0,0}}{\put(#2){\circle*{#1}}}

\def\legenda(#1)#2{\put(#1){\setbox3333\hbox{$#2$}%
   \dimen3333\dimexpr\wd3333*\p@/\unitlength +3\p@\relax
   \edef\@tempA{\strip@pt\dimen3333}%
   \framebox(\@tempA,7){\box3333}}}
   
\NewDocumentCommand\Zbox{R(){0,0} O{cc} m O{1}}{%
\put(#1){\makebox(0,0)[#2]{\fboxrule=0pt\fboxsep=3pt\fbox{$#3$}}\makebox(0,0)[cc]{\circle*{#4}}}}


\providecommand\setfontsize{}
\DeclareRobustCommand\setfontsize[2][1.2]{%
\linespread{#1}\fontsize{#2}{#2}\selectfont}


\begin{document}
\maketitle
\columnseprule=0.4pt
\begin{multicols}{2}
 \tableofcontents
 \end{multicols}
 \DocInput{curve2e.dtx}
\end{document}
%</driver>
% \fi
%
% \CheckSum{5592}
% \begin{abstract}
% This file documents the |curve2e| extension package to  the |pict2e|
% bundle implementation; the latter was described by Lamport
% himself in the 1994 second edition of his \LaTeX\ handbook.
%
% Please take notice that on April 2011 a new updated version of the
% package |pict2e| has been released that incorporates some of the
% commands defined in early versions of this package; apparently there
% are no conflicts, but only the advanced features of |curve2e| remain
% available for extending the above package.
%
% This extension redefines some commands and introduces some more
% drawing facilities that allow to draw circular arcs and arbitrary
% curves with the minimum of user intervention. This version is open to
% the contribution of other users as well as it may be incorporated in
% other people's packages. Please cite the original author and the chain
% of contributors.
% \end{abstract}
%
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\section{The configuration file}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This package |curve2e| is distributed with a |ltxdoc.cfg| configuration
% file that contains, besides the preamble and the postamble comment
% lines, the following line of code:
%\begin{verbatim}
%\AtBeginDocument{\OnlyDescription}
%\end{verbatim}
%
% If you want to type the whole documentation, comment out that code line
% in the |ltxdoc.cfg| file. This is the only modification allowed by the
% LPPL licence that does not require to change the file name.
%
% For your information, the initial part is about 20~pages long; the
% whole documentation is about 80~pages long.
%
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \section{Package \texttt{pict2e} and this extension \texttt{curve2e}}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Package \texttt{pict2e} was announced in issue 15 of \texttt{latexnews}
% around December 2003; it was declared that the new package would
% replace the dummy one that has been accompanying every release of
% \LaTeXe\ since its beginnings in 1994. The dummy package was just
% issuing an info message that simply announced the temporary
% unavailability of the real package.
%
% Eventually Gäßlein and Niepraschk implemented what Lamport himself had
% already documented in the second edition of his \LaTeX\ handbook, that
% is a \LaTeX\ package that contained the macros capable of removing all
% the limitations contained in the standard commands of the original
% \texttt{picture} environment; specifically what follows.
% \begin{enumerate}
% \item The line and vector slopes were limited to the ratios of relative
% prime one-digit integers of magnitude not exceeding 6 for lines and 4
% for vectors.
%^^A
% \item Filled and unfilled full circles were limited by the necessarily
% limited number of specific glyphs contained in the special \LaTeX\
% \texttt{picture} fonts.
%^^A
% \item Quarter circles were also limited in their radii for the same
% reason.
%^^A
% \item Ovals (rectangles with rounded corners) could not be too small
% because of the unavailability of small radius quarter circles, nor
% could be too large, in the sense that after a certain radius the
% rounded corners remained the same and would not increase proportionally
% to the oval size.
%^^A
% \item Vector arrows had only one possible shape and matched the limited
% number of vector slopes.
%^^A
% \item For circles and inclined lines and vectors just two possible
% thicknesses  were available.
% \end{enumerate}
%
% The package \texttt{pict2e} removes most if not all the above
% limitations.
% \begin{enumerate}
% \item Line and vector slopes are virtually unlimited; the only
% remaining limitation is that the direction coefficients must be
% three-digit integer numbers; they need not be relatively prime; with
% the 2009 upgrade even this limitation was removed and now slope
% coefficients can be any fractional number whose magnitude does not
% exceed 16\,384, the maximum dimension in points that \TeX\ can handle.
%^^A
% \item Filled and unfilled circles can be of any size.
%^^A
% \item Ovals can be designed with any specified corner curvature and
% there is virtually no limitation to such curvatures; of course corner
% radii should not exceed half the lower value between the base and the
% height of the oval.
%^^A
% \item There are two shapes for the arrow tips; the triangular one
% traditional with \LaTeX\ vectors, or the arrow tip with PostScript
% style.
%^^A
% \item The |\linethickness| command changes the thickness of all lines,
% straight, curved, vertical, horizontal, arrow tipped, et cetera.
% \end{enumerate}
%
% This specific extension package |curve2e| adds the following features.
% \begin{enumerate}
% \item Point coordinates my be specified in both cartesian and polar
% form: internally they are handled as cartesian coordinates, but the
% user can specify  his/her points also in polar form. In order to avoid
% confusion with other graphic packages, |curve2e| uses the usual comma
% separated couple \meta{$x,y$} of integer or fractional numbers for
% cartesian coordinates, and the couple \meta{$\theta$}:\meta{$\rho$} for
% polar coordinates (the angle preceding the radius). 
% All graphic object commands accept polar or cartesian coordinates at
% the choice of the user who may use for each object the formalism s/he
% prefers. Also the |put| and |\multiput| commands have been redefined so
% as to accept cartesian or polar coordinates.
%
% Of course the user must pay attention to the meaning of cartesian
% vs. polar coordinates. Both imply a displacement with respect the
% actual origin of the axes. So when a circle is placed at coordinates
% $a,b$ with a normal |\put| command, the circle is placed exactly in
% that point; with a normal |\put| command the same happens if
% coordinates $\alpha{:}\rho$ are specified.
% But if the |\put| command is nested into another |\put| command, the
% current origin of the axes is displaced — this is obvious and the
% purpose of nesting |\put| commands is exactly that. But if a segment
% is specified so that its ending point is at a specific distance and in
% specific direction form its starting point, polar coordinates appear to 
% be the most convenient to use; in this case, though, the origin of the
% axes become the stating point of the segment, therefore the segment
% might be drawn in a strange way. Attention has been
% paid to avoid such misinterpretation, but maybe some unusual
% situation may not have come to my mind; feedback is very welcome.
% Meanwhile pay attention when you use polar coordinates.
%^^A
%\item Most if not all cartesian coordinate pairs and slope pairs are
% treated as \emph{ordered pairs}, that is \emph{complex numbers}; in
% practice the user does not notice any difference from what s/he was
% used to, but all the mathematical treatment to be applied to these
% entities is coded as complex number operations, since complex numbers
% may be viewed non only as ordered pairs, but also as vectors or as
% roto-amplification operators.
%^^A
% \item Commands for setting the line terminations were introduced; the
% user can chose between square or rounded caps; the default is set to
% rounded caps; now this feature is directly available with |pict2e|.
%^^A
% \item Commands for specifying the way two lines or curves join to one
% another.
% ^^A
% \item Originally the |\line| macro was redefined so as to allow large
% (up to three digits) integer direction coefficients, but maintaining
% the same syntax as in the original \texttt{picture} environment; now 
% |pict2e| removes the integer number limitations and allows fractional
% values, initially implemented by |curve2e|.
% ^^A
% \item A new macro |\Line| was originally by |curve2e| defined so as to
% avoid the need to specify the horizontal projection of inclined lines;
% now this functionality is available directly with |pict2e|; but this
% |curve2e| macro name now conflicts with |pict2e| 2009 version;
% therefore its name is changed to |\LIne| and supposedly it will not be
% used very often, if ever, by the end user (but it is used within this
% package macros).
% ^^A
% \item A new macro |\LINE| was defined in order to join two points
% specified with their coordinates; this is now the normal behaviour of
% the |\Line| macro of |pict2e| so that in this package |\LINE| is now
% renamed |\segment|; there is no need to use the |\put| command with
% this line specification.
% ^^A
% \item A new macro |\DashLine| (alias: |\Dline|) is defined in order to
% draw dashed lines joining any two given points; the dash length and
% gap (equal to one another) get specified through one of the macro
% arguments.The stating point mai be specified in cartesiano or polar
% form; the end point in cartesian format specifies the desired end
% point; while if the second point is in polar form it is meant
% \emph{relative to the starting point}, not as an absolute end point.
% See the examples further on.
% ^^A
% \item A similar new macro |\Dotline| is defined in order to draw dotted 
% straight lines as a sequence of equally spaced dots, where the gap can
% be specified by the user; such straight line may have any inclination,
% as well as the above dashed lines.Polar coordinates for the second
% point have the same relative meaning as specified for the |\Dashline|
% macro.
% ^^A
% \item Similar macros are redefined for vectors; |\vector| redefines the
% original macro but with the vector slope limitations removed; |\Vector|
% gets specified with its two horizontal and vertical components in
% analogy with |\LIne|; |\VECTOR| joins two specified points (without
% using the |\put| command) with the arrow pointing to the second point.
%^^A
% \item A new macro |\polyline| for drawing polygonal lines is defined
% that accepts from two vertices up to an arbitrary (reasonably limited)
% number of them (available now also in |pict2e|); here it is redefined
% so as to allow an optional specification of the way segments for the
% polyline are joined to one another. Vertices may be specified with
% polar coordinates and are always relative to the preceding point.
%^^A
% \item The |pict2e| |polygon| macro to draw closed polylines (in
% practice general polygons) has been redefined in such a way that it
% can accept the various vertices specified with (relative) polar
% coordinates. The |polygon*| macro produces a color filled polygon; the
% default color is black, but a different color may be specified with the
% usual |\color| command given within the same group where |\polygon*| is
% enclosed.
%^^A
% \item A new macro |\Arc| is defined in order to draw an arc with
% arbitrary radius and arbitrary aperture (angle amplitude); this
% amplitude is specified in sexagesimal degrees, not in radians; a
% similar functionality is now achieved with the |\arc| macro of
% |pict2e|, which provides also the starred version |\arc*| that fills
% up the interior of the generated circular arc with the current color.
% It must be noticed that the syntax is slightly different, so that it's
% reasonable that these commands, in spite of producing identical arcs,
% might be more comfortable with this or that syntax.
%^^A
% \item Two new macros |\VectorArc| and |\VectorARC| are defined in order
% to draw circular arcs with an arrow at one or both ends.
%^^A
% \item A new macro |\Curve| is defined so as to draw arbitrary curved
% lines by means of cubic Bézier splines; the |\Curve| macro requires
% only the curve nodes and the directions of the tangents at each
% node. The starred version fills up the interior of the curve with the
% current color.
%^^A
% \item the above |\Curve| macro is a recursive macro that can draw an
% unlimited (reasonably limited) number of connected Bézier spline arcs
% with% continuous tangents except for cusps; these arcs require only the
% specification of the tangent direction at the interpolation nodes.
% It is possible to use a lower level macro |\CbezierTo| that does the
% same but lets the user specify the control points of each arc; it is
% more difficult to use but it is more performant.
%^^A
% \item The basic macros used within the cumulative |\Curve| macro can be
% used individually in order to draw any curve, one cubic arc at the
% time; but they are intended for internal use, even if it is not
% prohibited to use them; by themselves such arcs are not different form
% those used by |Curve|, but the final command, |\FillCurve|, should be
% used in place of |\CurveFinish|, so as to fill up the closed path with
% the locally specified color; see figure~\ref{fig:colored-curve}. 
% It is much more convenient to use the starred version of the |\Curve|
% macro.
% \end{enumerate}
%
% The |pict2e| package already defines macros such as |\moveto|,
% |\lineto|, |\curveto|, |\closepath|, |\fillpath|, and |\strokepath|;
% of course these macros can be used by the end user, and sometimes they
% perform better than the macros defined in this package, because the
% user has a better control on the position of the Bézier splines
% control points, while here the control points are sort of rigid. It
% would be very useful to resort to the |hobby| package, but its macros
% are compatible with those of the |tikz| and |pgf| packages, not with
% |curve2e|; an interface should be created in order to deal with the
% |hobby| package, but this has not been done yet.
% In any case they are redefined so as to accept symbolic names for the
% point coordinates in both the cartesian and polar form.
%
% In order to make the necessary calculations many macros have been
% defined so as to use complex number arithmetics to manipulate point
% coordinates, directions (unit vectors, also known as `versors'),
% rotations and the like. In the first versions of this package the
% trigonometric functions were also defined in a way that the author
% believed to be more efficient than those defined by the \texttt{trig}
% package; in any case the macro names were sufficiently different to
% accommodate both definition sets in the same \LaTeX\ run. With the
% progress of the \LaTeX\,3 language, the |xfp| has recently become
% available, by which any sort of calculations can be done with floating
% point decimal numbers; therefore the most common algebraic, irrational
% and transcendental functions can be computed in the background with the
% stable internal floating point facilities. We maintain some computation
% with complex number algebra, but use the |xfp| functionalities for
% other computations.
%
% Many aspects of this extension could be fine tuned for better
% performance; many new commands could be defined in order to further
% extend this extension. If the new service macros are accepted by other
% \TeX\ and \LaTeX\ programmers, this version could become the start for
% a real extension of the |pict2e| package or even become a part of
% it. Actually some macros have already been included in the |pict2e|
% package. The |\Curve| algorithm, as I said before, might be redefined
% so as to use the macros  introduced in the |hobby| package, that
% implements for the |tikz| and |pgf| packages the same functionalities
% that John Hobby implemented for the \MF\ and \MP\ programs. 
%
% For these reasons I suppose that every enhancement should be submitted
% to Gäßlein, Niepraschk, and Tkadlec who are the prime maintainers of
% \texttt{pict2e}; they are the only ones who can decide whether or not
% to incorporate new macros in their package.
%
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \section{Summary and examples of new commands}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This package \texttt{curve2e} extends the power of \texttt{pict2e} with
% the following modifications and the following new commands.
% \begin{enumerate}
% \item This package |curve2e| calls directly the \LaTeX\ packages
% |color| and |pict2e| to which it passes any possible option that the
% latter can receive; actually the only options that make sense for
% |pict2e| are those concerning the arrow tips, either \LaTeX\ or
% PostScript styled, because it is assumed that if you use this package
% you are not interested in using the original \LaTeX\ commands. See the
% |pict2e| documentation in order to see the correct options |pict2e|
% can receive. If the user wants to use the |xcolor| package, it has to
% load this one before |curve2e|.
%^^A
% \item The user is offered new commands in order to control the line
% terminators and the line joins; specifically:
% \begin{itemize}
% \item |\roundcap|: the line is terminated with a semicircle;
% \item |\squarecap|: the line is terminated with a half square;
% \item |\roundjoin|: two lines are joined with a rounded join;
% \item |\beveljoin|: two lines are joined with a bevel join;
% \item |\miterjoin|: two lines are joined with a miter join.
% \end{itemize}
% All the above commands should respect the intended range; but since
% they act at the PostScript or PDF level, not at \TeX\ level, it might
% be necessary to issue the necessary command in order to restore the
% previous terminator or join.
%^^A
% \item The commands |\linethickness|, |\thicklines|, |\thinlines|
% together with |\defaultlinethickness| always redefine the internal
% |\@wholewidth| and |\@halfwidth| so that the latter always refer to a
% full width and to a half of it in this way: if you issue the command
% |\defaultlinewidth{2pt}| all thin lines will be drawn with a thickness
% of 1\,pt while, if a drawing command directly refers to the internal
% value |\@wholewidth|, its line will be drawn with a thickness of 2\,pt.
% If one issues the declaration |\thinlines| all lines will be drawn with
% a  1\,pt width, but if a command refers to the internal value
% |\@halfwidth| the line will be drawn with a thickness of 0.5\,pt. The
% command |\linethickness| redefines the above internals but does not
% change the default width value; all these width specifications apply to
% all lines, straight ones, curved ones, circles, ovals, vectors, dashed,
% et cetera. It's better to recall that |\thinlines| and |\thicklines|
% are declarations that do not take arguments; on the opposite the other
% two commands follow the standard syntax:
% \begin{flushleft}
% |\linethickness|\marg{dimensioned value}\\
% |\defaultlinewidth|\marg{dimensioned value}
% \end{flushleft}
% where \meta{dimensioned value} means a length specification complete of
% its units, or a dimensional expression.
%^^A
% \item Straight lines and vectors are redefined in such a way that
% fractional slope coefficients may be specified; the zero length line
% does not produce errors and is ignored; the zero length vectors draw
% only the arrow tips. 
%^^A
% \item New line and vector macros are defined that avoid the necessity
% of specifying the horizontal component; |\put(3,4){\LIne(25,15)}|
% specifies a segment that starts at point $(3,4)$ and goes to point
% $(3+25,4+15)$; the command |\segment(3,4)(28,19)| achieves the same
% result without the need of using command |\put|.
%
% The same applies to the vector commands |\Vector| and |\VECTOR| and
% |\VVECTOR|; the latter command behaves as |\VECTOR| but draws a vector
% with arrow tips at both ends; furthermore this command is available
% only with this new release of the |curve2e| package. 
% Experience has shown that the commands intended to join two specified
% points are particularly useful.
%	\begin{figure}
%	\begin{minipage}{.48\textwidth}
%	\begin{verbatim}
%	\unitlength=.5mm
%	\begin{picture}(60,20)
%	\put(0,0){\GraphGrid(80,20)}
%	\put(0,0){\vector(1.5,2.3){10}}
%	\put(20,0){\Vector(10,15.33333)}
%	\VECTOR(40,0)(50,15.33333)
%	\ifdefined\VVECTOR \VVECTOR(60,0)(80,10)\fi
%	\end{picture}
%	\end{verbatim}
%	\end{minipage}
%	\hfill
%	\begin{minipage}{.48\textwidth}\centering
%	\unitlength=.5mm
%	\begin{picture}(60,20)
%	\put(0,0){\GraphGrid(80,20)}
%	\put(0,0){\vector(1.5,2.3){10}}
%	\put(20,0){\Vector(10,15.33333)}
%	\VECTOR(40,0)(50,15.33333)
%	\ifdefined\VVECTOR \VVECTOR(60,0)(80,10)\fi
%	\end{picture}
%	\end{minipage}
%  \caption{Three (displaced) identical vectors obtained with the three
%           vector macros\ifdefined\VVECTOR; a double tipped vector is also shown\fi.}\label{fig:vectors}
%	\end{figure}
%^^A
% \item The |\polyline| command has been introduced: it accepts an
% unlimited list of  point coordinates enclosed within round parentheses;
% the command draws a sequence of connected segments that join in order the
% specified points; the syntax is:
%	\begin{flushleft}
%\cs{polyline}\oarg{optional join style}\parg{$P_1$}\parg{$P_2$}\texttt{...}\parg{$P_n$}
%	\end{flushleft}
% See figure~\ref{fig:polyline} where a regular pentagon is drawn; usage
% of polar coordinates is also shown; please notice how relative polar
% coordinates act in this figure.
%
%	\begin{figure}[!ht]
%	\begin{minipage}{.48\linewidth}
%	\begin{verbatim}
%	\unitlength=.5mm
%	\begin{picture}(40,32)(-20,-20)
%	\polyline(90:20)(162:20)(234:20)(306:20)(378:20)(90:20)
%	\end{picture}
%	\end{verbatim}
%	\end{minipage}
%   \hfill
%	\begin{minipage}{.48\linewidth}\raggedleft
%   \unitlength=.5mm
%	\begin{picture}(40,32)(-20,-20)
%	\polyline(90:20)(162:20)(234:20)(306:20)(378:20)(90:20)
%	\end{picture}\hspace*{2em}
%	\end{minipage}
%	\caption{Polygonal line obtained by means of the \texttt{\string\polyline}
%   command; vertex coordinates are in polar form.}
%	\label{fig:polyline}
%	\end{figure}
%
% Examples of using polar and cartesian coordinates are shown in 
% figure~\ref{fig:polar}.
%
%\begin{figure}[htb]\unitlength=0.01\textwidth
%\begin{minipage}{0.55\textwidth}
%\begin{verbatim}
%\begin{picture}(40,30)
%\put(0,0){\GraphGrid(40,30)}
%\Zbox(40,0)[l]{40,0}[1]
%\Zbox(90:30)[bc]{90{:}30}[1]
%\Zbox(60:30)[bc]{60{:}30}[1]
%\Zbox(30,30)[bc]{30,30}[1]
%\multiput(0,0)(30:10){5}%
%   {\makebox(0,0){\rule{1.5mm}{1.5mm}}}
%\end{picture}
%\end{verbatim}
%\end{minipage}
%\hfill
%\begin{minipage}{0.4\textwidth}
%\begin{picture}(40,30)
%\put(0,0){\GraphGrid(40,30)}
%\Zbox(40,0)[l]{40,0}[1]
%\Zbox(90:30)[bc]{90{:}30}[1]
%\Zbox(60:30)[bc]{60{:}30}[1]
%\Zbox(30,30)[bc]{30,30}[1]
%\multiput(0,0)(30:10){5}{\makebox(0,0){\rule{1.5mm}{1.5mm}}}
%\end{picture}
%\end{minipage}
%\caption[Use of cartesian and absolute polar coordinates]{Use of
% cartesian and absolute polar coordinates. The \texttt{\string\Zbox}
% macro is just a shortcut to set a small dot with a (math) legend close
% to it; its definition by means of the \texttt{xparse} functionalities
% is straightforward.}
%\label{fig:polar}
%\end{figure}
%
% A similar example may be obtained with the |\polygon| macro that does
% not require to terminate the polyline at the starting point.
% Figure~\ref{fig:polygon} shows how to get a coloured filled pentagon.
%
%	\begin{figure}[!ht]
%	\begin{minipage}{.48\linewidth}
%	\begin{verbatim}
%	\unitlength=.5mm
%	\begin{picture}(40,32)(-20,-20)
%	\color{magenta}
%	\polygon*(90:20)(162:20)(234:20)(306:20)(378:20)
%	\end{picture}
%	\end{verbatim}
%	\end{minipage}
%   \hfill
%	\begin{minipage}{.48\linewidth}\raggedleft
%   \unitlength=.5mm
%	\begin{picture}(40,32)(-20,-20)
%	\color{magenta}
%	\polygon*(90:20)(162:20)(234:20)(306:20)(378:20)
%	\end{picture}\hspace*{2em}
%	\end{minipage}
%	\caption{A pentagon obtained by means of the \texttt{\string\polygon*}
%   command; vertex coordinates are in relative polar form.}
%	\label{fig:polygon}
%	\end{figure}
%
% \item The new command |\Dashline| (alias: |\Dline| for backwards
% compatibility)
% \begin{flushleft}
% |\Dashline|\parg{first point}\parg{second point}\marg{dash length}
% \end{flushleft}
% draws a dashed line containing as many dashes as possible, just as long
% as specified, and separated by a gap exactly the same size; actually,
% in order to make an even gap-dash sequence, the desired dash length is
% used to do some computations in order to find a suitable length, close
% to the one specified, such that the distance of the end points is
% evenly divided in equally sized dashes and gaps.
% The end points may be anywhere in the drawing area, without any
% constraint on the slope of the joining segment. The desired dash length
% is specified as a fractional multiple of |\unitlength|; see
% figure~\ref{fig:dashline}.
%	\begin{figure}[!ht]
%	\begin{minipage}{.48\textwidth}
%	\begin{verbatim}
%	\unitlength=1mm
%	\begin{picture}(40,40)
%	\put(0,0){\GraphGrid(40,40)}
%	\Dashline(0,0)(40,10){4}
%	\put(0,0){\circle*{2}}
%	\Dashline(40,10)(0,25){4}
%	\put(40,10){\circle*{2}}
%	\Dashline(0,25)(20,40){4}
%	\put(0,25){\circle*{2}}
%	\put(20,40){\circle*{2}}
%	\Dotline(0,0)(40,40){2}
% \put(40,40){\circle*{2}}
%	\end{picture}
%	\end{verbatim}
%	\end{minipage}
%	\hfill
%	\begin{minipage}{.48\textwidth}\centering
%	\unitlength=1mm
%	\begin{picture}(40,40)
%	\put(0,0){\GraphGrid(40,40)}
%	\Dashline(0,0)(40,10){4}
%	\put(0,0){\circle*{2}}
%	\Dashline(40,10)(0,25){4}
%	\put(40,10){\circle*{2}}
%	\Dashline(0,25)(20,40){4}
%	\put(0,25){\circle*{2}}
%	\put(20,40){\circle*{2}}
% \Dotline(0,0)(40,40){2}
% \put(40,40){\circle*{2}}
%	\end{picture}
%	\end{minipage}
%	\caption{Dashed lines and graph grid}\label{fig:dashline}
%	\end{figure}
%
% Another example of usage of cartesian and polar coordinates usage is 
% shown in figure~\ref{fig:polar} together with its code.
% 
%\begin{figure}\unitlength=0.007\textwidth
%\begin{minipage}{0.55\textwidth}
%\begin{verbatim}
%\begin{picture}(40,30)
%\put(0,0){\GraphGrid(40,30)}
%\Dashline(0,0)(40,10){2}\Dashline(0,0)(40,20){2}
%\Dashline(0,0)(40,30){2}\Dashline(0,0)(30,30){2}
%\Dashline(0,0)(20,30){2}\Dashline(0,0)(10,30){2}
%{\color{blue}%
%\Dashline(40,0)(108:30){2}
%\Dashline(40,0)(126:30){2}
%\Dashline(40,0)(144:30){2}
%\Dashline(40,0)(162:30){2}}
%\end{picture}
%\end{verbatim}
%\end{minipage}
%\hfill
%\begin{minipage}{0.4\textwidth}\raggedleft
%\begin{picture}(40,30)
%\put(0,0){\GraphGrid(40,30)}
%\Dashline(0,0)(40,10){2}
%\Dashline(0,0)(40,20){2}
%\Dashline(0,0)(40,30){2}
%\Dashline(0,0)(30,30){2}
%\Dashline(0,0)(20,30){2}
%\Dashline(0,0)(10,30){2}
%{\color{blue}%
%\Dashline(40,0)(108:30){2}
%\Dashline(40,0)(126:30){2}
%\Dashline(40,0)(144:30){2}
%\Dashline(40,0)(162:30){2}}%
%\end{picture}
%\end{minipage}
%\caption{Different length dashed lines with the same nominal dash
% length; notice the relative polar coordinates used for the dashed
% lines starting at the grid lower right vertex.}
%\label{fig:dashedlines}
%\end{figure}
%
% Another
%^^A
%\item Analogous to |\Dashline|, a new command |\Dotline| draws a dotted
% line with the syntax:
% \begin{flushleft}
% |\Dotline|\parg{first point}\parg{end point}\marg{dot gap}
% \end{flushleft}
% See figures~\ref{fig:dashline} and~\ref{fig:dottedlines} for examples.
%
%\begin{figure}[htb]\unitlength=0.007\textwidth
%\begin{minipage}{0.55\textwidth}
%\begin{verbatim}
%\begin{picture}(40,30)
%\put(0,0){\GraphGrid(40,30)}
%\Dotline(0,0)(40,10){1.5}\Dotline(0,0)(40,20){1.5}
%\Dotline(0,0)(40,30){1.5}\Dotline(0,0)(30,30){1.5}
%\Dotline(0,0)(20,30){1.5}\Dotline(0,0)(10,30){1.5}
%{\color{red}\Dotline(40,0)(108:30){1.5}
%\Dotline(40,0)(126:30){1.5}
%\Dotline(40,0)(144:30){1.5}
%\Dotline(40,0)(162:30){1.5}}%
%\end{picture}
%\end{verbatim}
%\end{minipage}
%\hfill
%\begin{minipage}{0.4\textwidth}\raggedleft
%\begin{picture}(40,30)
%\put(0,0){\GraphGrid(40,30)}
%\Dotline(0,0)(40,10){1.5}
%\Dotline(0,0)(40,20){1.5}
%\Dotline(0,0)(40,30){1.5}
%\Dotline(0,0)(30,30){1.5}
%\Dotline(0,0)(20,30){1.5}
%\Dotline(0,0)(10,30){1.5}
%{\color{red}%
%\Dotline(40,0)(108:30){1.5}
%\Dotline(40,0)(126:30){1.5}
%\Dotline(40,0)(144:30){1.5}
%\Dotline(40,0)(162:30){1.5}}%
%\end{picture}
%\end{minipage}
%\caption{Different length dotted lines with the same nominal dot gap;
% again notice the relative polar coordinates for the dotted lines
% starting at thhe grid lower right vertex.}
%\label{fig:dottedlines}
%\end{figure}
%^^A
% \item |\GraphGrid| is a command that draws a red grid under the drawing 
% with lines separated |10\unitlength|s apart; it is described only with
% a comma separated couple of numbers, representing the base and the
% height of the grid, see figure~\ref{fig:dashline}; it's better to
% specify multiples of ten and the grid can be placed anywhere in the
% drawing canvas by means of |\put|, whose cartesian coordinates are
% multiples of 10; nevertheless the grid line distance is rounded to the
% nearest multiple of 10, while the point coordinates specified to |\put|
% are not rounded at all; therefore some care should be used to place the
% working grid on the drawing canvas. This grid is intended as an aid
% while drawing; even if you sketch your drawing on millimetre paper, the
% drawing grid turns out to be very useful; one must only delete or
% comment out the command when the drawing is finished. Several examples
% of usage of such grid are shown in several figures.
%^^A
% \item New trigonometric function macros have been  computed by means of
% the functionalities of the |xfp| package. The difference woth the other
% existing macros is that angles are specified in sexagesimal degrees, so
% that the users need not transform to radians. The computations are done
% taking into account that “abnormal” values can occasionally be avoided,
% for example $\tan90^\circ$ must be avoided and replaced with a suitably
% large number, because the TeX\ system does not handle “infinity”.
%
% These trigonometric functions are used within the complex number
% macros; but if the user wants to use them the syntax is the following:
%\begin{flushleft}
%      \cs{SinOf}\meta{angle}\texttt{to}\meta{control sequence}\\
%      \cs{CosOf}\meta{angle}\texttt{to}\meta{control sequence}\\
%      \cs{TanOf}\meta{angle}\texttt{to}\meta{control sequence}
%\end{flushleft}
% The \meta{control sequence} may then be used, for example, as a
% multiplying factor of a length.
% 
%^^A
% \item Arcs can be drawn as simple circular arcs, or with one or two
% arrows at their ends (curved vectors);  the syntax is:
%\begin{flushleft}
% \cs{Arc}\parg{center}\parg{starting point}\marg{angle}\\
% \cs{VectorArc}\parg{center}\parg{starting point}\marg{angle}\\
% \cs{VectorARC}\parg{center}\parg{starting point}\marg{angle}\\
%\end{flushleft}
% If the angle is specified numerically it must be enclosed in braces,
% while if it is specified with a control sequence the braces (curly
% brackets) are not necessary. The above macro |\Arc| draws a simple
% circular arc without arrows; |\VectorArc| draws an arc with an arrow
% tip at the ending point; |\VectorARC| draws an arc with arrow tips at
% both ends; see figure~\ref{fig:arcs}.
%	\begin{figure}
%	\begin{minipage}{.48\textwidth}
%	\begin{verbatim}
%	\unitlength=0.5mm
%	\begin{picture}(60,40)
%	\put(0,0){\GraphGrid(60,40)}
%	\Arc(0,20)(30,0){60}
%	\VECTOR(0,20)(30,0)\VECTOR(0,20)(32.5,36)
%	\VectorArc(0,20)(15,10){60}
%	\put(20,20){\makebox(0,0)[l]{$60^\circ$}}
%	\VectorARC(60,20)(60,0){-180}
%	\end{picture}
%	\end{verbatim}
%	\end{minipage}
%	\hfill
%	\begin{minipage}{.48\textwidth}\centering
%	\unitlength=0.5mm
%	\begin{picture}(60,40)
%	\put(0,0){\GraphGrid(60,40)}
%	\Arc(0,20)(30,0){60}
%	\VECTOR(0,20)(30,0)\VECTOR(0,20)(32.5,36)
%	\VectorArc(0,20)(15,10){60}
%	\put(20,20){\makebox(0,0)[l]{$60^\circ$}}
%	\VectorARC(60,20)(60,0){-180}
%	\end{picture}
%	\end{minipage}
%	\caption{Arcs and curved vectors}\label{fig:arcs}
%	\end{figure}
%^^A
% \item A multitude of commands have been defined in order to manage
% complex numbers; actually complex numbers are represented as a comma
% separated pair of fractional numbers (here we use only cartesian
% coordinates). They are used to address specific points in the drawing
% plane, but also as operators so as to scale and rotate other objects.
% In the following \meta{vector} means a comma separated pair of
% fractional numbers, \meta{vector macro} means a macro that contains a
% comma separated pair of fractional numbers; \meta{angle macro} means a
% macro that contains the angle of a vector in sexagesimal degrees;
% \meta{argument} means a brace delimited numeric value, even a macro;
% \meta{numeric macro} means a macro that contains a fractional number;
% \textit{macro} is a valid macro name, i.e.~a backslash followed by
% letters, or anything else that can receive a definition. A
% \emph{direction} of a vector is its versor; the angle of a vector is
% the angle between the vector and the positive $x$ axis in
% counterclockwise direction, as it is used in the
% Euler formula $ \vec{v} = Me^{\mathrm{j}\varphi}$.
%
% {\footnotesize\begin{itemize}
% \item |\MakeVectorFrom|\meta{numeric macro}\meta{numeric macro}|to|\meta{vector macro}
% \item |\CopyVect|\meta{first vector}|to|\meta{second vector macro}
% \item |\ModOfVect|\meta{vector}|to|\meta{modulus macro}
% \item |\DirOfvect|\meta{vector}|to|\meta{versor macro}
% \item |\ModAndDirOfVect|\meta{vector}|to|\meta{modulus macro}|and|\meta{versor macro}
% \item |\ModAndAngleOfVect|\meta{vector}|to|\meta{modulus macro}|and|\meta{angle macro}
% \item |\DistanceAndDirOfVect|\meta{1st vector}|minus|\meta{2nd vector}|to|\meta{distance macro}|and|\meta{versor macro}
% \item |\XpartOfVect|\meta{vector}|to|\meta{macro}
% \item |\YpartOfVect|\meta{vector}|to|\meta{macro}
% \item |\DirFromAngle|\meta{angle}|to|\meta{versor macro}
% \item |\ArgOfVect|\meta{vector}|to|\meta{angle macro}
% \item |\ScaleVect|\meta{vector}|by|\meta{scaling factor}|to|\meta{vector macro}
% \item |\ConjVect|\meta{vector}|to|\meta{conjugate vector macro}
% \item |\SubVect|\meta{subtrahend vector}|from|\meta{minuend vector}|to|\meta{vector macro}
% \item |\AddVect|\meta{first vector}|and|\meta{second vector}|to|\meta{vector macro}
% \item |\Multvect|\marg{first vector}*\marg{second vector}*\marg{vector macro} (the asterisks are optional; either one changes the second vector into its complex conjugate)
% \item |\MultVect|\meta{first vector}|by|\meta{second vector}|to|\meta{vector macro} (discouraged; maintained for backwards compatibility)
% \item |\MultVect|\meta{first vector}|by*|\meta{second vector}|to|\meta{vector macro} (discouraged; maintained for backwards compatibility)
% \item |\Divvect|\marg{dividend vector}\marg{divisor vector}\marg{ vector macro}
% \item |\DivVect|\meta{dividend vector}|by|\meta{divisor vector}|to|\meta{vector macro} (maintained for backwards compatibility)
% \end{itemize}}
%^^A
% \item General curves can be drawn with the |pict2e| macro |\curve| but
% it requires the specification of the third-order Bézier-spline control
% points; sometimes it's better to be very specific with the control
% points and there is no other means to do a decent graph; sometimes the
% curves to be drawn are not so tricky and a general set of macros can be
% defined so as to compute the control points, while letting the user
% specify only the nodes through which the curve must pass, and the
% tangent direction of the curve in such nodes. Such commands are the
% following:
%\begin{itemize}
%
%\item \cs{Curve} to draw a sequence of arcs as explained above, using
% third order (cubic) Bézier splines. The starred version of this command
% fills the internal part of the curve with the current color; if the
% last arc finishes where the fist arc starts, it is clear what is the
% interior; if it does not, the driver  (not the code of this package,
% but the driver between this code and the physical representation on
% paper or screen) assumes a straight line closure of the whole path.
%
%\item \cs{Qurve} similar to |\Curve|, but with second order (quadratic)
% Bézier splines. The starred version fills the interior with the current
% color.
%
%\item \cs{CurveBetween} draws a single cubic Bézier spline between two
% given nodes and with two given directions vectors.
%
%\item \cs{CBezierBetween}  draws a single cubic Bézier spline between
% two given nodes, with two given directions versors along which the
% control node distances are specified. This is the most general macro
% (rather difficult to use) with which not only the arc end points are
% specified but also the control nodes coordinates are given.
%
%\end{itemize}
%
% The main macro is |\Curve| and must be followed by an “unlimited”
% sequence of node-direction coordinates as a quadruple
% defined as
%\[
% \parg{node coordinates}\aarg{direction vector}
%\]
% Possibly if a sudden change of direction has to be performed (cusp)
% another item can be inserted after one of those quadruples in the form
%\[
% \mbox{\dots\parg{...}\aarg{...}\oarg{new direction vector}\parg{...}\aarg{...}\dots}
%\]
%
% Possibly it is necessary to specify the “tension” or the “looseness”
% of a specific Bézier arc; such tension parameters range from 0 (zero)
% to~4; the zero value implies a very stiff arc, as if it was a string
% subject to a high tension (i.e. with zero looseness); a value of~4
% implies a very low tension (very high looseness), almost as if the
% string was not subject to any tension. In \MF\ or \MP\ language such a
% concept is used very often; in this package, where the Hobby
% algorithms are not used, the parameter value appears to mean the
% opposite of tension.
% A couple of comma separated tension values may be optionally used, they
% are separated with a semicolon form the direction vector,
% and they apply to the arc terminating with the last node; their
% specification  must precede any possible change of tangent according to
% this syntax\footnote{The tension may be specified only for cubic
% splines, because the quadratic ones do not use enough parameters to
% control the tension; not all commands for drawing cubic splines accept
% this optional tension specification.}:
%\[
%\mbox{\dots\parg{...}\aarg{\upshape{\em direction vector}\texttt{;}{\em start tension}|,|{\em end tension}}\parg{...}\aarg{...}\dots}
%\]
%
% The |\Curve| macro does not (still) have facilities for cycling the
% path, that is to close the path from the last specified node-direction
% to the first specified node-direction; but, as already mentioned, if
% the ending node of the last arc does not coincide with the starting
% node of the first arc, a straight line is assumed to join such nodes;
% this line does not get drawn, but with starred commands no lines are
% drawn because only the interior is coloured.
% The tangent direction need not be specified with a unit vector,
% although only its direction is relevant; the scaling of the specified
% direction vector to a unit vector is performed by the macro itself.
% Therefore one cannot specify the fine tuning of the curve convexity as
% it can be done with other programs or commands, as, for example, with
% \MF\  or the |pgf/tikz| package and environment. See figure~\ref{fig:curve} for
% an example.
%	\begin{figure}[htb]
%	\begin{minipage}{.48\textwidth}
%   \begin{verbatim}
%	\unitlength=8mm\relax
%	\begin{picture}(5,5)
%	\put(0,0){\framebox(5,5){}}\thicklines\roundcap
%	\Curve(2.5,0)<1,1>(5,3.5)<0,1>%
%	  (4,5)<-1,0>(2.5,3.5)<-.5,-1.2>[-.5,1.2]%
%	  (1,5)<-1,0>(0,3.5)<0,-1>(2.5,0)<1,-1>
%	\end{picture}
%   \end{verbatim}
%	\end{minipage}
%	\hfill
%	\begin{minipage}{.48\textwidth}\raggedleft\relax
%	\unitlength=8mm\relax
%	\begin{picture}(5,5)
%	\put(0,0.5){\put(0,0){\framebox(5,5){}}\thicklines\roundcap
%	\Curve(2.5,0)<1,1>(5,3.5)<0,1>(4,5)<-1,0>(2.5,3.5)<-0.5,-1.2>[-0.5,1.2](1,5)<-1,0>(0,3.5)<0,-1>(2.5,0)<1,-1>}
%	\end{picture}
%	\end{minipage}
%	\caption{A heart shaped curve with cusps drawn with \texttt{\string\Curve}}
%	\label{fig:curve}

%\vspace*{2\baselineskip}
%
%	\begin{minipage}{.48\textwidth}
%   \begin{verbatim}
%	\unitlength=8mm\relax
%	\begin{picture}(5,5)
%	\put(0,0){\framebox(5,5){}}\thicklines\roundcap
%   \color{green}\relax
%	\Curve*(2.5,0)<1,1>(5,3.5)<0,1>%
%	  (4,5)<-1,0>(2.5,3.5)<-.5,-1.2>[-.5,1.2]%
%	  (1,5)<-1,0>(0,3.5)<0,-1>(2.5,0)<1,-1>
%	\end{picture}
%   \end{verbatim}
%	\end{minipage}
%	\hfill
%	\begin{minipage}{.48\textwidth}\raggedleft\relax
%	\unitlength=8mm\relax
%	\begin{picture}(5,5)
%	\put(0,0.5){\put(0,0){\framebox(5,5){}}\thicklines\roundcap
%   \color{green}\relax
%	\Curve*(2.5,0)<1,1>(5,3.5)<0,1>(4,5)<-1,0>(2.5,3.5)<-0.5,-1.2>[-0.5,1.2](1,5)<-1,0>(0,3.5)<0,-1>(2.5,0)<1,-1>}
%	\end{picture}
%	\end{minipage}
%\caption{Coloring the inside of a closed path drawn with \texttt{\string\Curve*}}
%\label{fig:colored-curve}

%	\end{figure}
%
% With the starred version of |\Curve|, instead of stroking the contour,
% the macro fills up the contour with the selected current color,
% figure~\ref{fig:colored-curve}.
%
% Figure~\ref{fig:arcspline} shows a geometric construction that
% contains the geometric elements and symbols used to determine the
% parameters of a cubic spline required to draw a quarter circle. This
% construction contains many of the commands described so far.
%
%\begin{figure}[p]
%\begin{minipage}{\linewidth}\small
%\begin{verbatim}
%\unitlength=0.007\textwidth
%\begin{picture}(100,90)(-50,-50)
%\put(-50,0){\vector(1,0){100}}\put(50,1){\makebox(0,0)[br]{$x$}}%
%\put(20,-1){\makebox(0,0)[t]{$s$}}%
%\put(0,0){\circle*{2}}\put(-1,-1){\makebox(0,0)[tr]{$M$}}%
%\legenda(12,-45){s=\overline{MP_2}=R\sin\theta}%
%\put(0,-50){\vector(0,1){90}}%
%\put(1,40){\makebox(0,0)[tl]{$y$}}%
%\put(0,-40){\circle*{2}}\put(1,-41){\makebox(0,0)[lt]{$C$}}%
%\segment(0,-40)(-40,0)\segment(0,-40)(40,0)%
%\put(-41,1){\makebox(0,0)[br]{$P_1$}}\put(-40,0){\circle*{2}}%
%\put(41,1){\makebox(0,0)[bl]{$P_2$}}\put(40,0){\circle*{2}}%
%\put(0,0){\linethickness{1pt}\Arc(0,-40)(40,0){90}}%
%\segment(-40,0)(-20,20)\put(-20,20){\circle*{2}}%
%\put(-20,21.5){\makebox(0,0)[b]{$C_1$}}%
%\segment(40,0)(20,20)\put(20,20){\circle*{2}}%
%\put(20,21.5){\makebox(0,0)[b]{$C_2$}}%
%\put(0,-40){\put(0,56.5685){\circle*{2}}%
%\put(1,58){\makebox(0,0)[bl]{$P$}}}%
%\VectorARC(0,-40)(15,-25){45}\put(10,-18){\makebox(0,0)[c]{$\theta$}}%
%\VectorARC(40,0)(20,0){-45}\put(19,5){\makebox(0,0)[r]{$\theta$}}%
%\VectorARC(-40,0)(-20,0){45}\put(-19,5){\makebox(0,0)[l]{$\theta$}}%
%\put(-20,-18){\makebox(0,0)[bl]{$R$}}%
%\put(-32,13){\makebox(0,0)[bl]{$K$}}%
%\put(32,13){\makebox(0,0)[br]{$K$}}%
%\end{picture}
%\end{verbatim}
%\end{minipage}\vspace{\stretch{1}}
%
%\begin{minipage}{\linewidth}\centering
%\unitlength=0.007\textwidth
%\begin{picture}(100,90)(-50,-50)
%\put(-50,0){\vector(1,0){100}}\put(50,1){\makebox(0,0)[br]{$x$}}%
%\put(20,-1){\makebox(0,0)[t]{$s$}}%
%\put(0,0){\circle*{2}}\put(-1,-1){\makebox(0,0)[tr]{$M$}}%
%\legenda(12,-45){s=\overline{MP_2}=R\sin\theta}%
%\put(0,-50){\vector(0,1){90}}%
%\put(1,40){\makebox(0,0)[tl]{$y$}}%
%\put(0,-40){\circle*{2}}\put(1,-41){\makebox(0,0)[lt]{$C$}}%
%\segment(0,-40)(-40,0)\segment(0,-40)(40,0)%
%\put(-41,1){\makebox(0,0)[br]{$P_1$}}\put(-40,0){\circle*{2}}%
%\put(41,1){\makebox(0,0)[bl]{$P_2$}}\put(40,0){\circle*{2}}%
%\put(0,0){\linethickness{1pt}\Arc(0,-40)(40,0){90}}%
%\segment(-40,0)(-20,20)\put(-20,20){\circle*{2}}%
%\put(-20,21.5){\makebox(0,0)[b]{$C_1$}}%
%\segment(40,0)(20,20)\put(20,20){\circle*{2}}%
%\put(20,21.5){\makebox(0,0)[b]{$C_2$}}%
%\put(0,-40){\put(0,56.5685){\circle*{2}}%
%\put(1,58){\makebox(0,0)[bl]{$P$}}}%
%\VectorARC(0,-40)(15,-25){45}\put(10,-18){\makebox(0,0)[c]{$\theta$}}%
%\VectorARC(40,0)(20,0){-45}\put(19,5){\makebox(0,0)[r]{$\theta$}}%
%\VectorARC(-40,0)(-20,0){45}\put(-19,5){\makebox(0,0)[l]{$\theta$}}%
%\put(-20,-18){\makebox(0,0)[bl]{$R$}}%
%\put(-32,13){\makebox(0,0)[bl]{$K$}}%
%\put(32,13){\makebox(0,0)[br]{$K$}}%
%\end{picture}
%\end{minipage}
%\caption{The code to display the nodes and control points for an arc to
% be approximated with a cubic Bézier spline}
%\label{fig:arcspline}
%\end{figure}
%
%
% To show what you can do with |\CurveBetween| see the code and result
% shown in figure~\ref{fig:curva-due-punti}. Notice the effect of
% changing the directions at both or a the end nodes of a single cubic
% spline. The directions are conveniently expressed with unit vectors
% described by polar coordinates.

%\begin{figure}\centering\unitlength=0.004\textwidth
%\begin{picture}(220,120)(-50,-20)
%\put(0,60){\Line(-50,0)(50,0)
%\CurveBetween-50,0and50,0WithDirs15:1and{-15:1}
%\CurveBetween-50,0and50,0WithDirs30:1and{-30:1}
%\CurveBetween-50,0and50,0WithDirs45:1and{-45:1}
%\CurveBetween-50,0and50,0WithDirs60:1and{-60:1}
%\CurveBetween-50,0and50,0WithDirs75:1and{-75:1}
%\CurveBetween-50,0and50,0WithDirs90:1and{-90:1}}
%\put(120,60){%
%\Line(-50,0)(50,0)
%\CurveBetween-50,0and50,0WithDirs15:1and{15:1}
%\CurveBetween-50,0and50,0WithDirs30:1and{30:1}
%\CurveBetween-50,0and50,0WithDirs45:1and{45:1}
%\CurveBetween-50,0and50,0WithDirs60:1and{60:1}
%\CurveBetween-50,0and50,0WithDirs75:1and{75:1}
%\CurveBetween-50,0and50,0WithDirs90:1and{90:1}}
%\put(0,0){%
%\Line(-50,0)(50,0)
%\CurveBetween-50,0and50,0WithDirs45:1and{-15:1}
%\CurveBetween-50,0and50,0WithDirs45:1and{-30:1}
%\CurveBetween-50,0and50,0WithDirs45:1and{-45:1}
%\CurveBetween-50,0and50,0WithDirs45:1and{-60:1}
%\CurveBetween-50,0and50,0WithDirs45:1and{-75:1}
%\CurveBetween-50,0and50,0WithDirs45:1and{-90:1}}
%\put(120,0){%
%\Line(-50,0)(50,0)
%\CurveBetween-50,0and50,0WithDirs45:1and{15:1}
%\CurveBetween-50,0and50,0WithDirs45:1and{30:1}
%\CurveBetween-50,0and50,0WithDirs45:1and{45:1}
%\CurveBetween-50,0and50,0WithDirs45:1and{60:1}
%\CurveBetween-50,0and50,0WithDirs45:1and{75:1}
%\CurveBetween-50,0and50,0WithDirs45:1and{90:1}}
%\end{picture}
%\caption{Curves between two points with different start and end slopes}\label{fig:curva-due-punti}
%\end{figure}
%
% A little more complicated is the use of the |\CBezierBetween| macro,
% figure~\ref{fig:Cbezier}. The directions are specified with unit
% vectors in polar form; the control points are specified by adding their
% distances from their neighbouring nodes; actually the right distance
% is maintained to the value~1, while the left one increases from~4
% to~10.
% The black line corresponds to the standard |\CurveBetween| where the
% default distance is computed to trace an arc of a circle and
% is approximately~3.5. 
%
%\begin{figure}[!tb]
%\begin{minipage}[t]{0.52\textwidth}
%\begin{verbatim}
%\unitlength=0.1\textwidth
%\begin{picture}(10,3)
%\CurveBetween0,0and10,0WithDirs1,1and{1,-1}
%\color{red}%
%\CbezierBetween0,0And10,0 WithDirs45:1And-45:1UsingDists4And{1}
%\CbezierBetween0,0And10,0 WithDirs45:1And-45:1UsingDists6And{1}
%\CbezierBetween0,0And10,0 WithDirs45:1And-45:1UsingDists8And{1}
%\CbezierBetween0,0And10,0 WithDirs45:1And-45:1UsingDists10And{1}
%\CbezierBetween0,0And10,0 WithDirs45:1And-45:1UsingDists12And{1}
%\end{picture}
%\end{verbatim}
%\end{minipage}
%\hfill
%\begin{minipage}{0.40\textwidth}\raggedleft
%\unitlength=0.1\textwidth
%\begin{picture}(10,3)(0,1.25)
%\CurveBetween0,0and10,0WithDirs1,1and{1,-1}
%\color{red}%
%\CbezierBetween0,0And10,0 WithDirs45:1And-45:1UsingDists4And{1}
%\CbezierBetween0,0And10,0 WithDirs45:1And-45:1UsingDists6And{1}
%\CbezierBetween0,0And10,0 WithDirs45:1And-45:1UsingDists8And{1}
%\CbezierBetween0,0And10,0 WithDirs45:1And-45:1UsingDists10And{1}
%\CbezierBetween0,0And10,0 WithDirs45:1And-45:1UsingDists12And{1}
%\end{picture}
%\end{minipage}
%\caption{Comparison between similar arcs drawn with \cs{CurveBetween} (black)
% and \cs{CbezierTo} (red)}
%\label{fig:Cbezier}
%\end{figure}
%
% In figure~\ref{fig:tensions} the effect of tension specification is
% shown. The red line corresponds to the default tension, since the
% tension values are not specified. The black lines correspond to the
% various values used in the various commands to the |\Curve| macro.
% With a tension of zero, the spline is almost coincident with the
% horizontal base line of the frame. Increasing the parameter value
% to~4.5, the curved becomes taller and taller, until it wraps itself
% displaying an evident loop. We would say that the value of ~2 is a
% reasonable  maximum  and  increasing that value is just to
% obtain special effects.
%
%\begin{figure}[!htb]\centering
%\begin{minipage}{0.48\textwidth}\small
%\begin{verbatim}
%\raggedleft\unitlength=0.01\textwidth
%\begin{picture}(70,70)
%\put(0,0){\color{blue}\frame(70,70){}}
%\put(0,0){\color{red}\Curve(0,0)<1,1>(70,0)<1,-1>}
%\Curve(0,0)<1,1>(70,0)<1,-1;0,0>
%\Curve(0,0)<1,1>(70,0)<1,-1;0.2,0.2>
%\Curve(0,0)<1,1>(70,0)<1,-1;2,2>
%\Curve(0,0)<1,1>(70,0)<1,-1;4.5,4.5>
%\Curve(0,0)<1,1>(70,0)<1,-1;0,3>
%\Curve(0,0)<1,1>(70,0)<1,-1;3,0>
%\end{picture}
%\end{verbatim}
%\end{minipage}
%\hfill
%\begin{minipage}{0.46\textwidth}
%\raggedleft\unitlength=0.01\textwidth
%\begin{picture}(70,70)
%\put(0,0){\color{blue}\framebox(70,70){}}
%\put(0,0){\color{red}\Curve(0,0)<1,1>(70,0)<1,-1>}
%\Curve(0,0)<1,1>(70,0)<1,-1;0,0>
%\Curve(0,0)<1,1>(70,0)<1,-1;0.2,0.2>
%\Curve(0,0)<1,1>(70,0)<1,-1;2,2>
%\Curve(0,0)<1,1>(70,0)<1,-1;4.5,4.5>
%\Curve(0,0)<1,1>(70,0)<1,-1;0,3>
%\Curve(0,0)<1,1>(70,0)<1,-1;3,0>
%\end{picture}
%\end{minipage}
%\caption{The effects of tension factors}\label{fig:tensions}
%\end{figure}
%
% Figure~\ref{fig:sinewave} displays two approximations of a sine wave;
% Bézier splines can approximate transcendental curves, but the
% approximation may be a poor one, depending on the approximated curve,
% when few arcs are used to draw it. With arcs specified with more
% complicated macros the approximation is better even with a lower number
% of arcs.  With many arcs it is possible to approximate almost anything.
% On the left side a modest approximation is obtained with just three
% standard arcs obtained with |\Curve| and four node specifications;
% on the right we have just two arcs created with |CBezierBetween| 
% with tension specification and control point distances; this drawing 
% is almost undistinguishable from a real sinusoid.
%
%\begin{figure}[!htb]
%\begin{minipage}{\linewidth}
%\begin{verbatim}
%\unitlength=0.01\textwidth
%\begin{picture}(100,50)(0,-25)
%\put(0,0){\VECTOR(0,0)(45,0)\VECTOR(0,-25)(0,25)
%\Zbox(45,0)[br]{x}\Zbox(0,26)[tl]{y}
%\Curve(0,0)<77:1>(10,20)<1,0;2,0.4>(30,-20)<1,0;0.4,0.4>(40,0)<77:1;0.4,2>
%}
%\put(55,0){\VECTOR(0,0)(45,0)\VECTOR(0,-25)(0,25)
%\Zbox(45,0)[br]{x}\Zbox(0,26)[tl]{y}
%\CbezierBetween0,0And20,0WithDirs77:1And-77:1UsingDists28And{28}
%\CbezierBetween20,0And40,0WithDirs-77:1And77:1UsingDists28And{28}}
%\end{picture}
%\end{verbatim}
%\end{minipage}\vspace{\baselineskip}
%
%\begin{minipage}{\linewidth}
%\unitlength=0.01\textwidth
%\begin{picture}(100,50)(0,-25)
%\put(0,0){\VECTOR(0,0)(45,0)\VECTOR(0,-25)(0,25)
%\Zbox(45,0)[br]{x}\Zbox(0,26)[tl]{y}
%\Curve(0,0)<77:1>(10,20)<1,0;2,0.4>(30,-20)<1,0;0.4,0.4>(40,0)<77:1;0.4,2>
%}
%\put(55,0){\VECTOR(0,0)(45,0)\VECTOR(0,-25)(0,25)
%\Zbox(45,0)[br]{x}\Zbox(0,26)[tl]{y}
%\CbezierBetween0,0And20,0WithDirs77:1And-77:1UsingDists28And{28}
%\CbezierBetween20,0And40,0WithDirs-77:1And77:1UsingDists28And{28}}
%\end{picture}
%\end{minipage}
%\caption{A sequence of arcs; the left figure has been drawn with the
% \cs{Curve} command with a sequence of four couples of point-direction
% arguments; the right figure has been drawn with two commands
% \cs{CbezierBetween} that include also the specification of the control
% points}
%\label{fig:sinewave}
%\end{figure}
%
% In figure~\ref{fig:quadratic-arcs} some lines drawn are shown; they are
% drawn  with quadratic splines by means of the |\Qurve| macro. In the
% left there are some open and closed curves inscribed within a square.
% On the right a “real" circle is compared to a quadratic spline circle;
% the word “real” is emphasised because it actually is an approximation
% with four quarter-circle cubic splines that, in spite of being drawn
% with third degree parametric polynomials, approximate very well a real
% circle; on the opposite the quadratic spline circle is clearly a poor
% approximation even if the maximum radial error amounts just to about
% 6\% of the radius.
%
%\begin{figure}[!htb]
%\begin{minipage}{\linewidth}
%\begin{Verbatim}[fontsize=\setfontsize{7.75}]
%\unitlength=0.0045\textwidth
%\begin{picture}(100,100)
%\put(0,0){\framebox(100,100){}}
%\put(50,50){%
%  \Qurve(0,-50)<1,0>(50,0)<0,1>(0,50)<-1,0>(-50,0)<0,-1>(0,-50)<1,0>
%\color{green}
%  \Qurve*(0,-50)<0,1>(50,0)<1,0>[-1,0](0,50)<0,1>[0,-1](-50,0)<-1,0>[1,0](0,-50)<0,-1> 
%}
%\Qurve(0,0)<1,4>(50,50)<1,0>(100,100)<1,4>
%\put(5,50){\Qurve(0,0)<1,1.5>(22.5,20)<1,0>(45,0)<1,-1.5>%
%(67.5,-20)<1,0>(90,0)<1,1.5>}
%\Zbox(0,0)[tc]{0,0}\Zbox(100,0)[tc]{100,0}
%\Zbox(100,100)[bc]{100,100}\Zbox(0,100)[bc]{0,100}
%\Pall[2](0,0)\Pall[2](100,0)\Pall[2](100,100)\Pall[2](0,100)
%\end{picture}
%\hfill
%\begin{picture}(100,100)
%\put(0,0){\framebox(100,100){}}
%\put(50,50){%
%\Qurve(0,-50)<1,0>(50,0)<0,1>(0,50)<-1,0>(-50,0)<0,-1>(0,-50)<1,0>
%\Curve(0,-50)<1,0>(50,0)<0,1>(0,50)<-1,0>(-50,0)<0,-1>(0,-50)<1,0>}
%\Zbox(50,50)[t]{O}\Pall[2](50,50)\put(50,50){\Vector(45:50)}\Zbox(67,70)[tl]{R}
%\end{picture}
%\end{Verbatim}
%\end{minipage}\vspace{2\baselineskip}
%
%\begin{minipage}{\linewidth}
%\unitlength=0.0045\textwidth
%\begin{picture}(100,100)
%\put(0,0){\framebox(100,100){}}
%\put(50,50){\Qurve(0,-50)<1,0>(50,0)<0,1>(0,50)<-1,0>(-50,0)<0,-1>(0,-50)<1,0>}
%\put(50,50){\color{green}%
%\Qurve*(0,-50)<0,1>(50,0)<1,0>[-1,0](0,50)<0,1>[0,-1](-50,0)<-1,0>[1,0](0,-50)<0,-1>}
%\Qurve(0,0)<1,4>(50,50)<1,0>(100,100)<1,4>
%\put(5,50){\Qurve(0,0)<1,1.5>(22.5,20)<1,0>(45,0)<1,-1.5>(67.5,-20)<1,0>(90,0)<1,1.5>}
%\Zbox(0,0)[tc]{0,0}\Zbox(100,0)[tc]{100,0}
%\Zbox(100,100)[bc]{100,100}\Zbox(0,100)[bc]{0,100}
%\Pall[2](0,0)\Pall[2](100,0)\Pall[2](100,100)\Pall[2](0,100)
%\end{picture}
%\hfill
%\begin{picture}(100,100)
%\put(0,0){\framebox(100,100){}}
%\put(50,50){\Qurve(0,-50)<1,0>(50,0)<0,1>(0,50)<-1,0>(-50,0)<0,-1>(0,-50)<1,0>
%\Curve(0,-50)<1,0>(50,0)<0,1>(0,50)<-1,0>(-50,0)<0,-1>(0,-50)<1,0>}
%\Zbox(50,50)[t]{O}\Pall[2](50,50)\put(50,50){\Vector(45:50)}\Zbox(67,70)[tl]{R}
%\end{picture}
%\end{minipage}
%
%\caption{\rule{0pt}{4ex}Several graphs drawn with quadratic Bézier
% splines. On the right a quadratic spline circle is compared with a
% cubic line circle.}
%\label{fig:quadratic-arcs}
%\end{figure}
%
% Notice that the previous version of |curve2e| contained an error and
% would color the outside of the green four-pointed star. 
% The |curve2e-v161|, attached to this bundle, has been corrected;
% therefore it is not actually identical to the previous version,
% although the latter one performed correctly for everything else except
% for color-filled quadratic paths.
% ^^A
% \item The new version of |\multiput| is backwards compatibile with
% the original version contained in the \LaTeX\ kernel. The new macro
% adds the handling of the coordinate increments from one position to
% the next for the \meta{object} to include in the drawing.
%
% On page~\pageref{pag:multiput} we show the code for the figure shown
% there. The red grid is nothing new, except that it displays the
% traditional |\multiput| used in this code, shown in a previous example,
% produces exactly the same result. But the for “graphs” on the grid, it
% display an alignment of black dots along the diagonal of the grid
% (again traditional |\multiput| rendered with the new version);
% a number of blue dots along a parabola; another number of magenta
% dots alined along a half sine wave; a number of little green squares
% aligned along a $-15~\circ$ line starting from the center of the grid;
% notice the polar values that are used as polar relative coordinate
% increments.
%
%\noindent\begin{figure}[!htb]
%\begin{minipage}{0.45\linewidth}
%\begin{Verbatim}[fontsize=\setfontsize{8}]
%\unitlength=0.01\linewidth
%\begin{picture}(100,100)
%\put(0,0){\GraphGrid(100,100)}
%\multiput(0,0)(10,10){11}{\circle*{2}}
%\color{blue!70!white}
%\multiput(0,0)(10,0){11}{\circle*{2}}%
%  [\GetCoord(\R)\X\Y
%  \edef\X{\fpeval{\X+10}}
%  \edef\Y{\fpeval{(\X/10)**2}}
%  \CopyVect\X,\Y to\R]
%\color{magenta}
%\multiput(0,0)(10,1){11}{\circle*{2}}%
%  [\GetCoord(\R)\X\Y
%   \edef\X{\fpeval{\X+10}}
%   \edef\Y{\fpeval{sind(\X*1.8)*100}}
%   \CopyVect\X\Y to\R]
%\color{green!60!black}
%\multiput(50,50)(-15:5){11}}{%
%\polygon*(-1,-1)(1,-1)(1,1)(-1,1)}
%\end{picture}
%\end{Verbatim}
%\end{minipage}
%\hfill
%\begin{minipage}{0.45\linewidth}
%\unitlength=0.01\linewidth
%\begin{picture}(100,100)
%\put(0,0){\GraphGrid(100,100)}
%\multiput(0,0)(10,10){11}{\circle*{2}}
%\color{blue!70!white}
%\multiput(0,0)(10,0){11}{\circle*{2}}%
%  [\GetCoord(\R)\X\Y
%  \edef\X{\fpeval{\X+10}}
%  \edef\Y{\fpeval{(\X/10)**2}}
%  \CopyVect\X,\Y to\R]
%\color{magenta}
%\multiput(0,0)(10,1){11}{\circle*{2}}%
%  [\GetCoord(\R)\X\Y
%   \edef\X{\fpeval{\X+10}}
%   \edef\Y{\fpeval{sind(\X*1.8)*100}}
%   \CopyVect\X,\Y to\R]
%\color{green!60!black}
%\multiput(50,50)(-15:5){11}{\polygon*(-1,-1)(1,-1)(1,1)(-1,1)}
%\end{picture}
%\end{minipage}
%\caption{Some examples of the \meta{handler} optional argument}%\label{pag:multiput}
%\end{figure}
%
% A new command |\xmultiput| (not available with the previous versions
% of |curve2e|) extended with respect to the original |\multiput| is
% defined by using some L3 functions; in particular the cycling
% counter is accessible to the \LaTeX\ commands and  it is stepped
% forward from~1 to the value specified in the proper command argument
% (in the original command it starts from that value and is stepped down
% to zero). See the figure on page~\ref{pag:orologio} to inspect its
% usage. It is important to notice that if the command|\rotatebox|
% has to be used, as in the example of figure~\ref{pag:orologio}, the
% package |graphics| should be also loaded, because |curve2e| does not
% do it.
%
%\begin{figure}[!htb]
%\begin{minipage}{0.45\textwidth}
%\begin{verbatim}
%\unitlength=0.0095\linewidth
%\begin{picture}(100,100)
%\put(0,0){\GraphGrid(100,100)}
%\put(50,50){\thicklines\circle{100}}
%\xmultiput[50,50](60:40)(-30:1){12}%
%  {\makebox(0,0){\circle*{2}}}%
%  [\MultVect\R by\D to\R]% 
%\xmultiput[50,50](60:46)(-30:1){12}%
%  {\ArgOfVect\R to\Ang
%  \rotatebox{\fpeval{\Ang-90}}%
%  {\makebox(0,0)[b]{\Roman{multicnt}}}}%
%  [\Multvect{\R}{\D}\R]
%\end{picture}
%\end{verbatim}
%\end{minipage}
%\hfill
%\begin{minipage}{0.45\textwidth}\raggedleft
%\unitlength=0.0095\linewidth
%\begin{picture}(100,100)
%\put(0,0){\GraphGrid(100,100)}
%\put(50,50){\thicklines\circle{100}}
%\xmultiput[50,50](60:40)(-30:1){12}%
%  {\makebox(0,0){\circle*{2}}}[\MultVect\R by\D to\R]% 
%\xmultiput[50,50](60:43)(-30:1){12}%
%  {\ArgOfVect\R to\Ang\rotatebox{\fpeval{\Ang-90}}%
%    {\makebox(0,0)[b]{\Roman{multicnt}}}}%
%      [\Multvect{\R}{\D}\R]
%\end{picture}
%\end{minipage}
%\caption{Usage example of the \texttt{\string\xmultiput} command}
%\label{pag:orologio}\hfill
%\end{figure}
%  
% \end{enumerate}
%
%
% In spite of the relative simplicity of the macros contained in this
% package, the described macros, as well as the original ones included in
% the |pict2e| package, allow to produce fine drawings that were
% unconceivable with the original \LaTeX\ picture environment. Leslie
% Lamport himself announced an extension to his environment when \LaTeXe\
% was first released in 1994; in the |latexnews| news-letter of December
% 2003; the first implementation was announced; the first version of this
% package |curve2e| was issued in 2006. It was time to have a  better
% drawing environment; this package is a simple attempt to follow the
% initial path while extending the drawing facilities; but Till Tantau's
% |pgf| package has gone much farther.
%
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \section{Remark}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% There are other packages in the \textsc{ctan} archives that deal with
% tracing curves of various kinds. |PSTricks| and |tikz/pgf| are the most
% powerful ones.
% But there is also the package |curves| that is intended to draw almost
% anything by using little dots or other symbols partially superimposed
% to one another. It uses only quadratic Bézier curves and the curve
% tracing is eased by specifying only the curve nodes, without specifying
% the control nodes; with a suitable option to the package call it is
% possible to reduce the memory usage by using short straight segments
% drawn with the PostScript facilities offered by the |dvips| driver.
%
% Another package |ebezier| performs about the same as |curve2e| but
% draws its Bézier curves by using little dots partially superimposed to
% one another. The documentation is quite interesting since it
% explains very clearly what exactly are the Bézier splines. Apparently
% |ebezier| should be used only for DVI output without recourse to
% PostScript or PDF machinery.
%
% The |picture| package extends the performance of the |picture|
% environment (extended with \texttt{pict2e}) by accepting coordinates
% and lengths in real absolute dimensions, not only as multiples of
% |\unitlength|; it provides commands to extend that functionality to
% other packages. In certain circumstances it is very useful.
%
% Package \texttt{xpicture} builds over the |picture| \LaTeX\ environment
% so as to allow to draw the usual curves that are part of an
% introductory analytic geometry course; lines, circles, parabolas,
% ellipses, hyperbolas, and polynomials; the syntax is very comfortable;
% for all these curves it uses the quadratic Bézier splines.
% 
% Package |hobby| extends the cubic Bézier spline handling with the
% algorithms John Hobby created for \MF\ and \MP. But by now this package
% interfaces very well with |tikz|; it has not (yet) been adapted to the
% common |picture| environment, even when extended with |pict2e|, and,
% why not, with |curve2e|.
%
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \section{Acknowledgements}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% I wish to express my deepest thanks to Michel Goosens who spotted some
% errors and very kindly submitted them to me so that I was able to
% correct them.
%
% Josef Tkadlec and the author collaborated extensively in order to make
% a better real long division so as to get correctly the quotient
% fractional part and to avoid as much as possible any numeric overflow;
% many Josef's ideas are incorporated in the macro that was implemented
% in the previous version of this package, although the macro used by
% Josef was slightly  different. Both versions aim/aimed at a better
% accuracy and at widening the operand ranges. In this version we
% abandoned the long division macro, and substituted it with the
% floating point division provided by the |xfp| package.
%
% Daniele Degiorgi spotted a fault in the kernel definition of
% |\linethickness| that heavily influenced also |curve2e|; see below in
% the code documentation part.
%
% Thanks also to Jin-Hwan Cho and Juho Lee who suggested a small but
% crucial modification in order to have \texttt{curve2e} work smoothly
% also with XeTeX (XeLaTeX). Actually if |pict2e|, version 0.2x or later,
% dated 2009/08/05  or later, is being used, such modification is not
% necessary any more, but it's true that it becomes imperative if older
% versions are used.
%
% \StopEventually{%
% \begin{thebibliography}{9}
% \bibitem{pict2e} Gäßlein H.,  Niepraschk R., and Tkadlec J.
% \emph{The \texttt{pict2e} package}, 2019, PDF documentation of
% \texttt{pict2e}; this package is part of any modern complete
% distribution of the \TeX\ system; it may be read by means of the line
% command \texttt{texdoc pict2e}. In case of a basic or partial system
% installation, the package may be installed by means of the specific
% facilities of the distribution.
% \end{thebibliography}
% }
%
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \section{Source code}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection{Some preliminary extensions to the \texttt{pict2e} package}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The necessary preliminary code has already been introduced. Here we
% require the \texttt{color} package and the \texttt{pict2e} one; for the
% latter one we make sure that a sufficiently recent version is used.
% If you want to use package \texttt{xcolor}, load it \emph{after}
% \texttt{curve2e}.
%
% Here we load also the |xparse| and |xfp| packages because we use their
% functionalities; but we do load them only if they are not already
% loaded with or without options; nevertheless we warn the user who wants
% to load them explicitly, to do this action before loading
% \texttt{curve2e}. 
% The |xfp| package is absolutely required; if this package is not found
% in the \TeX\ system installation, the loading of this new |curve2e| is
% aborted, and the previous version 1.61 is loaded in its
% place; the overall functionalities should non change much, but the
% functionalities of |xfp| are not available.
%\iffalse
%<*package>
%\fi
%    \begin{macrocode}
\IfFileExists{xfp.sty}{%
  \RequirePackage{color}
  \RequirePackageWithOptions{pict2e}[2014/01/01]
  \@ifl@aded{sty}{xparse}{}{\RequirePackage{xparse}}
  \@ifl@aded{sty}{xfp}{}{\RequirePackage{xfp}}%
}{%
    \RequirePackage{curve2e-v161}%
    \PackageWarningNoLine{curve2e}{%
      Package xfp is required, but apparently\MessageBreak%
      such package cannot be found in this \MessageBreak%
      TeX system installation\MessageBreak%
      Either your installation is not complete \MessageBreak%
      or it is older than 2018-10-17.\MessageBreak%
      \MessageBreak%
      ***************************************\MessageBreak%
      Version 1.61 of curve2e has been loaded\MessageBreak%
      instead of the current version\MessageBreak%
      ***************************************\MessageBreak}%
      \endinput
}
%    \end{macrocode}
% Since we already loaded package|xfp| or at least we explicitly load it
% in our preamble, we add, if not already defined by the package, the two
% new commands that allow to make floating point tests, and to implement
% a “while” cycle\footnote{Thanks to Brian Dunn who spotted a bug in
% the previous definitions.} 
%    \begin{macrocode}
%
\ExplSyntaxOn
\AtBeginDocument{%
\ProvideExpandableDocumentCommand\fptest{m m m}{%
   \fp_compare:nTF{#1}{#2}{#3}}
\ProvideExpandableDocumentCommand\fpdowhile{m m}{%
   \fp_do_while:nn{#1}{#2}}
}
\ExplSyntaxOff

%    \end{macrocode}
%
% The next macros are just for debugging. With the \texttt{trace} package
% it would probably be better to define other macros, but this is not for
% the users, but for the developers.
%    \begin{macrocode}
\def\TRON{\tracingcommands\tw@ \tracingmacros\tw@}%
\def\TROF{\tracingcommands\z@ \tracingmacros\z@}%
%    \end{macrocode}
%
% Next we define some new dimension registers that will be used by the
% subsequent macros; should they be already defined, there will not be
% any redefinition; nevertheless the macros should be sufficiently
% protected so as to avoid overwriting register values loaded by other
% macro packages.
%    \begin{macrocode}
\ifx\undefined\@tdA \newdimen\@tdA \fi
\ifx\undefined\@tdB \newdimen\@tdB \fi
\ifx\undefined\@tdC \newdimen\@tdC \fi
\ifx\undefined\@tdD \newdimen\@tdD \fi
\ifx\undefined\@tdE \newdimen\@tdE \fi
\ifx\undefined\@tdF \newdimen\@tdF \fi
\ifx\undefined\defaultlinewidth \newdimen\defaultlinewidth \fi
%    \end{macrocode}
%
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection{Line thickness macros}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% It is better to define a macro for setting a different value for the
% line and curve thicknesses; the `|\defaultlinewidth| should contain
% the equivalent of |\@wholewidth|, that is the thickness of thick lines;
% thin lines are half as thick; so when the default line thickness is
% specified to, say, 1pt, thick lines will be 1pt thick and thin lines
% will be 0.5pt thick. The default whole width of thick lines is 0,8pt,
% but this is specified in the kernel of \LaTeX\ and\slash or in
% \texttt{pict2e}. On the opposite it is necessary to redefine
% |\linethickness| because the \LaTeX\ kernel global definition does not
% hide the space after the closed brace when you enter something such as
% |\linethickness{1mm}| followed by a space or a new
% line.\footnote{Thanks to Daniele
%                          Degiorgi \texttt{degiorgi@inf.ethz.ch}).}
%    \begin{macrocode}
\gdef\linethickness#1{%
\@wholewidth#1\@halfwidth.5\@wholewidth\ignorespaces}%
\newcommand\defaultlinethickness[1]{\defaultlinewidth=#1\relax
\def\thicklines{\linethickness{\defaultlinewidth}}%
\def\thinlines{\linethickness{.5\defaultlinewidth}}\thinlines
   \ignorespaces}%
%    \end{macrocode}
% The |\ignorespaces| at the end of these macros is for avoiding spurious
% spaces to get into the picture that is being drawn, because
% these spaces introduce picture deformities often difficult to spot and
% eliminate.
%
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection{Improved line and vector macros}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The macro |\LIne| allows to draw a line with arbitrary inclination 
% as if it was a polygonal with just two vertices; actually it joins the
% canvas coordinate origin with the specified relative coordinate;
% therefore this object must be set in place by means of a |\put|
% command.
% Since its starting point is always at a relative 0,0 coordinate point
% inside the box created with |\put|, the two arguments define the
% horizontal and the vertical component respectively.
%    \begin{macrocode}
\def\LIne(#1){{\GetCoord(#1)\@tX\@tY
  \moveto(0,0)
  \pIIe@lineto{\@tX\unitlength}{\@tY\unitlength}\strokepath}\ignorespaces
}%
%    \end{macrocode}
%
% A similar macro |\segment| operates between two explicit points with
% absolute coordinates, instead of relative to the position specified
% by a |\put| command; it resorts to the |\polyline| macro that shall be
% defined in a while. The |\@killglue| command might be unnecessary, but
% it does not harm; it eliminates any explicit or implicit spacing that
% might precede this command.
%    \begin{macrocode}
\def\segment(#1)(#2){\@killglue\polyline(#1)(#2)}%
%    \end{macrocode}
% By passing its ending points coordinates to the |\polyline| macro, both
% macro arguments are a pair of coordinates, not their components; in
% other words, if $P_1=(x_1, y_2)$ and $P_2=(x_2, y_2)$, then the first
% argument is the couple $x_1, y_1$ and likewise the second argument is
% $x_2, y_2$.
% Notice that since |\polyline| accepts also the vertex coordinates in
% polar form, also|\segment| accepts the polar form. Please remember that
% the decimal separator is the decimal \emph{point}, while the
% \emph{comma} acts as coordinate separator. This recommendation is
% particularly important for non-English speaking users, since in all
% other languages the comma is or must be used as the decimal separator.
%
% The |\line| macro is redefined by making use of a division routine
% performed in floating point arithmetics; for this reason the \LaTeX\
% kernel and the overall \TeX\ system installation must be as recent as
% the release date of the \texttt{xfp} package, i.e. 2018-10-17.
% The floating point division macro receives in input two fractional
% numbers and yields on output their fractional ratio.
% Notice that this command |\line| should follow the same syntax as the
% original pre~1994 \LaTeX\ version; but the new definition  accepts the
% direction coefficients in polar mode; that is, instead of specifying a
% slope of $30^\circ$ with the actual sine and cosine (or values 
% proportional to such functions), for example |(0.5,0.866025)|, you may
% specify it as |(30:1)|, i.e. as a unit vector with the required slope
% of $30^\circ$.
%
% The beginning of the macro definition is the same as that of \texttt{pict2e}:
%    \begin{macrocode}
\def\line(#1)#2{\begingroup
  \@linelen #2\unitlength
  \ifdim\@linelen<\z@\@badlinearg\else
%    \end{macrocode}
% but as soon as it is verified that the line length is not negative,
% things change remarkably; in facts the machinery for complex numbers is
% invoked. This makes the code much simpler, not necessarily more
% efficient; nevertheless |\DirOfVect| takes the only macro argument
% (that actually contains a comma separated pair of fractional numbers)
% and copies it to |\Dir@line| (an arbitrarily named control sequence)
% after re-normalizing to unit magnitude; this is passed to |GetCoord|
% that separates the two components into the control sequences |\d@mX|
% and |\d@mY|; these in turn are the values that are actually operated
% upon by the subsequent commands.
%    \begin{macrocode}
    \expandafter\DirOfVect#1to\Dir@line
    \GetCoord(\Dir@line)\d@mX\d@mY
%    \end{macrocode}
% The normalised vector direction is actually formed with the directing
% cosines of the line direction; since the line length is actually the
% horizontal component for non vertical lines, it is necessary to compute
% the actual line length for non vertical lines by dividing the given
% length by the magnitude of the horizontal cosine |\d@mX|, and the line
% length is accordingly scaled:
%    \begin{macrocode}
    \ifdim\d@mX\p@=\z@\else
      \edef\sc@lelen{\fpeval{1 / abs(\d@mX)}}\relax
      \@linelen=\sc@lelen\@linelen
    \fi
%    \end{macrocode}
% Of course, if the line is vertical this division must not take place.
% Finally the \texttt{moveto}, \texttt{lineto} and \texttt{stroke}
% language keywords are invoked by means of the internal \texttt{pict2e}
% commands in order to draw the line. Notice that even vertical lines are
% drawn with the PDF language commands instead of resorting to the DVI
% low level language that was used in both \texttt{pict2e} and the
% original (pre 1994) \texttt{picture} commands; it had a meaning in the
% old times, but it certainly does not have any nowadays, since lines are
% drawn by the driver that produces the output in a human visible
% document form, not by \TeX\ the program.
%    \begin{macrocode}
    \moveto(0,0)\pIIe@lineto{\d@mX\@linelen}{\d@mY\@linelen}%
    \strokepath
  \fi
\endgroup\ignorespaces}%
%    \end{macrocode}
% The new definition of the command |\line|, besides the ease with which
% is readable, does not do different things from the definition of
% |pict2e| 2009, even if it did perform in a better way compared to the
% 2004 version that was limited to integer direction coefficients up to
% 999 in magnitude. Moreover this |curve2e| version accepts polar
% coordinates as slope pairs, making it much simpler to draw lines with
% specific slopes.
%
% It is necessary to redefine the low level macros \cs{moveto},
% \cs{lineto}, and  \cs{curveto}, because their original definition
% accepts only cartesian coordinates. We proceed the same as for the
% \cs{put} command.
%    \begin{macrocode}
\let\originalmoveto\moveto 
\let\originallineto\lineto
\let\originalcurveto\curveto

\def\moveto(#1){\GetCoord(#1)\MTx\MTy
  \originalmoveto(\MTx,\MTy)\ignorespaces}
\def\lineto(#1){\GetCoord(#1)\LTx\LTy
  \originallineto(\LTx,\LTy)\ignorespaces}
\def\curveto(#1)(#2)(#3){\GetCoord(#1)\CTpx\CTpy
  \GetCoord(#2)\CTsx\CTsy\GetCoord(#3)\CTx\CTy
  \originalcurveto(\CTpx,\CTpy)(\CTsx,\CTsy)(\CTx,\CTy)\ignorespaces}
%    \end{macrocode}

%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection{Dashed and dotted lines}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Dashed and dotted lines are very useful in technical drawings; here we
% introduce two macros that help drawing them in the proper way; besides
% the obvious difference between the use of dashes or dots, they may
% refer in a different way to the end points that must be specified to
% the various macros. 
%
% The coordinates of the first point $P_1$, where le line starts, are
% always referred to the origin of the coordinate axes; the end point
% $P_2$ coordinates  are referred to the origin of the axes if in
% cartesian form, while with the polar form they are referred to $P_1$;
% both coordinate types have their usefulness and
% figures~\ref{fig:dashedlines} on page~\pageref{fig:dashedlines}
% and~\ref{fig:dottedlines} on page~\pageref{fig:dottedlines} show how
% to use such coordinate types.
%
% The above mentioned macros create dashed lines between two given
% points, with a dash length that must be specified, or dotted lines,
% with a dot gap that must be specified; actually the specified dash
% length or dot gap is a desired one; the actual length or gap is
% computed by integer division between the distance of the given points
% and the desired dash length or dot gap; when dashes are involved, this
% integer is tested in order to see if it is an odd number; if it's not,
% it is increased by unity. Then the actual dash length or dot gap is
% obtained by dividing the above distance by this number.
%
% Another vector $P_2-P_1$ is created by dividing it by this number;
% then, when dashes are involved, it is multiplied by two in order to
% have the increment from one dash to the next; finally the number of
% patterns is obtained by integer division of this number by 2 and
% increasing it by~1. Since the whole dashed or dotted line is put in
% position by an internal |\put| command, is is not necessary to enclose
% the definitions within groups, because they remain interna to the
% |\put| argument box.
%
% Figure~\ref{fig:dashedlines} on page~\pageref{fig:dashedlines} shows
% the effect of the slight changing of the dash length in order to
% maintain approximately the same dash-space pattern along the line,
% irrespective of the line length. The syntax is the following:
% \begin{flushleft}
% \cs{Dashline}\parg{first point}\parg{second point}\marg{dash length}
% \end{flushleft}
% where \meta{first point} contains the coordinates of the starting point
% and \meta{second point} the absolute (cartesian) or relative (polar)
% coordinates of the ending point; of course the \meta{dash length},
% which equals the dash gap, is mandatory. An optional asterisk used to
% play a specific role with previous implementations;
% it is maintained for backwards compatibility, but its use is now
% superfluous; with the previous implementation of the code, in facts,
% if coordinates were specified in polar form, without the optional
% asterisk the dashed line was misplaced, while if the asterisk was
% specified, the whole object was put in the proper position. With this
% new implementation, both the cartesian and polar coordinates always
% play the role they are supposed to play independently from the
% asterisk. The |\IsPolar| macro is introduced to analyse the coordinate
% type used for the second argument, and uses such second argument
% accordingly.
%    \begin{macrocode}
\def\IsPolar#1:#2?{\def\@TempOne{#2}\unless\ifx\@TempOne\empty
   \expandafter\@firstoftwo\else
   \expandafter\@secondoftwo\fi}
   
\ifx\Dashline\undefined
  \def\Dashline{\@ifstar{\Dashline@}{\Dashline@}}% bckwd compatibility
  \let\Dline\Dashline
  
  \def\Dashline@(#1)(#2)#3{\put(#1){%
   \GetCoord(#1)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttA
   \GetCoord(#2)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttB
   \IsPolar#2:?{%                        Polar
      \Dashline@@(0,0)(\V@ttB){#3}}%
   {%                                    Cartesian
     \SubVect\V@ttA from\V@ttB to\V@ttC
     \Dashline@@(0,0)(\V@ttC){#3}%
   }
}}

  \def\Dashline@@(#1)(#2)#3{%
   \countdef\NumA3254\countdef\NumB3252\relax
   \GetCoord(#1)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttA
   \GetCoord(#2)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttB
   \SubVect\V@ttA from\V@ttB to\V@ttC
   \ModOfVect\V@ttC to\DlineMod
   \DivideFN\DlineMod by#3 to\NumD
   \NumA=\fpeval{trunc(\NumD,0)}\relax
   \unless\ifodd\NumA\advance\NumA\@ne\fi
   \NumB=\NumA \divide\NumB\tw@
   \DividE\DlineMod\p@ by\NumA\p@ to\D@shMod
   \DividE\p@ by\NumA\p@ to \@tempa
   \Multvect{\V@ttC}{\@tempa,0}\V@ttB
   \Multvect{\V@ttB}{2,0}\V@ttC
   \advance\NumB\@ne
   \put(\V@ttA){\multiput(0,0)(\V@ttC){\NumB}{\LIne(\V@ttB)}}
   \ignorespaces}
\fi
%    \end{macrocode}
%
% A simpler |\Dotline| macro can draw a dotted line between two given
% points; the dots are rather small, therefore the inter dot distance is
% computed in such a way as to have the first and the last dot at the
% exact position of the dotted-line end-points; again the specified dot
% distance is nominal in the sense that it is recalculated in such a way
% that the first and last dots coincide with the line end points.
% Again if the second point coordinates are in polar form they are
% considered as relative to the first point. The syntax is as follows:
%\begin{flushleft}
%\cs{Dotline}\parg{start point}\parg{end point}\marg{dot distance}
%\end{flushleft}
%    \begin{macrocode}
\ifx\Dotline\undefined
  \def\Dotline{\@ifstar{\Dotline@}{\Dotline@}}% backwards compatibility
  \def\Dotline@(#1)(#2)#3{\put(#1){%
  \IsPolar#2:?{%                    Polar
     \Dotline@@(0,0)(#2){#3}}
   {%                               Cartesian
   \CopyVect#1to\V@ttA
   \CopyVect#2to\V@ttB 
   \SubVect\V@ttA from\V@ttB to\V@ttC 
   \Dotline@@(0,0)(\V@ttC){#3}}%
   }}

  \def\Dotline@@(#1)(#2)#3{%
   \countdef\NumA 3254\relax 
   \countdef\NumB 3255\relax
   \CopyVect#1to\V@ttA 
   \CopyVect#2to\V@ttB 
   \SubVect\V@ttA from\V@ttB to\V@ttC
   \ModOfVect\V@ttC to\DotlineMod
   \DivideFN\DotlineMod by#3 to\NumD 
   \NumA=\fpeval{trunc(\NumD,0)}\relax
   \Divvect{\V@ttC}{\NumA,0}\V@ttB
   \advance\NumA\@ne 
   \put(\V@ttA){\multiput(0,0)(\V@ttB){\NumA}{\makebox(0,0)%
               {\circle*{0.5}}}}
   \ignorespaces
  }%
\fi
%    \end{macrocode}
%
% Notice that vectors as complex numbers in their cartesian and polar
% forms always represent a point position referred to a local origin
% of the axes; this is why in figures~\ref{fig:dashedlines} on
% page~\pageref{fig:dashedlines} and~\ref{fig:dottedlines} on
% page~\pageref{fig:dottedlines} the dashed and dotted lines that start
% from the lower right corner of the graph grid, and that use polar
% coordinates, are correctly put in their correct position thanks to the
% different behaviour obtained with the |\IsPolar| macro.
%
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection{Coordinate handling}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The new macro |\GetCoord| splits a vector (or complex number)
% specification into its components; in particular it distinguishes the
% polar from the cartesian form of the coordinates. The latter have the
% usual syntax \meta{x\texttt{,}y}, while the former have the syntax
% \meta{angle\texttt{:}radius}. The |\put| and |\multiput| commands are
% redefined to accept the same syntax; the whole work is done by
% |\SplitNod@| and its subsidiaries.
%
% Notice that package |eso-pic| uses |picture| macros in its definitions,
% but its original macro |\LenToUnit| is incompatible with  this
% |\GetCoord| macro; its function is to translate real lengths into
% coefficients to be used as multipliers of the current |\unitlength|; in
% case that the |eso-pic| had been loaded, at the |\begin{document}|
% execution, the |eso-pic| macro is redefined using the e-\TeX\ commands
% so as to make it compatible with these local macros.\footnote{Thanks to
% Franz-Joseph Berthold who was so kind to spot the bug.}
%    \begin{macrocode}
\AtBeginDocument{\@ifpackageloaded{eso-pic}{%
\renewcommand\LenToUnit[1]{\strip@pt\dimexpr#1*\p@/\unitlength}}{}}%
%    \end{macrocode}
% The above redefinition is delayed at |\AtBeginDocument| in order to
% have the possibility to check the the |eso-pic| package had actually
% been loaded. Nevertheless the code is defined here just because the
% original |eso-pic| macro was interfering with the algorithms of
% coordinate handling.
%
% But let us come to the real subject of this section. We define a
% |\GettCoord| macro that passes control to the service macro with the
% expanded arguments; expanding arguments allows to use macros to named
% points, instead of explicit coordinates; with this version of |curve2e|
% this facility is not fully exploited, but a creative user can use this
% feature. Notice the usual trick to pass through a dummy macro that is
% defined within a group with expanded arguments, but where the group is
% closed by the macro itself, so that no traces remain behind after its
% expansion.
%    \begin{macrocode}
\def\GetCoord(#1)#2#3{\bgroup\edef\x{\egroup\noexpand\IsPolar#1:?}\x
{% Polar 
  \bgroup\edef\x{\egroup\noexpand\SplitPolar(#1)}\x\SCt@X\SCt@Y}%
{% Cartesian
  \bgroup\edef\x{\egroup\noexpand\SplitCartesian(#1)}\x\SCt@X\SCt@Y}%
  \edef#2{\SCt@X}\edef#3{\SCt@Y}\ignorespaces}
  
\def\SplitPolar(#1:#2)#3#4{%
  \edef#3{\fpeval{#2 * cosd#1}}\edef#4{\fpeval{#2 * sind#1}}}
  
\def\SplitCartesian(#1,#2)#3#4{\edef#3{#1}\edef#4{#2}}

%    \end{macrocode}
% The macro that detects the form of the coordinates is |\IsPolar|;
% it examines the parameter syntax in order to see if it contains a
% colon; it has already been used with the definition of dashed and
% dotted lines.
%
% In order to accept polar coordinates with |\put| and |\multiput| 
% we  resort to using  |\GetCoord|; therefore the redefinition of
% |\put| is very simple because it suffices to save the original
% meaning of that macro and redefine the new one in terms of the
% old one. 
%    \begin{macrocode}
\let\originalput\put
\def\put(#1){\bgroup\GetCoord(#1)\@tX\@tY
\edef\x{\noexpand\egroup\noexpand\originalput(\@tX,\@tY)}\x}
%    \end{macrocode}
% For |\multiput| it is more complicated, because the increments from one
% position to the next cannot be done efficiently because the increments
% in the original definition are executed within boxes, therefore any 
% macro instruction inside these boxes is lost. It is a good occasion to
% modify the |\multiput| definition by means of the advanced macro
% definitions provided by package |xparse|; we can add also some error
% messages for avoiding doing anything when some mandatory parameters are
% missing ore are empty, or do not contain anything different from an
% ordered pair or a polar form. We add also an optional argument to
% handle the increments outside the boxes.
% The new macro has the following syntax:\\[2ex]
% \mbox{\cs{multiput}\oarg{displacement}\parg{initial}\texttt{(\meta{increment})}\marg{number}\marg{object}\oarg{handler}}\\[2ex]
% where the optional \meta{displacement} is used to displace to whole
% set of \meta{object}s from their original position;
% \meta{initial} contains the cartesian or polar coordinates
% of the initial point; \meta{increment} contains the cartesian or
% polar increment for the coordinates to be used from the second
% position to the last; \meta{number} il the total number of
% \meta{object}s  to be drawn; \meta{object} is the object to be put in
% position at each cycle repetition; the optional \meta{handler} may be
% used to control the current values of the horizontal and vertical
% increments.
% The new definition contains two |\put| commands where the second is
% nested within a while-loop which in turn is within the argument of
% the first |\put| command. Basically it is the same idea that the
% original macros, but now the increments are computed within the while
% loop, but outside the argument of the inner |\put| command. If the
% optional \meta{handler} is specified the increments are computed
% from the macros specified by the user. 
%
% The two increments components inside the optional argument may be set
% by means of mathematical expressions operated upon by the |\fpeval|
% function given by the |\xfp| package already loaded by |curve2e|. Of
% course it is the user responsibility to pay attention to the scales of
% the two axes and to write meaningful expressions; the figure and code
% shown in the first part of this documentation show some examples:
% see pages~\pageref{pag:multiput} and~\pageref{pag:orologio}.
%    \begin{macrocode}
\RenewDocumentCommand{\multiput}{O{0,0} d() d() m m o }{%
  \IfNoValueTF{#2}{\PackageError{curve2e}%
      {\string\multiput\space initial point coordinates missing}%
      {Nothing done}
    }%
    {\IfNoValueTF{#3}{\PackageError{curve2e}
      {\string\multiput\space Increment components missing}%
      {Nothing done}
    }
    {\put(#1){\let\c@multicnt\@multicnt
      \CopyVect #2 to \R 
      \CopyVect#3 to\D 
        \@multicnt=#4\relax
        \@whilenum \@multicnt > \z@\do{%
          \put(\R){#5}%
          \IfValueTF{#6}{#6}{\AddVect#3 and\R to \R}%
          \advance\@multicnt\m@ne
        }
      }
    }
  }\ignorespaces
}
%    \end{macrocode}
% And here it is the new |\xmultiput| command; remember: the internal
% cycling \TeX\ counter |\@multicn| is now accessible as it was a
% \LaTeX\ counter, in particular the user can access its contents
% with a command such as |\value{multicnt}|. Such counter is stepped
% up by one at each cycle, instead of being stepped down as in the
% original |\multiput| command. The code is not so different from
% the one used for the new version of |\multiput|, but it appears more
% efficient and its code logically more readable.
%    \begin{macrocode}
\NewDocumentCommand{\xmultiput}{O{0,0} d() d() m m o }{%
\IfNoValueTF{#2}{\PackageError{curve2e}{%
  \string\Xmultiput\space initial point coordinates missing}%
  {Nothing done}}%
  {\IfNoValueTF{#3}{\PackageError{curve2e}{%
    \string\Xmultiput\space Increment components missing}%
    {Nothing done}}%
  {\put(#1)%
  {\let\c@multicnt\@multicnt
  \CopyVect #2 to \R 
  \CopyVect #3 to \D
    \@multicnt=\@ne
      \fpdowhile{\value{multicnt} < \inteval{#4+1}}% Test
         {% 
         \put(\R){#5}
         \IfValueTF{#6}{#6}{%
           \AddVect#3 and\R to \R}
           \advance\@multicnt\@ne
      }
    }
  }}\ignorespaces
}
%    \end{macrocode}
% Notice that the internal macros |\R| and |\D|, (respectively the 
% current point coordinates, in form of a complex number, where to put
% the\meta{object}, and the current displacement to find the next point)
% are accessible to the user both in the \meta{object} argument field and
% the \meta{handler} argument field. The code used in 
% page~\pageref{pag:orologio} shows how to create the hour marks of a
% clock together with the rotated hour roman numerals.
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection{Vectors}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The redefinitions and the new definitions for vectors are a little more
% complicated than with segments, because each vector is drawn as a
% filled contour; the original \texttt{pict2e} 2004  macro checks if the
% slopes are corresponding to the limitations specified by Lamport
% (integer three digit signed numbers) and sets up a transformation in
% order to make it possible to draw each vector as an horizontal
% left-to-right arrow and then to rotate it by its angle about its tail
% point; with |pict2e| 2009, possibly this redefinition of |\vector| is
% not necessary, but we do it as well and for the same reasons we had for
% redefining |\line|; actually there are two macros for tracing the
% contours that are eventually filled by the principal macro; each
% contour macro draws the vector with a \LaTeX\ or a PostScript styled
% arrow tip whose parameters are specified by default or may be taken
% from the parameters taken from the|PSTricks| package if this one is
% loaded before |pict2e|; in any case we did not change the contour
% drawing macros because if they are modified the same modification is
% passed on to the arrows drawn with the |curve2e| package redefinitions.
%
% Because of these features the new macros are different from those used
% for straight lines.
%
% We start with the redefinition of |\vector| and we use the machinery
% for vectors (as complex numbers) we used for |\line|.
%    \begin{macrocode}
  \def\vector(#1)#2{%
    \begingroup
      \GetCoord(#1)\d@mX\d@mY
      \@linelen#2\unitlength
%    \end{macrocode}
% As in \texttt{pict2e} we avoid tracing vectors if the slope parameters
% are both zero.
%    \begin{macrocode}
      \ifdim\d@mX\p@=\z@\ifdim\d@mY\p@=\z@\@badlinearg\fi\fi
%    \end{macrocode}
% But we check only for the positive nature of the $l_x$ component; if it
% is negative, we simply change sign instead of blocking the typesetting
% process. This is useful also for macros |\Vector|, |\VECTOR|, and
% |\VVECTOR| to be defined in a while.
%    \begin{macrocode}
      \ifdim\@linelen<\z@ \@linelen=-\@linelen\fi
%    \end{macrocode}
% We now make a vector with the given slope coefficients even if one or
% the other is zero and we determine its direction; the real and
% imaginary parts of the direction vector are also the values we need for
% the subsequent rotation.
%    \begin{macrocode}
      \MakeVectorFrom\d@mX\d@mY to\@Vect
      \DirOfVect\@Vect to\Dir@Vect
%    \end{macrocode}
% In order to be compatible with the original \texttt{pict2e} we need to
% transform the components of the vector direction in lengths with the
% specific names |\@xdim| and |\@ydim|^^A--------! Really necessary?
%    \begin{macrocode}
        \YpartOfVect\Dir@Vect to\@ynum \@ydim=\@ynum\p@
        \XpartOfVect\Dir@Vect to\@xnum \@xdim=\@xnum\p@
%    \end{macrocode}
% If the vector is really sloping we need to scale the $l_x$ component in
% order to get the vector total length; we have to divide by the cosine
% of the vector inclination which is the real part of the vector
% direction.
% We use the floating point division function; since it yields a
% ``factor''
% We directly use it to scale the length of the vector. We finally
% memorise the true vector length in the internal dimension |@tdB|
%    \begin{macrocode}
        \ifdim\d@mX\p@=\z@
        \else\ifdim\d@mY\p@=\z@
          \else
            \edef\sc@lelen{\fpeval{1 / abs(\@xnum)}}\relax
            \@linelen=\sc@lelen\@linelen
          \fi
        \fi
      \@tdB=\@linelen
%    \end{macrocode}
%  The remaining code is definitely similar to that of \texttt{pict2e};
% the real difference consists in the fact that the arrow is designed by
% itself without the stem; but it is placed at the vector end; therefore
% the first statement is just the transformation matrix used by the
% output driver to rotate the arrow tip and to displace it the right
% amount. But in order to draw only the arrow tip we have to set the
% |\@linelen| length to zero.
%    \begin{macrocode}
\pIIe@concat\@xdim\@ydim{-\@ydim}\@xdim{\@xnum\@linelen}{\@ynum\@linelen}%
        \@linelen\z@
        \pIIe@vector
        \fillpath
%    \end{macrocode}
% Now we can restore the stem length that must be shortened by the
% dimension of the arrow; by examining the documentation of
% \texttt{pict2e} we discover that we have to shorten it by an
% approximate amount of $AL$ (with the notations of \texttt{pict2e},
% figs~10 and~11); the arrow tip parameters are stored in certain
% variables with which we can determine the amount of the stem
% shortening; if the stem was too short and the new length is negative,
% we avoid designing such a stem.
%    \begin{macrocode}
      \@linelen=\@tdB
      \@tdA=\pIIe@FAW\@wholewidth
      \@tdA=\pIIe@FAL\@tdA
      \advance\@linelen-\@tdA
      \ifdim\@linelen>\z@
        \moveto(0,0)
        \pIIe@lineto{\@xnum\@linelen}{\@ynum\@linelen}%
        \strokepath\fi
    \endgroup}
%    \end{macrocode}
%
% We define the macro that does not require the specification of the
% length or the $l_x$ length component; the way the new |\vector| macro
% works does not actually  require this specification, because \TeX\ can
% compute the vector length, provided the two direction components are
% exactly the horizontal and vertical vector components. If the
% horizontal component is zero, the actual length must be specified as
% the vertical component. The object defined with |\Vector|, as well as
% |\vector|, must be put in place by means of a |\put| command.
%    \begin{macrocode}
\def\Vector(#1){{%
\GetCoord(#1)\@tX\@tY
\ifdim\@tX\p@=\z@
  \vector(\@tX,\@tY){\@tY}%
\else
  \vector(\@tX,\@tY){\@tX}%
\fi}}
%    \end{macrocode}
%
% On the opposite the next macro specifies a vector by means of the
% coordinates of its end points; the first point is where the vector
% starts, and the second point is the arrow tip side. We need the
% difference of these two coordinates, because it  represents the actual
% vector.
%    \begin{macrocode}
\def\VECTOR(#1)(#2){\begingroup
\SubVect#1from#2to\@tempa
\expandafter\put\expandafter(#1){\expandafter\Vector\expandafter(\@tempa)}%
\endgroup\ignorespaces}
%    \end{macrocode}
%
% The double tipped vector is built on  the |\VECTOR| macro by simply
% drawing two vectors from the middle point of the double tipped vector.
%    \begin{macrocode}
\def\VVECTOR(#1)(#2){{\SubVect#1from#2to\@tempb
\ScaleVect\@tempb by0.5to\@tempb
\AddVect\@tempb and#1to\@tempb
\VECTOR(\@tempb)(#2)\VECTOR(\@tempb)(#1)\ignorespaces}}
%    \end{macrocode}
%
% The \texttt{pict2e} documentation says that if the vector length is
% zero the macro draws only the arrow tip; this may work with macro
% |\vector|, certainly not with |\Vector| and |\VECTOR|. This might be
% useful for adding an arrow tip to a circular arc. See examples in
% figure~\ref{fig:vectors} on page~\pageref{fig:vectors}.
%
%
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection{Polylines and polygons}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% We now define the polygonal line macro; its syntax is very simple:
% \begin{flushleft}
% \cs{polygonal}\oarg{join}\parg{$P_0$}\parg{$P_1$}\parg{$P_2$}%
%  \texttt{\dots}\parg{$P_n$}
% \end{flushleft}
% Remember: |\polyline| has been incorporated into |pict2e| 2009, but we
% redefine it so as to allow an optional argument to specify the line
% join type.
%
% In order to write a recursive macro we need aliases for the
% parentheses; actually we need only the left parenthesis, but some
% editors complain about unmatched delimiters, so we define an alias also
% for the right parenthesis.
%    \begin{macrocode}
\let\lp@r( \let\rp@r)
%    \end{macrocode}
% The first call to |\polyline|, besides setting the line joints,
% examines the first point coordinates and moves the drawing position to
% this point; afterwards it looks for the second point coordinates; they
% start with a left parenthesis; if this is found the coordinates should
% be there, but if the left parenthesis is missing (possibly preceded by
% spaces that are ignored by the |\@ifnextchar| macro) then a warning
% message is output together with the line number where the missing
% parenthesis causes the warning: beware, this line number might point to
% several lines further on along the source file!
% In any case it's necessary to insert a |\@killglue|command, because
% |\polyline| refers to absolute coordinates, and not necessarily is put
% in position through a |\put| command that provides to eliminate any
% spurious spaces preceding this command.
%
%  \begin{figure}[!hb]
%  \begin{minipage}{0.55\textwidth}
%\begin{verbatim}
%  \unitlength=0.07\hsize
%  \begin{picture}(8,8)(-4,-4)\color{red}
%  \polygon*(45:4)(135:4)(-135:4)(-45:4)
%  \end{picture}
%\end{verbatim}
%  \end{minipage}
%  \hfill
%  \begin{minipage}{0.4\textwidth}\centering
%  \unitlength=0.07\hsize
%  \begin{picture}(8,8)(-4,-4)\color{red}
%  \polygon*(45:4)(135:4)(-135:4)(-45:4)
%  \end{picture}
%  \end{minipage}
%  \caption{The code and the result of defining a polygon with its vertex
%  polar coordinates}\label{fig:filled-polygon}
%  \end{figure}
%  
% In order to allow a specification for the joints of the various
% segments  of a polyline it is necessary to allow for an optional
% parameter; the default is the bevel join.
%    \begin{macrocode}
\renewcommand*\polyline[1][\beveljoin]{\p@lylin@[#1]}

\def\p@lylin@[#1](#2){\@killglue#1\GetCoord(#2)\d@mX\d@mY
    \pIIe@moveto{\d@mX\unitlength}{\d@mY\unitlength}%
    \@ifnextchar\lp@r{\p@lyline}{%
    \PackageWarning{curve2e}%
    {Polylines require at least two vertices!\MessageBreak
     Control your polyline specification\MessageBreak}%
    \ignorespaces}}

%    \end{macrocode}
% But if there is a second or further point coordinate, the recursive
% macro |\p@lyline| is called; it works on the next point and checks for
% a further point; if such a point exists the macro calls itself,
% otherwise it terminates the polygonal line by stroking it.
%    \begin{macrocode}
\def\p@lyline(#1){\GetCoord(#1)\d@mX\d@mY
    \pIIe@lineto{\d@mX\unitlength}{\d@mY\unitlength}%
    \@ifnextchar\lp@r{\p@lyline}{\strokepath\ignorespaces}}
%    \end{macrocode}
%
% The same treatment must be done for the \cs{polygon} macros; we use the
% defining commands of package |xparse|, in order to use an optional
% asterisk; as it is usual with |picture| convex lines, the command with
% asterisk does not trace the contour, but fills the contour with the
% current color.The asterisk is tested at the beginning and, depending on
% its presence, a temporary switch is set to \texttt{true}; this being
% the case the contour is filled, otherwise it is simply stroked.
%    \begin{macrocode}
\providecommand\polygon{} 
\RenewDocumentCommand\polygon{s O{\beveljoin} }{\@killglue\begingroup
\IfBooleanTF{#1}{\@tempswatrue}{\@tempswafalse}%
\@polygon[#2]} 
 
\def\@polygon[#1](#2){\@killglue#1\GetCoord(#2)\d@mX\d@mY
    \pIIe@moveto{\d@mX\unitlength}{\d@mY\unitlength}%
    \@ifnextchar\lp@r{\@@polygon}{%
    \PackageWarning{curve2e}%
    {Polygons require at least two vertices!\MessageBreak
     Control your polygon specification\MessageBreak}%
    \ignorespaces}}
      
  \def\@@polygon(#1){\GetCoord(#1)\d@mX\d@mY
    \pIIe@lineto{\d@mX\unitlength}{\d@mY\unitlength}%
    \@ifnextchar\lp@r{\@@polygon}{\pIIe@closepath
      \if@tempswa\pIIe@fillGraph\else\pIIe@strokeGraph\fi
      \endgroup
      \ignorespaces}}
%    \end{macrocode}
% Now, for example, a filled polygon can be drawn using polar coordinates
% for its vertices; see figure~\ref{fig:filled-polygon} on
% page~\pageref{fig:filled-polygon}.
%
% Remember; the polygon polar coordinates are relative to the origin of
% the local axes; therefore in order to put a polygon in a different
% position, it is necessary to do it through a |\put| command.

%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection{The red service grid}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The next command is very useful for debugging while editing one's
% drawing;  it draws a red grid with square meshes that are ten drawing
% units apart; there is no graduation along the grid, since it is
% supposed to be a debugging aid and the user should know what he/she is
% doing; nevertheless it is advisable to displace the grid by means of a
% |\put| command so that its grid lines coincide with graph
% coordinates that are multiples of 10. Missing to do so the readings
% become cumbersome. The |\RoundUp| macro provides to increase the
% grid dimensions to integer multiples of ten.
%    \begin{macrocode}
\def\GraphGrid(#1,#2){\bgroup\textcolor{red}{\linethickness{.1\p@}%
\RoundUp#1modulo10to\@GridWd \RoundUp#2modulo10to\@GridHt
\@tempcnta=\@GridWd \divide\@tempcnta10\relax \advance\@tempcnta\@ne
\multiput(0,0)(10,0){\@tempcnta}{\line(0,1){\@GridHt}}%
\@tempcnta=\@GridHt \divide\@tempcnta10\advance\@tempcnta\@ne
\multiput(0,0)(0,10){\@tempcnta}{\line(1,0){\@GridWd}}\thinlines}%
\egroup\ignorespaces}
%    \end{macrocode}
% Rounding up is useful because also the grid margins fall on coordinates
% multiples of 10. It resorts to the |\Integer| macro that will be
% described in a while.
%    \begin{macrocode}
\def\RoundUp#1modulo#2to#3{\expandafter\@tempcnta\Integer#1.??%
\count254\@tempcnta\divide\count254by#2\relax
\multiply\count254by#2\relax
\count252\@tempcnta\advance\count252-\count254
\ifnum\count252>0\advance\count252-#2\relax
\advance\@tempcnta-\count252\fi\edef#3{\number\@tempcnta}\ignorespaces}%
%    \end{macrocode}
% The |\Integer| macro takes a possibly fractional number whose decimal
% separator, if present, \textit{must} be the decimal point and uses the
% point as an argument delimiter. If one has the doubt that the number
% being passed  to |\Integer| might be an integer, he/she should call the
% macro with a further point; if the argument is truly integer this point
% works as the delimiter of the integer part; if the argument being
% passed is fractional this extra point gets discarded as well as the
% fractional part of the number.
%    \begin{macrocode}
\def\Integer#1.#2??{#1}%
%    \end{macrocode}
%
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \section{Math operations on fractional operands}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This is not the place to complain about the fact that all programs of
% the \TeX\ system used only integer arithmetics; now, with the 2018
% distribution of the modern \TeX\ system, package |xfp| is available:
% this package resorts in the background to language \LaTeX\,3; this language now can compute fractional number
% operations coded in decimal, not in binary, and accepts also numbers
% written in the usual way in computer science, that is as a fractional,
% possibly signed, number followed by an expression that contains the 
% exponent to 10 necessary to (ideally) move the fractional separator 
% in one or the other direction according to the sign of the exponent of
% 10; in other words  the L3 library for floating point calculations
% accepts such expressions as  \texttt{123.456}, \texttt{0.12345e3}, and
% \texttt{12345e-3}, and any other equivalent expression. If the first
% number is integer, it assumes that the decimal separator is to the
% right of the rightmost digit of the digit string.
%
% Floating point calculations may be done through the |\fpeval| L3
% function with a very simple syntax:
%  \begin{flushleft}
%  \cs{fpeval}\marg{mathematical expression}
%  \end{flushleft}
% where \meta{mathematical exression} can contain the usual algebraic
% operation sings, |= - * / ** ^| and the function names of the most
% common algebraic, trigonometric, and transcendental functions; for
% direct and inverse trigonometric functions it accepts arguments in
% radians and in sexagesimal degrees; it accepts the group of
% rounding/truncating operators; it can perform several kinds of
% comparisons; as to now (Nov. 2019) the todo list includes the direct
% and inverse hyperbolic functions. The mantissa length of the floating
% point operands amounts to 16 decimal digits. Further details may be
% read in the documentations of the |xfp| and |interface3| packages, just
% by typing into a command line window the command \texttt{texdoc
% \meta{document}}, where \meta{document} is just the name of the above
% named files without extension.
%
% Furthermore we added a couple of more interface macros with the
% internal L3 floating point functions; |\fptest| and |\fpdowhile|.
% They have the following syntax:
%\begin{flushleft}\ttfamily\obeylines
% \string\fptest\marg{logical expression}\marg{true code}\marg{false code}
% \string\fpdowhile\marg{logical expression}\marg{code}
%\end{flushleft}
% The \meta{logical expression} compares the values of any kind by means
% of the usual \texttt{>}, \texttt{=}, and \texttt{<} operators that may
% be negated with the  “not’ operator \texttt{!}; furthermore the logical
% results of these comparisons may be acted upon with the “and” operator
%  \texttt{\&\&}  and the “or” operator \texttt{||}. The \meta{true
% code}, and  \meta{code} are executed if or while the \meta{logical
% expression} is true, while the \meta{false code} is executed if the
% \meta{logical expression} is false
%
% Before the availability of the |xfp| package, it was necessary to fake
% fractional number computations by means of the native e-\TeX\ commands
% |\dimexpr|, i.e. to multiply each fractional number by the unit |\p@|
% (1\,pt) so as to get a length; operate un such lengths, and then
% stripping off the `pt' component from the result; very error prone and
% with less precision as the one that the modern decimal floating point
% calculations can do. Of course it is not so important to use fractional
% numbers with more that 5 or 6 fractional digits, because the other
% \TeX\ and \LaTeX\ macros cannot handle them, but it is very convenient
% to have simpler and more readable code. We therefore switched to the
% new floating point functionality, even if this maintains the |curve2e|
% functionality, but renders this package unusable with older \LaTeX\ 
% kernel installations. It has already been explained that the input of
% this up to date version of |curve2e| is aborted if the |xfp| package is
% not available, but the previous version 1.61 version is loaded; very
% little functionality is lost, but, evidently, this new version performs
% in a  better way.
%
%
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection{The division macro}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The most important macro is the division of two fractional numbers; we
% seek a macro that gets dividend and divisor as fractional numbers and
% saves their ratio in a macro; this is done in a simple way with the
% following code.
%    \begin{macrocode}
\def\DividE#1by#2to#3{\edef#3{\fpeval{#1 / #2}}}
%    \end{macrocode}
% In order to avoid problems with divisions by zero, or with numbers that
% yield results to large to be used as multipliers of lengths, it would
% be preferable that the above code be preceded or followed by some tests
% and possible messages. Actually we decided to avoid such tests and
% messages, because the internal L3 functions already provide some. This
% was done in the previous versions of this package, when the |\fpeval|
% L3 function was not available.
%
% Notice that operands |#1| and |#2| may be integer numbers or
% fractional, or mixed numbers. They may be also dimensions, but while
% dimensions in printer points (72.27pt=1in) are handled as assumed, when
% different units are used, the length  must be enclosed in parentheses: 
%\begin{verbatim}
%\DividE(1mm)by(3mm) to\result
%\end{verbatim}
% yields correctly |\result=0.33333333|. Without parentheses the result
% is unpredictable.
%
% For backwards compatibility we need an alias.
%    \begin{macrocode}
\let\DivideFN\DividE
%    \end{macrocode}
%
% We do the same in order to multiply two integer o fractional numbers
% held in the first two arguments and the third argument is a definable
% token that will hold the result of multiplication in the form of a
% fractional number, possibly with a non null fractional part; a null
% fractional part is stripped away
%    \begin{macrocode} 
\def\MultiplY#1by#2to#3{\edef#3{\fpeval{#1 * #2}}}\relax
\let\MultiplyFN\MultiplY
%    \end{macrocode}
% but with multiplication it is better to avoid computations with
% lengths.
%
% The next macro uses the |\fpeval|  macro to get
% the numerical value of a measure in points. One has to call |\Numero|
% with a control sequence and a dimension; the dimension value in points
% is assigned to the control sequence.
%    \begin{macrocode}
\unless\ifdefined\Numero
  \def\Numero#1#2{\edef#1{\fpeval{round(#2,6)}}\ignorespaces}%
\fi
%    \end{macrocode}
% The numerical value is rounded to 6 fractional digits that are more
% than sufficient for the graphical actions performed by |curve2e|.
%
% The |\ifdefined| primitive command is provided by the e-\TeX\
% extension of the typesetting engine; the test does not create any hash
% table entry; it is a different way than the
% \verb|\ifx\csname...\endcsname| test,
% because the latter first possibly creates a macro meaning \verb|\relax|
% then executes the test; therefore an undefined macro name is always
% defined to mean |\relax|.
%
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection{Trigonometric functions}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%  We now start with trigonometric functions. In previous versions of
% this package we defined the macros |\SinOf|, |\CosOf| and |\TanOf|
% (|\CotOf| does not appear so essential) by means of the parametric
% formulas that require the knowledge of the tangent of the half angle.
% We wanted, and still want, to specify the angles in sexagesimal
% degrees, not in radians, so that accurate reductions to the main
% quadrants are possible. The formulas are
% \begin{eqnarray*}
% \sin\theta &=& \frac{2}{\cot x + \tan x}\\
% \cos\theta &=& \frac{\cot x - \tan x}{\cot x + \tan x}\\
% \tan\theta &=& \frac{2}{\cot x - \tan x}\\
% \noalign{\hbox{where}}
% x          &=& \theta/114.591559
% \end{eqnarray*}
% is the half angle in degrees converted to radians.
%
% But now, in this new version, the availability of the floating point
% computations with the specific L3 library makes all the above
% superfluous; actually the above approach gave good results but it was
% cumbersome and limited by the fixed radix computations of the \TeX\ 
% system programs.
%
% Matter of facts, we compared the results (with 6 fractional digits) the
% computations executed with the \texttt{sind} function name, in order to
% use the angles in degrees, and a table of trigonometric functions with
% the same number of fractional digits, and we di not find any
% difference, not even one unit on the sixth decimal digit. Probably the
% |\fpeval| computations, without rounding before the sixteenth
% significant digit, are much more accurate, but it is useless to have a
% better accuracy when the other \TeX\ and \LaTeX\ macros would not be
% able to exploit them.
%
% Having available such powerful instrument, even the tangent appears to
% be of little use for the kind of computations that are supposed to be
% required in this package.
%
% The codes for the computation of |\SinOf| and |\CosOf| of the angle in
% degrees is now therefore the following
%    \begin{macrocode}
\def\SinOf#1to#2{\edef#2{\fpeval{round(sind#1,6)}}}\relax
\def\CosOf#1to#2{\edef#2{\fpeval{round(cosd#1,6)}}}\relax
%    \end{macrocode}
%
%
% As of today the anomaly (angle) of a complex number may not be
% necessary, but it might become useful in the future; therefore with
% macro \verb|\ArgOfVect| we calculate the four quadrant arctangent (in
% degrees) of the given vector taking into account the sings of the
% vector components. We use the |xfp| |atand| with two arguments, so
% that it automatically takes into account all the signs for determining
% the argument of vector $x,y$ by giving the values $x$ and $y$ in the
% proper order to the function |atan|:
%\[
%\mbox{if\quad } x + \mathrm{i}y = M\mathrm{e}^{\mathrm{i}\varphi}\mbox{\quad then\quad }
%\varphi = \mathtt{\string\fpeval\{atand(\mbox{$y$},\mbox{$x$})\}}
%\]
% The |\ArgOfVect| macro receives on input a vector;
% from the signs of the horizontal and vertical components it determines
% the ratio and from this ratio the arctangent; but before doing this it
% tests the components in order to determine the quadrant of the vector
% tip; depending on signs it possibly adds what is necessary to determine
% the angle in the range $-180^\circ < \varphi \le  +180^\circ$. If both
% components are zero, the angle is undefined, but for what concerns
% |curve2e| it is assigned the angle $0^circ$.
%    \begin{macrocode}
\def\ArgOfVect#1to#2{\GetCoord(#1){\t@X}{\t@Y}%
\fptest{\t@X=\z@ && \t@Y=\z@}{\edef#2{0}}{%
\edef#2{\fpeval{round(atand(\t@Y,\t@X),6)}}}\ignorespaces}
%    \end{macrocode}
% The anomaly of a null vector is meaningless, but we set it to zero in
% case that input data are wrong. Computations go on anyway, but the
% results my be worthless; such strange results are an indications that
% some controls on the code should be done.
%
% It is worth examining the following table, where the angles of nine
% vectors $45^\circ$ degrees apart from one another are computed from
% this macro.
% \begin{center}
% \begin{tabular}{l*9r}
% Vector &0,0 &1,0 &1,1 & 0,1 & -1,1& -1,0&-1,-1&0,-1&1,-1\\
% Angle  &  0 & 0  & 45 & 90  & 135 & 180 &-135 & -90& -45
% \end{tabular}
% \end{center}
% Real computations with the |\ArgOfVect| macro produce those very
% numbers without the need of rounding; |\fpeval| produces all trimming
% of lagging zeros and rounding by itself.
%
%
%
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection{Arcs and curves preliminary information}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% We would like to define now a macro for drawing circular arcs of any
% radius and any angular aperture; the macro should require the arc
% center, the arc starting point and the angular aperture. The arc has
% its reference point in its center, therefore it does not need to be put
% in place by the command |\put|; nevertheless if |\put| is used, it may
% displace the arc into another position.
%
% The command should have the following syntax:
% \begin{flushleft}\ttfamily
% \cs{Arc}(\meta{center})(\meta{starting point})\marg{angle}
% \end{flushleft}
% which is totally equivalent to:
% \begin{flushleft}\ttfamily
% \cs{put}(\meta{center})\marg{\upshape\cs{Arc}(0,0)(\meta{starting
%      point})\marg{angle}}
% \end{flushleft}
% If the \meta{angle}, i.e. the arc angular aperture, is positive the arc
% runs counterclockwise from the starting point; clockwise if it is
% negative.
% Notice that since the \meta{starting point} is relative to the
% \meta{center} point, its polar coordinates are very convenient, since
% they become \parg{\meta{start angle}:\meta{radius}}, where the
% \meta{start angle} is relative to the arc center. Therefore you can
% think about a syntax such as this one:
%\begin{flushleft}
%\cs{Arc}\parg{\meta{center}}\parg{\normalfont{\itshape start angle}\texttt{:}{\itshape radius}}\marg{angle}
%\end{flushleft}
%
% The difference between the |pict2e| |\arc| definition  consists in a
% very different syntax:
%\begin{flushleft}
%\cs{arc}\texttt{[}\meta{start angle}\texttt{,}\meta{end angle}\texttt{]}\marg{radius}
%\end{flushleft}
% and the center is assumed to be at the coordinate established with a
% required |\put| command; moreover the difference in specifying angles
% is that \meta{end angle} equals the sum of \meta{start angle} and
% \meta{angle}. With the definition of this |curve2e| package
% use of a |\put| command is not prohibited, but it may be used for fine
% tuning the arc position by means of a simple displacement; moreover the
% \meta{starting point} may be specified with polar coordinates (that are
% relative to the arc center). 
%
% It's necessary to determine the end point and the control points of the
% Bézier spline(s) that make up the circular arc.
%
% The end point is obtained from the rotation of the starting point
% around the center; but the \texttt{pict2e} command |\pIIe@rotate| is
% such that the pivoting point appears to be non relocatable.
% It is therefore necessary to resort to low level \TeX\ commands and the
% defined trigonometric functions and a set of macros that operate on
% complex numbers used as vector roto-amplification operators.
%
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection{Complex number macros}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% In this package \emph{complex number} is a vague phrase; it may be used
% in the mathematical sense of an ordered pair of real numbers; it can be
% viewed as a vector joining the origin of the coordinate axes to the
% coordinates indicated by the ordered pair; it can be interpreted as a
% roto-amplification operator that scales its operand and rotates it
% about a pivot point; besides the usual conventional representation used
% by the mathematicians where the ordered pair is enclosed in round
% parentheses (which is in perfect agreement with the standard code used
% by the |picture| environment) there is the other conventional
% representation used by the engineers that stresses the
% roto-amplification nature of a complex number:
%\[
%(x, y) = x + \mathrm{j}y =M \mathrm{e}^{\mathrm{j}\theta}
%\]
% Even the imaginary unit is indicated with $\mathrm{i}$ by the
% mathematicians and with $\mathrm{j}$ by the engineers. In spite of
% these differences, these objects, the \emph{complex numbers}, are used
% without any problem by both mathematicians and engineers.
% 
% The important point is that these objects can be summed, subtracted,
% multiplied, divided, raised to any power (integer, fractional, positive
% or negative), be the argument of transcendental functions according to
% rules that are agreed upon by everybody. We do not need all these
% properties, but we need some and we must create the suitable macros for
% doing some of these operations.
%
% In facts we need macros for summing, subtracting, multiplying, dividing
% complex numbers, for determining their directions (unit vectors or
% versors); a unit vector is the complex number divided by its magnitude
% so that the result is the cartesian or polar form of the Euler's
% formula
% \[
% \mathrm{e}^{\mathrm{j}\phi} = \cos\phi+\mathrm{j}\sin\phi
% \]
%
% The magnitude of a vector is determined by taking the  square root of
% a function of the real and the imaginary parts; see further on.
%
% It's better to represent each complex number with one control sequence;
% this implies frequent assembling and disassembling the pair of real
% numbers that make up a complex number. These real components are
% assembled into the defining control sequence as a couple of
% coordinates, i.e.\ two comma separated integer or fractional signed
% decimal numbers.
%
% For assembling two real numbers into a complex number we use the
% following elementary macro:
%    \begin{macrocode}
\def\MakeVectorFrom#1#2to#3{\edef#3{#1,#2}\ignorespaces}%
%    \end{macrocode}
% Another elementary macro copies a complex number into another one:
%    \begin{macrocode}
\def\CopyVect#1to#2{\edef#2{#1}\ignorespaces}%
%    \end{macrocode}
% The magnitude is determined with the macro |\ModOfVect| with delimited
% arguments; as usual it is assumed that the results are retrieved by
% means of control sequences, not used directly.
%
% In the preceding version of package |curve2e| the magnitude $M$ was
% determined by taking the moduli of the real and imaginary parts, by
% changing their signs if necessary; the larger component was
% then taken as the reference one, so that, if $a$ is larger than $b$,
% the square root of the sum of their squares is computed as such:
% \[
% M = \sqrt{a^2+b^2} = \vert a\vert\sqrt{1+(b/a)^2}
% \]
% In this way the radicand never exceeds 2 and it was quite easy to get
% its square root by means of the Newton iterative process; due to the
% quadratic convergence, five iterations were more than sufficient. When
% one of the components was zero, the Newton iterative process was
% skipped.
% With the availability of the |xfp| package and its floating point
% algorithms it is much easier to compute the magnitude of a complex
% number; since these algorithms allow to use very large numbers, it is
% not necessary to normalise the complex number components to the largest
% one; therefore the code is much simpler than the one used for
% implementing the Newton method in the previous versions of this
% package.
%    \begin{macrocode}
\def\ModOfVect#1to#2{\GetCoord(#1)\t@X\t@Y
\edef#2{\fpeval{round(sqrt(\t@X*\t@X + \t@Y*\t@Y),6)}}%
\ignorespaces}%
%    \end{macrocode}
%
% Since the macro for determining the magnitude of a vector is available,
% we can now normalise the vector to its magnitude, therefore getting the
% Cartesian form of the direction vector. If by any chance the direction
% of the null vector is requested, the output is again the null vector,
% without normalisation.
%    \begin{macrocode}
\def\DirOfVect#1to#2{\GetCoord(#1)\t@X\t@Y
\ModOfVect#1to\@tempa
\fptest{\@tempa=\z@}{}{%
  \edef\t@X{\fpeval{round(\t@X/\@tempa,6)}}%
  \edef\t@Y{\fpeval{round(\t@Y/\@tempa,6)}}%
}\MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%
%    \end{macrocode}
%
% A cumulative macro uses the above ones to determine with one call both
% the magnitude and the direction of a complex number. The first argument
% is the input complex number, the second its magnitude, and the third is
% again a complex number normalised to unit magnitude (unless the input
% was the null complex number); remember always that output quantities
% must be specified with control sequences to be used at a later time.
%    \begin{macrocode}
\def\ModAndDirOfVect#1to#2and#3{%
\ModOfVect#1to#2%
\DirOfVect#1to#3\ignorespaces}%
%    \end{macrocode}
% The next macro computes the magnitude and the direction of the
% difference of two complex numbers; the first input argument is the
% minuend, the second is the subtrahend; the output quantities are the
% third argument containing the magnitude of the difference and the
% fourth is the direction of the difference.
% The service macro |\SubVect| executes the difference of two complex
% numbers and is described further on.
%    \begin{macrocode}
\def\DistanceAndDirOfVect#1minus#2to#3and#4{%
\SubVect#2from#1to\@tempa 
\ModAndDirOfVect\@tempa to#3and#4\ignorespaces}%
%    \end{macrocode}
% We now have two macros intended to fetch just the real or,
% respectively, the imaginary part of the input complex number.
%    \begin{macrocode}
\def\XpartOfVect#1to#2{%
\GetCoord(#1)#2\@tempa\ignorespaces}%
%
\def\YpartOfVect#1to#2{%
\GetCoord(#1)\@tempa#2\ignorespaces}%
%    \end{macrocode}
% With the next macro we create a direction vector (second argument) from 
% a given angle (first argument, in degrees).
%    \begin{macrocode}
\def\DirFromAngle#1to#2{%
\edef\t@X{\fpeval{round(cosd#1,6)}}%
\edef\t@Y{\fpeval{round(sind#1,6)}}%
\MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%
%    \end{macrocode}
%
% Sometimes it is necessary to scale a vector by an arbitrary real
% factor; this implies scaling both the real and imaginary part of the
% input given vector.
%    \begin{macrocode}
\def\ScaleVect#1by#2to#3{\GetCoord(#1)\t@X\t@Y
\edef\t@X{\fpeval{#2 * \t@X}}%
\edef\t@Y{\fpeval{#2 * \t@Y}}%
\MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%
%    \end{macrocode}
% Again, sometimes it is necessary to reverse the direction of rotation;
% this implies changing the sign of the imaginary part of a given complex
% number; this operation produces the complex conjugate of the given
% number.
%    \begin{macrocode}
\def\ConjVect#1to#2{\GetCoord(#1)\t@X\t@Y
\edef\t@Y{-\t@Y}%
\MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%
%    \end{macrocode}
%
% With all the low level elementary operations we can now proceed to the
% definitions of the binary operations on complex numbers. We start with
% the addition:
%    \begin{macrocode}
\def\AddVect#1and#2to#3{\GetCoord(#1)\tu@X\tu@Y
\GetCoord(#2)\td@X\td@Y 
\edef\t@X{\fpeval{\tu@X + \td@X}}%
\edef\t@Y{\fpeval{\tu@Y + \td@Y}}%
\MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%
%    \end{macrocode}
% Then the subtraction:
%    \begin{macrocode}
\def\SubVect#1from#2to#3{\GetCoord(#1)\tu@X\tu@Y
\GetCoord(#2)\td@X\td@Y 
\edef\t@X{\fpeval{\td@X - \tu@X}}%
\edef\t@Y{\fpeval{\td@Y - \tu@Y}}%
\MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%
%    \end{macrocode}
%
% For the multiplication we need to split the operation according to the
% fact that we want to multiply by the second operand or by the complex
% conjugate of the second operand; it would be nice if we could use the
% usual postfixed asterisk notation for the complex conjugate, but in the
% previous versions of this package we could not find a simple means for
% doing so. Therefore the previous version contained e definition of the
% |\MultVect| macro that followed a simple syntax with an optional 
% asterisk \emph{prefixed} to the second operand. Its syntax, therefore,
% allowed the following two forms:
%\begin{flushleft}\ttfamily
%\cs{MultVect}\meta{first factor} by \meta{second factor} to \meta{output macro}\\
%\cs{MultVect}\meta{first factor} by $\star*$ \meta{second factor} to \meta{output macro}\\
%\end{flushleft}
%
% With the availability of the |xparse| package and its special argument
%  descriptors for the arguments, we were able to define a different
% macro, |\Multvect|, with both optional positions for the asterisk:
% \emph{after} and \emph{before}; its syntax allows the following four
% forms:
%\begin{flushleft}
%\cs{Multvect}\marg{first factor}\marg{second factor}\meta{output macro}
%\cs{Multvect}\marg{first factor}$\star*$\marg{second factor}\meta{output macro}
%\cs{Multvect}\marg{first factor}\marg{second factor}$\star*$\meta{output macro}
%\cs{Multvect}\marg{first factor}$\star*$\marg{second factor}\meta{output macro}
%\cs{Multvect}\marg{first factor}$\star*$\marg{second factor}$\star*$\meta{output macro}
%\end{flushleft}
%
% Nevertheless we maintain a sort of interface between the old syntax
% and the new one, so that the two old forms can be mapped to two
% suitable forms of the new syntax. Old documents are still compilable;
% users who got used to the old syntax can maintain their habits.
%
% First we define the new macro: it receives the three arguments, the
% first two as balanced texts; the last one must always be a macro,
% therefore a single (complex) token and doe not require braces, even
% if it is not forbidden to use them. Asterisks are optional. 
% The input arguments are transformed into couples of anomaly and
% modulus; this makes multiplication much simpler as the output modulus
% is just the product of the input moduli, while the output anomaly is
% just the sum of input anomalies; eventually it is necessary to
% transform this polar version of the result into an ordered couple of
% cartesian values to be assigned to the output macro.
% In order to maintain the single macros pretty simple we need a couple
% of service macros and a named counter. We use |\ModOfVect| previously
% defined, and a new macro |\ModAndAngleOfVect| with the following
% syntax:
%\begin{flushleft}\ttfamily
%\cs{ModAndAngleOfVect}\meta{input vector} to \meta{output modulus} and \meta{output angle in degrees}
%\end{flushleft}
% The output quantities are always macros, so they do not need balanced
% bracing; angles in degrees are always preferred because, on case of
% necessity, they are easy to reduce to the range $-180^\circ < \alpha \leq +180^\circ$.
%    \begin{macrocode}
\def\ModAndAngleOfVect#1to#2and#3{\ModOfVect#1to#2\relax
\ArgOfVect#1to#3\ignorespaces}
%    \end{macrocode}
% We name a counter in the upper range accessible with all the modern
% three typesetting engines, |pdfLaTeX|, |LuaLaTeX| and |XeLaTeX|.
%    \begin{macrocode}
\countdef\MV@C=2560\relax
%    \end{macrocode}
% The user is warned; The counter register number is sort of casual,
% but it is not excluded that its name or number get in conflict with
% other macros from other packages. I would be grateful is such an event
% takes place.
%
% Nov comes the real macro\footnote{A warm thank-you to Enrico Gregorio,
% who kindly attracted my attention on the necessity of braces when using
% this kind of macro; being used to the syntax with delimited arguments
% I had taken the bad habit of avoiding braces. Braces are very
% important, but the syntax of the original \TeX\ language, that did not
% have available the L3 one, spoiled me with the abuse of delimited
% arguments.}:
%    \begin{macrocode}
\NewDocumentCommand\Multvect{m s m s m}{%
\MV@C=0
\ModAndAngleOfVect#1to\MV@uM and\MV@uA 
\ModAndAngleOfVect#3to\MV@dM and\MV@dA 
\IfBooleanT{#2}{\MV@C=1}\relax 
\IfBooleanT{#4}{\MV@C=1}\relax 
\unless\ifnum\MV@C=0\edef\MV@dA{-\MV@dA}\fi
\edef\MV@rM{\fpeval{round((\MV@uM * \MV@dM),6)}}%
\edef\MV@rA{\fpeval{round((\MV@uA + \MV@dA),6)}}%
\GetCoord(\MV@rA:\MV@rM)\t@X\t@Y
\MakeVectorFrom\t@X\t@Y to#5}
%    \end{macrocode}
%
% The  macro to remain backward compatible, reduce to two simple macros
% that take the input delimited arguments and passes them in braced form
% to the above general macro:
%    \begin{macrocode}
\def\MultVect#1by{\@ifstar{\let\MV@c\@ne\@MultVect#1by}%
  {\let\MV@c\empty\@MultVect#1by}}

\def\@MultVect#1by#2to#3{%
  \unless\ifx\MV@c\empty\Multvect{#1}{#2}*{#3}\else
    \Multvect{#1}{#2}{#3}\fi}
%    \end{macrocode}
% Testing of both the new and the old macros show that they behave as
% expected, although, using real numbers for trigonometric functions,
% some small rounding unit on the sixth decimal digit still remain;
% nothing to worry about with a package used for drawing.
%
%
% The division of two complex numbers implies scaling down the dividend
% by the magnitude of the divisor and by rotating the dividend scaled
% vector by the conjugate versor of the divisor:
%\[
% \frac{\vec{N}}{\vec{D}}= \frac{\vec{N}}{M\vec{u}}=
% \frac{\vec{N}}{M}\vec{u}^{\mkern2mu\star}
%\] 
%therefore:
%    \begin{macrocode}
\def\DivVect#1by#2to#3{\Divvect{#1}{#2}{#3}}

\NewDocumentCommand\Divvect{ m m m }{%
\ModAndDirOfVect#2to\@Mod and\@Dir
\edef\@Mod{\fpeval{1 / \@Mod}}%
\ConjVect\@Dir to\@Dir
\ScaleVect#1by\@Mod to\@tempa
\Multvect{\@tempa}{\@Dir}#3\ignorespaces}%
%    \end{macrocode}
% Macros |\DivVect| and |\Divvect| are almost equivalent; the second is
% possibly slightly more robust. They match the corresponding macros for
% multiplying two vectors.
%
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%>>>>>>>>>>>
% \subsection{Arcs and curved vectors}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% We are now in the position of really doing graphic work.
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsubsection{Arcs}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% We start with tracing a circular arc of arbitrary center, arbitrary
% starting point and arbitrary aperture; the first macro checks the
% aperture; if this is not zero it actually proceeds with the necessary
% computations, otherwise it does nothing.
%    \begin{macrocode}
\def\Arc(#1)(#2)#3{\begingroup
\@tdA=#3\p@ 
\unless\ifdim\@tdA=\z@
  \@Arc(#1)(#2)%
\fi
\endgroup\ignorespaces}%
%    \end{macrocode}
% The aperture is already memorised in |\@tdA|; the |\@Arc| macro
% receives the center coordinates in the first argument and the
% coordinates of the starting point in the second argument.
%    \begin{macrocode}
\def\@Arc(#1)(#2){%
\ifdim\@tdA>\z@
  \let\Segno+%
\else
  \@tdA=-\@tdA \let\Segno-%
\fi
%    \end{macrocode}
% The rotation angle sign is memorised in |\Segno| and |\@tdA| now
% contains the absolute value of the arc aperture.
%
% If the rotation angle is larger than $360^\circ$ a message is issued
% that informs the user that the angle will be reduced modulo
% $360^\circ$; this operation is performed by successive subtractions
% rather than with modular arithmetics on the assumption that in general
% one subtraction suffices.
%    \begin{macrocode}
\Numero\@gradi\@tdA
\ifdim\@tdA>360\p@
 \PackageWarning{curve2e}{The arc aperture is \@gradi\space degrees
      and gets reduced\MessageBreak%
      to the range 0--360 taking the sign into consideration}%
 \@whiledim\@tdA>360\p@\do{\advance\@tdA-360\p@}%
\fi
%    \end{macrocode}
% Now the radius is determined and the drawing point is moved to the
% starting point.
%    \begin{macrocode}
\SubVect#2from#1to\@V \ModOfVect\@V to\@Raggio 
\CopyVect#2to\@pPun
\CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY
%    \end{macrocode}
% From now on it's better to define a new macro that will be used also in
% the subsequent macros that draw arcs; here we already have the starting
% point coordinates and the angle to draw the arc, therefore we just call
% the new macro, stroke the line and exit.
%    \begin{macrocode}
\@@Arc\strokepath\ignorespaces}%
%    \end{macrocode}
% And the new macro |\@@Arc| starts with moving the drawing point to the
% first% point and does everything needed for drawing the requested arc,
% except stroking it; we leave the \texttt{stroke} command to the
% completion of the calling macro and nobody forbids to use the |\@@Arc|
% macro for other purposes.
%    \begin{macrocode}
\def\@@Arc{%
\pIIe@moveto{\@pPunX\unitlength}{\@pPunY\unitlength}%
%    \end{macrocode}
% If the aperture is larger than $180^\circ$ it traces a semicircle in
% the right direction and correspondingly reduces the overall aperture.
%    \begin{macrocode}
\ifdim\@tdA>180\p@
  \advance\@tdA-180\p@
  \Numero\@gradi\@tdA
  \SubVect\@pPun from\@Cent to\@V
  \AddVect\@V and\@Cent to\@sPun
  \Multvect{\@V}{0,-1.3333333to}\@V 
  \if\Segno-\ScaleVect\@V by-1to\@V\fi
  \AddVect\@pPun and\@V to\@pcPun
  \AddVect\@sPun and\@V to\@scPun
  \GetCoord(\@pcPun)\@pcPunX\@pcPunY
  \GetCoord(\@scPun)\@scPunX\@scPunY
  \GetCoord(\@sPun)\@sPunX\@sPunY
  \pIIe@curveto{\@pcPunX\unitlength}{\@pcPunY\unitlength}%
               {\@scPunX\unitlength}{\@scPunY\unitlength}%
               {\@sPunX\unitlength}{\@sPunY\unitlength}%
  \CopyVect\@sPun to\@pPun
\fi
%    \end{macrocode}
% If the remaining aperture is not zero it continues tracing the rest of
% the arc. Here we need the extrema of the arc and the coordinates of the
% control points of the Bézier cubic spline that traces the arc. The
% control points lay on the perpendicular to the vectors that join the
% arc center to the starting and end points respectively. 
%
% With reference to figure~\ref{fig:arcspline} on
% page~\pageref{fig:arcspline}, the points $P_1$ and $P_2$
% are the arc end-points; $C_1$ and $C_2$ are the Bézier-spline
% control-points; $P$ is the arc mid-point, that should be distant from
% the center of the arc the same as $P_1$ and $P_2$.
% Choosing a convenient orientation of the arc relative to the coordinate
% axes, the coordinates of these five points are:
%\begin{align*}
%P_1 &= (-R\sin\theta, 0)\\
%P_2 &= (R\sin\theta, 0)\\
%C_1 &= (-R\sin\theta+K\cos\theta, K\sin\theta)\\
%C_2 &= (R\sin\theta-K\cos\theta, K\sin\theta)\\
%P   &= (0, R(1-\cos\theta))
%\end{align*}
% The Bézier cubic spline interpolating the end and mid points is given by
% the parametric equation:
%\begin{equation*}
%P= P_1(1-t)^3 + C_1 3(1-t)^2t + C_2 3(1-t)t^2 + P_2t^3
%\end{equation*}
% where the mid point is obtained for $t=0.5$; the four coefficients then
% become $1/8, 3/8, 3/8, 1/8$ and the only unknown remains $K$. Solving
% for $K$ we obtain the formula
% \begin{equation}\label{equ:corda}
% K= \frac{4}{3}\,\frac{1-\cos\theta}{\sin\theta}R
%= \frac{4}{3}\,\frac{1-\cos\theta}{\sin^2\theta}s
% \end{equation}
% where $\theta$ is half the arc aperture, $R$ is its radius, and $s$ is
% half the arc chord.
%    \begin{macrocode}
\ifdim\@tdA>\z@
  \DirFromAngle\@gradi to\@Dir \if\Segno-\ConjVect\@Dir to\@Dir \fi
  \SubVect\@Cent from\@pPun to\@V
  \Multvect{\@V}{\@Dir}\@V
  \AddVect\@Cent and\@V to\@sPun
  \@tdA=.5\@tdA \Numero\@gradi\@tdA
  \DirFromAngle\@gradi to\@Phimezzi
  \GetCoord(\@Phimezzi)\@cosphimezzi\@sinphimezzi
  \@tdB=1.3333333\p@ \@tdB=\@Raggio\@tdB
  \@tdC=\p@ \advance\@tdC -\@cosphimezzi\p@ \Numero\@tempa\@tdC
  \@tdB=\@tempa\@tdB
  \DividE\@tdB by\@sinphimezzi\p@ to\@cZ
  \ScaleVect\@Phimezzi by\@cZ to\@Phimezzi
  \ConjVect\@Phimezzi to\@mPhimezzi
  \if\Segno-%
    \let\@tempa\@Phimezzi
    \let\@Phimezzi\@mPhimezzi
    \let\@mPhimezzi\@tempa
  \fi
  \SubVect\@sPun from\@pPun to\@V
  \DirOfVect\@V to\@V
  \Multvect{\@Phimezzi}{\@V}\@Phimezzi
  \AddVect\@sPun and\@Phimezzi to\@scPun
  \ScaleVect\@V by-1to\@V
  \Multvect{\@mPhimezzi}{\@V}\@mPhimezzi
  \AddVect\@pPun and\@mPhimezzi to\@pcPun
  \GetCoord(\@pcPun)\@pcPunX\@pcPunY
  \GetCoord(\@scPun)\@scPunX\@scPunY
  \GetCoord(\@sPun)\@sPunX\@sPunY
  \pIIe@curveto{\@pcPunX\unitlength}{\@pcPunY\unitlength}%
               {\@scPunX\unitlength}{\@scPunY\unitlength}%
               {\@sPunX\unitlength}{\@sPunY\unitlength}%
\fi}
%    \end{macrocode}
%
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsubsection{Arc vectors}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% We exploit much of the above definitions for the |\Arc| macro for
% drawing circular arcs with an arrow at one or both ends; the first
% macro |\VerctorArc| draws an arrow at the ending point of the arc; the
% second macro |\VectorARC| draws arrows at both ends; the arrows have
% the same shape as those for vectors; actually they are drawn by putting
% a vector of zero length at the proper arc end(s), therefore they are
% styled as traditional \LaTeX\ or PostScript arrows according to the
% specific option to the \texttt{pict2e} package.
%
% But the arc drawing done here shortens it so as not to overlap on the
% arrow(s); the only arrow (or both ones) are also lightly tilted in
% order to avoid the impression of a corner where the arc enters the
% arrow tip.
%
% All these operations require a lot of ``playing'' with vector
% directions, but even if the operations are numerous, they do not do
% anything else but: (a) determining the end point and its direction;
% (b) determining the arrow length as an angular quantity, i.e. the arc
% amplitude that must be subtracted from the total arc to be drawn;
% (c) the direction of the arrow should be corresponding to the tangent
% to the arc at the point where the arrow tip is attached; (d) tilting
% the arrow tip by half its angular amplitude; (e) determining the
% resulting position and direction of the arrow tip so as to draw a zero
% length vector; (f\/) possibly repeating the same procedure for the
% other end of the arc; (g) shortening the total arc angular amplitude by
% the amount of the  arrow tip(s) already set, and finally (h) drawing
% the circular arc that joins the starting point to the final arrow or
% one arrow to the other one.
%
%  The calling macros are very similar to the |\Arc| macro initial one:
%    \begin{macrocode}
\def\VectorArc(#1)(#2)#3{\begingroup
\@tdA=#3\p@ \ifdim\@tdA=\z@\else
  \@VArc(#1)(#2)%
\fi
\endgroup\ignorespaces}%
%
\def\VectorARC(#1)(#2)#3{\begingroup
\@tdA=#3\p@
\ifdim\@tdA=\z@\else
  \@VARC(#1)(#2)%
\fi
\endgroup\ignorespaces}%
%    \end{macrocode}
%
% The single arrowed arc is defined with the following long macro where
% all the described operations are performed more or less in the
% described succession; probably the macro requires a little cleaning,
% but since it works fine we did not try to optimise it for time or
% number of tokens. The final part of the macro is almost identical to
% that of the plain arc; the beginning also is quite similar. The central
% part is dedicated to the positioning of the arrow tip and to the
% necessary calculations for determining the tip tilt and the reduction
% of the total arc length; pay attention that the arrow length, stored in
% |\@tdE| is a real length, while the radius stored in |\@Raggio| is just
% a multiple of the |\unitlength|, so that the division (that yields a
% good angular approximation to the arrow length as seen from the center
% of the arc) must be done with real lengths. The already defined
% |\@@Arc| macro actually draws the curved vector stem without stroking
% it.
%    \begin{macrocode}
\def\@VArc(#1)(#2){%
\ifdim\@tdA>\z@
  \let\Segno+%
\else
  \@tdA=-\@tdA \let\Segno-%
\fi \Numero\@gradi\@tdA
\ifdim\@tdA>360\p@
 \PackageWarning{curve2e}{The arc aperture is \@gradi\space degrees
      and gets reduced\MessageBreak%
      to the range 0--360 taking the sign into consideration}%
 \@whiledim\@tdA>360\p@\do{\advance\@tdA-360\p@}%
\fi
\SubVect#1from#2to\@V \ModOfVect\@V to\@Raggio \CopyVect#2to\@pPun
\@tdE=\pIIe@FAW\@wholewidth \@tdE=\pIIe@FAL\@tdE
\DividE\@tdE by \@Raggio\unitlength to\DeltaGradi
\@tdD=\DeltaGradi\p@
\@tdD=57.29578\@tdD \Numero\DeltaGradi\@tdD
\@tdD=\ifx\Segno--\fi\@gradi\p@ \Numero\@tempa\@tdD
\DirFromAngle\@tempa to\@Dir
\Multvect{\@V}{\@Dir}\@sPun
\edef\@tempA{\ifx\Segno-\m@ne\else\@ne\fi}%
\Multvect{\@sPun}{0,\@tempA}\@vPun
\DirOfVect\@vPun to\@Dir
\AddVect\@sPun and #1 to \@sPun
\GetCoord(\@sPun)\@tdX\@tdY
\@tdD\ifx\Segno--\fi\DeltaGradi\p@
\@tdD=.5\@tdD \Numero\DeltaGradi\@tdD
\DirFromAngle\DeltaGradi to\@Dird
\Multvect{\@Dir}*{\@Dird}\@Dir%
\GetCoord(\@Dir)\@xnum\@ynum
\put(\@tdX,\@tdY){\vector(\@xnum,\@ynum){0}}%
\@tdE =\ifx\Segno--\fi\DeltaGradi\p@
\advance\@tdA -\@tdE \Numero\@gradi\@tdA
\CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY
\@@Arc
\strokepath\ignorespaces}%
%    \end{macrocode}
%
% The macro for the arc terminated with arrow tips at both ends is again
% very similar, except it is necessary to repeat the arrow tip
% positioning also at the starting point. The |\@@Arc| macro draws the
% curved stem.
%    \begin{macrocode}
\def\@VARC(#1)(#2){%
\ifdim\@tdA>\z@
  \let\Segno+%
\else
  \@tdA=-\@tdA \let\Segno-%
\fi \Numero\@gradi\@tdA
\ifdim\@tdA>360\p@
 \PackageWarning{curve2e}{The arc aperture is \@gradi\space degrees
      and gets reduced\MessageBreak%
      to the range 0--360 taking the sign into consideration}%
 \@whiledim\@tdA>360\p@\do{\advance\@tdA-360\p@}%
\fi
\SubVect#1from#2to\@V \ModOfVect\@V to\@Raggio \CopyVect#2to\@pPun
\@tdE=\pIIe@FAW\@wholewidth \@tdE=0.8\@tdE
\DividE\@tdE by \@Raggio\unitlength to\DeltaGradi
\@tdD=\DeltaGradi\p@ \@tdD=57.29578\@tdD \Numero\DeltaGradi\@tdD
\@tdD=\if\Segno--\fi\@gradi\p@ \Numero\@tempa\@tdD
\DirFromAngle\@tempa to\@Dir
\Multvect{\@V}{\@Dir}\@sPun% corrects the end point
\edef\@tempA{\if\Segno--\fi1}%
\Multvect{\@sPun}{0,\@tempA}\@vPun
\DirOfVect\@vPun to\@Dir
\AddVect\@sPun and #1 to \@sPun
\GetCoord(\@sPun)\@tdX\@tdY
\@tdD\if\Segno--\fi\DeltaGradi\p@
\@tdD=.5\@tdD \Numero\@tempB\@tdD
\DirFromAngle\@tempB to\@Dird
\Multvect{\@Dir}*{\@Dird}\@Dir
\GetCoord(\@Dir)\@xnum\@ynum
\put(\@tdX,\@tdY){\vector(\@xnum,\@ynum){0}}% end point arrow tip
\@tdE =\DeltaGradi\p@
\advance\@tdA -2\@tdE \Numero\@gradi\@tdA
\CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY
\SubVect\@Cent from\@pPun to \@V
\edef\@tempa{\if\Segno-\else-\fi\@ne}%
\Multvect{\@V}{0,\@tempa}\@vPun
\@tdE\if\Segno--\fi\DeltaGradi\p@
\Numero\@tempB{0.5\@tdE}%
\DirFromAngle\@tempB to\@Dird
\Multvect{\@vPun}{\@Dird}\@vPun% corrects the starting point
\DirOfVect\@vPun to\@Dir\GetCoord(\@Dir)\@xnum\@ynum
\put(\@pPunX,\@pPunY){\vector(\@xnum,\@ynum){0}}% starting point arrow tip
\edef\@tempa{\if\Segno--\fi\DeltaGradi}%
\DirFromAngle\@tempa to \@Dir
\SubVect\@Cent from\@pPun to\@V
\Multvect{\@V}{\@Dir}\@V
\AddVect\@Cent and\@V to\@pPun
\GetCoord(\@pPun)\@pPunX\@pPunY
\@@Arc
\strokepath\ignorespaces}%
%    \end{macrocode}
%
% It must be understood that the curved vectors, the above circular arcs
% terminated with an arrow tip at one or both ends, have a nice
% appearance only if the arc radius is not too small, or, said in a
% different way, if the arrow tip  angular width does not exceed a
% maximum of a dozen degrees (and this is probably already too much); the
% tip does not get curved as the arc is, therefore there is not a smooth
% transition from the curved stem and the straight arrow tip if this one
% is large in comparison to the arc radius.
%
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection{General curves}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The most used method to draw curved lines with computer programs is to
% connect several simple curved lines, general ``arcs'', one to another
% generally maintaining the same tangent at the junction. If the
% direction changes we are dealing with a cusp.
%
% The simple general arcs that are directly implemented in every program
% that display typeset documents, are those drawn with the parametric
% curves called \emph{Béźier splines}; given a sequence of points in the
% $x,y$ plane, say $P_0, P_1, P_2, p_3, \dots$ (represented as coordinate
% pairs, i.e. by complex numbers), the most common Bézier splines are the
% following ones:
% \begin{align}
% \mathcal{B}_1 &= P_0(1-t) + P_1t               \label{equ:B-1}      \\
% \mathcal{B}_2 &= P_0(1-t)^2 + P_1 2(1-t)t + P_2t^2 \label{equ:B-2}  \\
% \mathcal{B}_3 &= P_0(1-t)^3 + P_1 3(1-t)^2t +P_2 3(1-t)t^2 +P_3t^3
% \label{equ:B-3}
% \end{align}
%
% All these splines depend on parameter $t$; they have the property that
% for $t=0$ each line starts at the first point, while for $t=1$ they
% reach the last point; in each case the generic point $P$ on each curve
% takes off with a direction that points to the next point, while it
% lands on the destination point with a direction coming from the 
% penultimate point; moreover, when $t$ varies from 0 to 1, the curve arc
% is completely contained within the convex hull formed by the polygon
% that has the spline points as vertices.
%
% Last but not least first order splines implement just straight lines
% and they are out of question for what concerns maxima, minima,
% inflection points and the like. Quadratic splines draw just
% parabolas, therefore they draw arcs that have the concavity just on one
% side of the path; therefore no inflection points. Cubic splines are
% extremely versatile and can draw lines with maxima, minima and
% inflection points. Virtually a multi-arc curve may be drawn by a set of
% cubic splines as well as a set of quadratic splines (fonts are a good
% example: Adobe Type~1 fonts have their contours described by cubic
% splines, while TrueType fonts have their contours described with
% quadratic splines; at naked eye it is impossible to notice the difference).
%
% Each program that processes the file to be displayed is capable of
% drawing first order Bézier splines (segments) and third order Bézier
% splines, for no other reason, at least, because they have to draw
% vector fonts whose contours are described by Bézier splines; sometimes
% they have also the program commands to draw second order Bézier
% splines, but not always these machine code routines are available to
% the user for general use. For what concerns |pdftex|, |xetex| and
% |luatex|, they have the user commands for straight lines and cubic
% arcs. At least with |pdftex|, quadratic arcs must be simulated with a
% clever use of third order Bézier splines.
%
% Notice that \LaTeXe\ environment |picture| by itself is capable of
% drawing both cubic and quadratic Bézier splines as single arcs; but it
% resorts to ``poor man'' solutions. The |pict2e| package removes all the
% old limitations and implements the interface macros for sending the
% driver the necessary drawing information, including the transformation
% from typographical points (72.27\,pt/inch) to PostScript big points
% (72\,bp/inch). But for what concerns the quadratic spline it resorts to
% the clever use of a cubic spline.
%
% Therefore here we treat first the drawings that can be made with cubic
% splines; then we describe the approach to quadratic splines.
%
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\subsection{Cubic splines}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Now we define a macro for tracing a general, not necessarily circular,
% arc. This macro resorts to a general triplet of macros with which it is
% possible to draw almost anything. It traces a single Bézier spline from
% a first point where the tangent direction is specified to a second
% point where again it is specified the tangent direction. Actually this
% is a special (possibly useless) case where the general |\curve| macro
% of |pict2e| could do the same or a better job. In any case\dots
%    \begin{macrocode}
\def\CurveBetween#1and#2WithDirs#3and#4{%
  \StartCurveAt#1WithDir{#3}\relax
  \CurveTo#2WithDir{#4}\CurveFinish\ignorespaces
}%
%    \end{macrocode}
%
% Actually the above macro is a special case of concatenation of the
% triplet formed by macros |\StartCurve|, |\CurveTo| and|\CurveFinish|;
% the second macro can be repeated an arbitrary number of times.
% In any case the directions specified with the direction arguments, both
% here and with the more general macro|\Curve|, the angle between the
% indicated tangent and the arc chord may give raise to some little
% problems when they are very close to 90° in absolute value. Some
% control is exercised on these values, but some tests might fail if the
% angle derives from computations; this is a good place to use polar
% forms for the direction vectors.
%
% The first macro initialises the drawing and the third one strokes it;
% the real work is done by the second macro. The first macro initialises
% the drawing but also memorises the starting direction; the second macro
% traces the current Bézier arc reaching the destination point with the
% specified direction, but memorises this direction as the one with which
% to start the next arc. The overall curve is then always smooth because
% the various Bézier arcs join with continuous tangents. If a cusp is
% desired it is necessary to change the memorised direction at the end of
% the arc before the cusp and before the start of the next arc; this is
% better than stroking the curve before the cusp and then starting
% another curve, because the curve joining point at the cusp is not
% stroked with the same command, therefore we get two superimposed curve
% terminations. We therefore need another small macro |\ChangeDir| to
% perform this task.
%
% It is necessary to recall that the direction vectors point to the
% control points, but they do not define the control points themselves;
% they are just directions, or, even better, they are simply vectors with
% the desired direction; the macros themselves provide to the
% normalisation and memorisation.
%
% The next desirable feature would be to design a macro that accepts
% optional node directions and computes the missing ones according to a
% suitable strategy. We can think of many such strategies, but none seems
% to be generally applicable, in the sense that one strategy might give
% good results, say, with sinusoids and another one, say, with cardioids,
% but neither one is suitable for both cases.
%
% For the moment we refrain from automatic direction computation, but we
% design the general macro as if directions were optional.
%
% Here we begin with the first initialising macro that receives with the
% first argument the starting point and with the second argument the
% direction of the tangent (not necessarily normalised to a unit vector)
%    \begin{macrocode}
\def\StartCurveAt#1WithDir#2{%
\begingroup
\GetCoord(#1)\@tempa\@tempb
\CopyVect\@tempa,\@tempb to\@Pzero
\pIIe@moveto{\@tempa\unitlength}{\@tempb\unitlength}%
\GetCoord(#2)\@tempa\@tempb
\CopyVect\@tempa,\@tempb to\@Dzero
\DirOfVect\@Dzero to\@Dzero
\ignorespaces}
%    \end{macrocode}
% And this re-initialises the direction to create  a cusp:
%    \begin{macrocode}
\def\ChangeDir<#1>{%
\GetCoord(#1)\@tempa\@tempb
\CopyVect\@tempa,\@tempb to\@Dzero
\DirOfVect\@Dzero to\@Dzero
\ignorespaces}
%    \end{macrocode}
%
% The next macros are the finishing ones; the first strokes the whole
% curve, while the second fills the (closed) curve with the default
% color; both close the group that was opened with |\StartCurve|. The
% third macro is explained in a while; we anticipate it is functional to
% chose between the first two macros when a star is possibly used to
% switch between stroking and filling.
%    \begin{macrocode}
\def\CurveFinish{\strokepath\endgroup\ignorespaces}% 
\def\FillCurve{\fillpath\endgroup\ignorespaces}
\def\CurveEnd{\fillstroke\endgroup\ignorespaces}
%    \end{macrocode}
%
% In order to draw the internal arcs it would be desirable to have a
% single macro that, given the destination point, computes the control
% points that produce a cubic Bézier spline that joins the starting point
% with the destination point in the best possible way. The problem is
% strongly ill defined and has an infinity of solutions; here we give two
% solutions: $(a)$ a supposedly smart one that resorts to osculating
% circles and requires only the direction at the destination point; and
% $(b)$ a less smart solution that requires the control points to be
% specified in a certain format.
%
% We start with solution $(b)$, |\CbezierTo|, the code of which is
% simpler than that of solution $(a)$; then we will produce the solution
% $(a)$, |\CurveTo|,  that will become the main building block for a
% general path construction macro, |\Curve|. 
%
% The “naïve” macro |\CBezierTo| simply uses the previous point direction
% saved in |\@Dzero| as a unit vector by the starting macro; specifies
% a destination point, the distance of the first control point from the
% starting point, the destination point direction that will save also for
% the next arc-drawing macro as a unit vector, and the distance of the
% second control point from the destination point along this last
% direction. Both distances must be  positive possibly fractional
% numbers. The syntax therefore is the following:
%\begin{flushleft}
%\cs{CbezierTo}\meta{end
% point}|WithDir|\meta{direction}|AndDists|\meta{$K_0$}|And|\meta{$K_1$}
%\end{flushleft}
% where \meta{end point} is a vector macro or a comma separated pair of
% values; again \meta{direction} is another vector macro or a comma
% separated pair of values, that not necessarily indicate a unit vector,
% since the macro provides to normalise it to unity; \meta{$K_0$} and
% \meta{$K_1$} are the distances of the control points from their
% respective node points; they must be positive integers or fractional
% numbers. If \meta{$K_1$} is a number must be enclosed in curly braces,
% while if it is a macro name (containing the desired fractional or
% integer value) there is no need for braces.
%
% This macro uses the input information to use the internal |pict2e|
% macro |\pIIe@curveto| with the proper arguments, and to save the final
% direction into the same |\@Dzero| macro for successive use of other
% arc-drawing macros.
%    \begin{macrocode}
\def\CbezierTo#1WithDir#2AndDists#3And#4{%
\GetCoord(#1)\@tX\@tY \MakeVectorFrom\@tX\@tY to\@Puno
\GetCoord(#2)\@tX\@tY \MakeVectorFrom\@tX\@tY to \@Duno
\DirOfVect\@Duno to\@Duno
\ScaleVect\@Dzero by#3to\@Czero \AddVect\@Pzero and\@Czero to\@Czero
\ScaleVect\@Duno by-#4to \@Cuno \AddVect\@Puno and\@Cuno to \@Cuno
\GetCoord(\@Czero)\@XCzero\@YCzero
\GetCoord(\@Cuno)\@XCuno\@YCuno
\GetCoord(\@Puno)\@XPuno\@YPuno
\pIIe@curveto{\@XCzero\unitlength}{\@YCzero\unitlength}%
             {\@XCuno\unitlength}{\@YCuno\unitlength}%
             {\@XPuno\unitlength}{\@YPuno\unitlength}%
\CopyVect\@Puno to\@Pzero
\CopyVect\@Duno to\@Dzero
\ignorespaces}%
%    \end{macrocode}
%
% With this building block it is not difficult to set up a macro that
% draws a Bézier arc between two given points, similarly to the other
% macro |\CurveBetween| previously described and defined here:
%
%    \begin{macrocode}
\def\CbezierBetween#1And#2WithDirs#3And#4UsingDists#5And#6{%
\StartCurveAt#1WithDir{#3}\relax
\CbezierTo#2WithDir#4AndDists#5And{#6}\CurveFinish}
%    \end{macrocode}

%
% An example of use is shown in figure~\ref{fig:Cbezier} on
% page~\pageref{fig:Cbezier}; notice that the tangents at the end points
% are the same for the black curve drawn with |\CurveBetween| and the
% five red curves drawn with |\CbezierBetween|; the five red curves
% differ only for the distance of their control point $C_0$ from the
% starting  point; the differences are remarkable and the topmost curve
% even presents a slight inflection close to the end point. These effects
% cannot be obtained with the “smarter” macro |\CurveBetween|. But
% certainly this simpler macro is more difficult to use because the
% distances of the control points are difficult to estimate and require a
% number of cut-and-try experiments.
%
%
% The ``smarter'' curve macro comes next; it is supposed to determine the
% control points for joining the previous point (initial node) with the
% specified direction to the next point with another specified direction
% (final node).
% Since the control points are along the specified directions, it is
% necessary to determine the distances from the adjacent curve nodes.
% This must work correctly even if nodes and directions imply an
% inflection point somewhere along the arc.
%
% The strategy we devised consists in determining each control point as
% if it were the control point of a circular arc, precisely an arc of an
% osculating circle, i.e. a circle tangent to the curve at that node. The
% ambiguity of the stated problem may be solved by establishing that the
% chord of the osculating circle has the same direction as the chord of
% the arc being drawn, and that the curve chord is divided into two equal
% parts each of which should be interpreted as half the chord of the
% osculating circle. 
%
% This makes the algorithm a little rigid; sometimes the path drawn is
% very pleasant, while in other circumstances the determined curvatures
% are too large or too small. We therefore add some optional information
% that lets us have some control over the curvatures; the idea is based
% on the concept of \emph{tension}, similar but not identical to the one
% used in the drawing programs \MF\ and \MP. We add to the direction
% information, with which the control nodes of the osculating circle arcs
% are determined, a scaling factor that should be intuitively related to
% the tension of the arc (actually, since the tension of the ‘rope’ is 
% high when this parameter is low, probably a name such as ‘looseness’
% would be better suited): the smaller this number, the closer the arc
% resembles a straight line as a rope subjected to a high tension; value
% zero is allowed, while a value of 4 is close to ``infinity'' and turns
% a quarter circle into a line with an unusual loop; a value of 2 turns a
% quarter circle almost into a polygonal line with rounded vertices
%. Therefore these tension factors should be used only for fine tuning
% the arcs, not when a path is drawn for the first time.
%
% We devised a syntax for specifying direction and tensions:
%\begin{flushleft}
% \meta{direction\texttt{\upshape;}tension factors}
%\end{flushleft}
% where \emph{direction} contains a pair of fractional number that not
% necessarily refer to the components of a unit vector direction, but
% simply to a vector with the desired orientation (polar form is OK); the
% information contained from the semicolon (included) to the rest of the
% specification is optional; if it is present, the \emph{tension factors}
% is simply a comma separated pair of fractional or integer numbers that
% represent respectively the tension at the starting or the ending node
% of a path arc.
%
% We therefore need a macro to extract the mandatory and optional parts:
%    \begin{macrocode}
\def\@isTension#1;#2!!{\def\@tempA{#1}%
\def\@tempB{#2}\unless\ifx\@tempB\empty\strip@semicolon#2\fi}

\def\strip@semicolon#1;{\def\@tempB{#1}}
%    \end{macrocode}
% By changing the tension values we can achieve different results: see
% figure~\ref{fig:tensions} on page~\pageref{fig:tensions}.
%
% We use the formula we got for arcs~\eqref{equ:corda}, where the half
% chord is indicated with $s$,  and we derive the necessary distances:
%\begin{subequations}\label{equ:Kzero-Kuno}
%\begin{align}
%K_0 &= \frac{4}{3} s\frac{1-\cos\theta_0}{\sin^2\theta_0}\\
%K_1 &=\frac{4}{3}s\frac{1-\cos\theta_1}{\sin^2\theta_1}
%\end{align}
%\end{subequations}
%
% We therefore start with getting the points and directions and
% calculating the chord and its direction:
%    \begin{macrocode}
\def\CurveTo#1WithDir#2{%
\def\@Tuno{1}\def\@Tzero{1}\relax
\edef\@Puno{#1}\@isTension#2;!!%
\expandafter\DirOfVect\@tempA to\@Duno
\bgroup\unless\ifx\@tempB\empty\GetCoord(\@tempB)\@Tzero\@Tuno\fi
\DistanceAndDirOfVect\@Puno minus\@Pzero to\@Chord and\@DirChord
%    \end{macrocode}
% Then we rotate everything about the starting point so as to bring the
% chord on the real axis
%    \begin{macrocode}
\Multvect{\@Dzero}*{\@DirChord}\@Dpzero
\Multvect{\@Duno}*{\@DirChord}\@Dpuno
\GetCoord(\@Dpzero)\@DXpzero\@DYpzero
\GetCoord(\@Dpuno)\@DXpuno\@DYpuno
\DivideFN\@Chord by2 to\@semichord
%    \end{macrocode}
% The chord needs not be actually rotated because it suffices its length
% along the real axis; the chord length is memorised in |\@Chord| and
% its half is saved in |\@semichord|.
%
% We now examine the various degenerate cases, when either tangent is
% perpendicular or parallel to the chord. Notice that we are calculating
% the distances of the control points from the adjacent nodes using the
% half chord length, not the full length. We also distinguish between the
% computations relative to the arc starting point and those relative to
% the end point.
%
%    \begin{macrocode}
\ifdim\@DXpzero\p@=\z@
   \@tdA=1.333333\p@
   \Numero\@KCzero{\@semichord\@tdA}%
\fi
\ifdim\@DYpzero\p@=\z@
  \@tdA=1.333333\p@
  \Numero\@Kpzero{\@semichord\@tdA}%
\fi
%    \end{macrocode}
% The distances we are looking for are positive generally fractional
% numbers; so if the components are negative, we take the absolute
% values. Eventually we determine the absolute control point coordinates. 
%    \begin{macrocode}
\unless\ifdim\@DXpzero\p@=\z@
  \unless\ifdim\@DYpzero\p@=\z@
    \edef\@CosDzero{\ifdim\@DXpzero\p@<\z@ -\fi\@DXpzero}%
    \edef\@SinDzero{\ifdim\@DYpzero\p@<\z@ -\fi\@DYpzero}%
    \@tdA=\@semichord\p@ \@tdA=1.333333\@tdA
    \DividE\@tdA by\@SinDzero\p@ to \@KCzero
    \@tdA=\dimexpr(\p@-\@CosDzero\p@)\relax
    \DividE\@KCzero\@tdA by\@SinDzero\p@ to \@KCzero
  \fi
\fi
\MultiplyFN\@KCzero by \@Tzero to \@KCzero
\ScaleVect\@Dzero by\@KCzero to\@CPzero
\AddVect\@Pzero and\@CPzero to\@CPzero
%    \end{macrocode}
% We now repeat the calculations for the arc end point, taking into
% consideration that the end point direction points outwards, so that in
% computing the end point control point we have to take this fact into
% consideration by using a negative sign for the distance; in this way
% the displacement of the control point from the end point takes place
% in a backwards direction.
%    \begin{macrocode}
\ifdim\@DXpuno\p@=\z@
   \@tdA=-1.333333\p@
   \Numero\@KCuno{\@semichord\@tdA}%
\fi
\ifdim\@DYpuno\p@=\z@
  \@tdA=-1.333333\p@
  \Numero\@KCuno{\@semichord\@tdA}%
\fi
\unless\ifdim\@DXpuno\p@=\z@
    \unless\ifdim\@DYpuno\p@=\z@
    \edef\@CosDuno{\ifdim\@DXpuno\p@<\z@ -\fi\@DXpuno}%
    \edef\@SinDuno{\ifdim\@DYpuno\p@<\z@ -\fi\@DYpuno}%
    \@tdA=\@semichord\p@ \@tdA=-1.333333\@tdA
    \DividE\@tdA by \@SinDuno\p@ to \@KCuno
    \@tdA=\dimexpr(\p@-\@CosDuno\p@)\relax
    \DividE\@KCuno\@tdA by\@SinDuno\p@ to \@KCuno
  \fi
\fi
\MultiplyFN\@KCuno by \@Tuno to \@KCuno
\ScaleVect\@Duno by\@KCuno to\@CPuno
\AddVect\@Puno and\@CPuno to\@CPuno
%    \end{macrocode}
% Now we have the four points and we can instruct the internal
% \texttt{pict2e} macros to do the path drawing.
%    \begin{macrocode}
\GetCoord(\@Puno)\@XPuno\@YPuno
\GetCoord(\@CPzero)\@XCPzero\@YCPzero
\GetCoord(\@CPuno)\@XCPuno\@YCPuno
\pIIe@curveto{\@XCPzero\unitlength}{\@YCPzero\unitlength}%
             {\@XCPuno\unitlength}{\@YCPuno\unitlength}%
             {\@XPuno\unitlength}{\@YPuno\unitlength}\egroup
%    \end{macrocode}
%  It does not have to stroke the curve because other Bézier splines
% might still be added to the path. On the opposite it memorises the
% final point as the initial point of the next spline
%    \begin{macrocode}
\CopyVect\@Puno to\@Pzero
\CopyVect\@Duno to\@Dzero
\ignorespaces}%
%    \end{macrocode}
%
%
% We finally define the overall |\Curve| macro that has two flavours:
% starred and unstarred; the former fills the curve path with the locally
% selected color, while the latter just strokes the path. Both 
% recursively examine an arbitrary list of nodes and directions; node
% coordinates are grouped within regular parentheses while direction
% components are grouped within angle brackets. The first call of the
% macro initialises the drawing process and checks for the next node and
% direction; if a second node is missing, it issues a warning message and
% does not draw anything. It does not check for a change in direction,
% because it would be meaningless at the beginning of a curve. The second
% macro defines the path to the next point and checks for another node;
% if the next list item is a square bracket delimited argument, it
% interprets it as a change of direction, while if it is another
% parenthesis delimited argument it interprets it as a new node-direction
% specification; if the node and direction list is terminated, it issues
% the stroking or filling command through |\CurveEnd|, and exits the
% recursive process. The |\CurveEnd| control sequence has a different
% meaning depending on the fact that the main macro was starred or
% unstarred. The |@ChangeDir| macro is just an interface to execute the
% regular |\ChangeDir| macro, but also for recursing again by recalling
% |\@Curve|.
%    \begin{macrocode}
\def\Curve{\@ifstar{\let\fillstroke\fillpath\Curve@}%
{\let\fillstroke\strokepath\Curve@}}

\def\Curve@(#1)<#2>{%
    \StartCurveAt#1WithDir{#2}%
    \@ifnextchar\lp@r\@Curve{%
    \PackageWarning{curve2e}{%
    Curve specifications must contain at least two nodes!\Messagebreak
    Please, control your \string\Curve\space specifications\MessageBreak}}}
\def\@Curve(#1)<#2>{%
    \CurveTo#1WithDir{#2}%
    \@ifnextchar\lp@r\@Curve{%
    \@ifnextchar[\@ChangeDir\CurveEnd}}
\def\@ChangeDir[#1]{\ChangeDir<#1>\@Curve}
%    \end{macrocode}
%
% As a concluding remark, please notice that the |\Curve| macro is
% certainly the most comfortable to use, but it is sort of frozen in its
% possibilities. The user may certainly use the |\StartCurve|,
% |\CurveTo|, |\ChangeDir|, and |\CurveFinish| or  |\FillCurve| for a
% more versatile set of drawing macros; evidently nobody forbids to
% exploit the full power of the |\cbezier| original macro for cubic
% splines; we made available macros |\CbezierTo| and the isolated arc
% macro |\CbezierBetween| in order to use the general internal cubic
% Bézier splines in a more comfortable way.
%
% As it can be seen in figure~\ref{fig:sinewave} on
% page~\pageref{fig:sinewave} the two diagrams should approximately
% represent a sine wave. With Bézier curves, that resort on polynomials,
% it is impossible to represent a transcendental function, but it is only
% possible to approximate it. It is evident that the approximation
% obtained with full control on the control points requires less arcs and
% it is more accurate than the approximation obtained with the recursive
% |\Curve| macro; this macro requires almost two times as many pieces of
% information in order to minimise the effects of the lack of control on
% the control points, and even with this added information the macro 
% approaches the sine wave with less accuracy. At the same time for many
% applications the |\Curve| recursive macro proves to be much easier to
% use than with single  arcs drawn with the |\CbezierBetween| macro.
%
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection{Quadratic splines}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% We want to create a recursive macro with the same properties as the
% above described |\Curve| macro, but that uses quadratic splines; we
% call it |\Qurve| so that the initial macro name letter reminds us of
% the nature of the splines being used. For the rest they have an almost
% identical syntax; with quadratic splines it is not possible to specify
% the distance of the control points from the extrema, since quadratic
% splines have just one control point that must lay at the intersection
% of the two tangent directions; therefore with quadratic splines the
% tangents at each point cannot have the optional part that starts with a
% semicolon. The syntax, therefore, is just:
%\begin{flushleft}
%\cs{Qurve}\parg{first point}\aarg{direction}...\parg{any point}\aarg{direction}...\parg{last point}\aarg{direction}
%\end{flushleft}
% As with |\Curve|, also with |\Qurve| there is no limitation on the
% number of points, except for the computer memory size; it is advisable
% not to use many arcs otherwise it might become very difficult to find
% errors.
% 
% The first macros that set up the recursion are very similar to those we
% wrote for |\Curve|:
%    \begin{macrocode}
\def\Qurve{\@ifstar{\let\fillstroke\fillpath\Qurve@}%
{\let\fillstroke\strokepath\Qurve@}}

\def\Qurve@(#1)<#2>{%
    \StartCurveAt#1WithDir{#2}%
    \@ifnextchar\lp@r\@Qurve{%
    \PackageWarning{curve2e}{%
      Quadratic curve specifications must contain at least 
      two nodes!\Messagebreak
      Please, control your Qurve specifications\MessageBreak}}}%
      
\def\@Qurve(#1)<#2>{\QurveTo#1WithDir{#2}%
    \@ifnextchar\lp@r\@Qurve{%
    \@ifnextchar[\@ChangeQDir\CurveEnd}}%
    
\def\@ChangeQDir[#1]{\ChangeDir<#1>\@Qurve}%
%    \end{macrocode}
%
% Notice that in case of long paths it might be better to use the single
% macros |\StartCurveAt|, |\QurveTo|, |\ChangeDir| and |\CurveFinish|
% (or |\FillCurve|), with their respective syntax, in such a way that a
% long list % of node-direction specifications passed to |\Qurve| may be
% split into shorter input lines in order to edit the input data in a
% more comfortable way.
%
%
% The macro that does everything is |\QurveTo|. it starts with reading 
% its arguments received through the calling macro |\@Qurve|
%    \begin{macrocode}
\def\QurveTo#1WithDir#2{%
\edef\@Puno{#1}\DirOfVect#2to\@Duno\bgroup
\DistanceAndDirOfVect\@Puno minus\@Pzero to\@Chord and\@DirChord
%    \end{macrocode}
% It verifies if |\@Dpzero| and |\@Dpuno|, the directions at the two
% extrema of the arc, are parallel or anti-parallel by taking their
% ``scalar'' product (|\@Dpzero| times |\@Dpuno*|); if the imaginary
% component  of the scalar product vanishes the two directions are
% parallel; in this case we produce an error message, but we continue by
% skipping this arc destination point; evidently the drawing will not be
% the desired one, but the job should not abort.
%    \begin{macrocode}
\Multvect{\@Dzero}*{\@Duno}\@Scalar
\YpartOfVect\@Scalar to \@YScalar
\ifdim\@YScalar\p@=\z@
\PackageWarning{curve2e}%
   {Quadratic Bezier arcs cannot have their starting\MessageBreak
   and ending directions parallel or antiparallel with\MessageBreak
   each other. This arc is skipped and replaced with 
   a dotted line.\MessageBreak}%
   \Dotline(\@Pzero)(\@Puno){2}\relax
\else
%    \end{macrocode}
% Otherwise we rotate everything about the starting point so as to bring
% the chord on the real axis; we get also the components of the two
% directions that, we should remember, are unit vectors, not generic
% vectors, although the user can use the vector specifications that are
% more understandable to him/her:
%    \begin{macrocode}
\Multvect{\@Dzero}*{\@DirChord}\@Dpzero
\Multvect{\@Duno}*{\@DirChord}\@Dpuno
\GetCoord(\@Dpzero)\@DXpzero\@DYpzero
\GetCoord(\@Dpuno)\@DXpuno\@DYpuno
%    \end{macrocode}
% We check if the two directions point to the same half plane; this
% implies that these rotated directions point to different sides of the
% chord vector; all this is equivalent that the two direction Y
% components have opposite signs, so that their product is strictly
% negative, while the two
% X components product is not negative.
%    \begin{macrocode}
\MultiplyFN\@DXpzero by\@DXpuno to\@XXD
\MultiplyFN\@DYpzero by\@DYpuno to\@YYD
\unless\ifdim\@YYD\p@<\z@\ifdim\@XXD\p@<\z@
\PackageWarning{curve2e}%
   {Quadratic Bezier arcs cannot have inflection points\MessageBreak
   Therefore the tangents to the starting and ending arc\MessageBreak
   points cannot be directed to the same half plane.\MessageBreak
   This arc is skipped and replaced by a dotted line\MessageBreak}%
   \Dotline(\@Pzero)(\@Puno){2}\fi
\else
%    \end{macrocode}
%
% After these tests we should be in a ``normal'' situation. We first copy
% the expanded input information into new macros that have more explicit
% names: macros stating wit `S' denote the sine of the direction angle,
% while those starting with `C' denote the cosine of that angle. We will
% use these expanded definitions as we know we are working with the
% actual values. These directions are those relative to the arc chord.
%    \begin{macrocode}
\edef\@CDzero{\@DXpzero}\relax
\edef\@SDzero{\@DYpzero}\relax
\edef\@CDuno{\@DXpuno}\relax
\edef\@SDuno{\@DYpuno}\relax
%    \end{macrocode}
% Suppose we write the parametric equations of a straight line that
% departs from the beginning of the chord with direction angle $\phi_0$
% and the corresponding equation of the straight line departing from the
% end of the chord (of length $c$) with direction angle $\phi_1$. We have
% to find the coordinates of the intersection point of these two straight
% lines.
%\begin{subequations}
%\begin{align}
% t \cos\phi_0 - s \cos\phi_1 &=  c\\
% t \sin\phi_0 - s \sin\phi_1 &= 0
%\end{align}
%\end{subequations}
% The parameters $t$ and $s$ are just the running parameters; we have
% to solve those simultaneous equations in the unknown variables $t$ and
% $s$; these values let us compute the coordinates of the intersection
% point:
%\begin{subequations}\begin{align}
% X_C &=\dfrac{c\cos\phi_0\sin\phi_1}{\sin\phi_0\cos\phi_1 - \cos\phi_0\sin\phi_1} \\
% Y_C &=\dfrac{c\sin\phi_0\sin\phi_1}{\sin\phi_0\cos\phi_1 - \cos\phi_0\sin\phi_1}
%\end{align}\end{subequations}
%
% Having performed the previous tests we are sure that the denominator is
% not vanishing (direction are not parallel or anti-parallel) and that it
% lays at the same side as the direction with angle $\phi_0$ with respect
% to the chord.
%
% The coding then goes on like this:
%    \begin{macrocode}
\MultiplyFN\@SDzero by\@CDuno to\@tempA 
\MultiplyFN\@SDuno by\@CDzero to\@tempB 
\edef\@tempA{\strip@pt\dimexpr\@tempA\p@-\@tempB\p@}\relax
\@tdA=\@SDuno\p@ \@tdB=\@Chord\p@ \@tdC=\@tempA\p@
\edef\@tempC{\strip@pt\dimexpr \@tdA*\@tdB/\@tdC}\relax
\MultiplyFN\@tempC by\@CDzero to \@XC 
\MultiplyFN\@tempC by\@SDzero to \@YC 
\ModOfVect\@XC,\@YC to\@KC            
%    \end{macrocode}
% Now we have the coordinates and the module  of the intersection point
% vector taking into account the rotation of the real axis; getting back
% to the original coordinates before rotation, we get:
%    \begin{macrocode}
\ScaleVect\@Dzero by\@KC to\@CP       
\AddVect\@Pzero and\@CP to\@CP       
\GetCoord(\@Pzero)\@XPzero\@YPzero    
\GetCoord(\@Puno)\@XPuno\@YPuno      
\GetCoord(\@CP)\@XCP\@YCP             
%    \end{macrocode}
% We have now the coordinates of the two extrema point of the quadratic
% arc and of the control point. Keeping in mind that the symbols $P_0$,
% $P_1$ and $C$ denote geometrical points but also their coordinates as
% ordered pairs of real numbers (i.e. they are complex numbers) we have
% to determine the parameters of a cubic spline that with suitable
% values get simplifications in its parametric equation so that it
% becomes a second degree function instead of a third degree one. It is
% possible, in spite of the fact the it appears impossible that e cubic
% form becomes a quadratic one; we should determine the values of $P_a$
% and $P_b$ such that:
%\[
% P_0(1-t)^3 +3P_a(1-t)^2t +3P_b(1-t)t^2 +P_1t^3
%\]
% is equivalent to
%\[
% P_0(1-t)^2 + 2C(1-t)t + P_1t^2
%\]
% It turns out that the solution is given by
%\begin{equation}
%    P_a= C+(P_0-C)/3 \qquad \text{and}\qquad P_b = C+(P_1- C)/3
%\label{equ:spline3}
%\end{equation}
%
% The transformations implied by equations~\eqref{equ:spline3} are
% performed by the following macros already available from the |pict2e|
% package; we use them here with the actual arguments used for this task:
%    \begin{macrocode}
\@ovxx=\@XPzero\unitlength \@ovyy=\@YPzero\unitlength
\@ovdx=\@XCP\unitlength \@ovdy=\@YCP\unitlength
\@xdim=\@XPuno\unitlength \@ydim=\@YPuno\unitlength
      \pIIe@bezier@QtoC\@ovxx\@ovdx\@ovro
      \pIIe@bezier@QtoC\@ovyy\@ovdy\@ovri
      \pIIe@bezier@QtoC\@xdim\@ovdx\@clnwd
      \pIIe@bezier@QtoC\@ydim\@ovdy\@clnht
%    \end{macrocode}
%
% We call the basic |pict2e| macro to draw a cubic spline and we finish
% the conditional statements with which we started these calculations;
% eventually we close the group we opened at the beginning and we copy
% the terminal node information (position and direction) into the
% 0-labelled macros that indicate the starting point of the next arc.
%    \begin{macrocode}
      \pIIe@curveto\@ovro\@ovri\@clnwd\@clnht\@xdim\@ydim
\fi\fi\egroup
\CopyVect\@Puno to\@Pzero
\CopyVect\@Duno to\@Dzero
\ignorespaces}
%    \end{macrocode}
%
% An example of usage is shown at the left in
% figure~\ref{fig:quadratic-arcs}\footnote{The commands \cs{legenda},
% \cs{Pall} and \cs{Zbox} are specifically defined in the preamble of
% this document; they must be used within a \texttt{picture} environment.
% \cs{legenda} draws a framed legend made up of a single (short) math
% formula; \cs{Pall} is just a shorthand to put a filled small circle at a
% specified position' \cs{Zbox} puts a symbol in math mode a little
% displaced in the proper direction relative to a specified position.
% They are just handy to label certain objects in a \texttt{picture}
% diagram, but they are not part of the \texttt{curve2e} package.} on
% page~\pageref{fig:quadratic-arcs} created with the code shown in the
% same page.
%
% Notice also that the inflexed line is made with two arcs that meet at
% the inflection point; the same is true for the line that resembles
% a sine wave. The cusps of the inner border of the green area are
% obtained with the usual optional star already used also with the
% |\Curve| recursive macro.
%
% The ``circle'' inside the square frame is visibly different from a real
% circle, in spite of the fact that the maximum deviation from the true
% circle is just about 6\% relative to the radius; a quarter circle
% obtained with a single parabola is definitely a poor approximation of a
% real quarter circle; possibly by splitting each quarter circle in three
% or four partial arcs the approximation of a real quarter circle would be
% much better. On the right of figure~\ref{fig:quadratic-arcs} on
% page~\pageref{fig:quadratic-arcs} it is possible to compare a “circle”
% obtained with quadratic arcs with the the internal circle obtained with
% cubic arcs; the difference is easily seen even without using measuring
% instruments.
%
% With quadratic arcs we decided to avoid defining specific macros
% similar to |\CurveBetween| and |\CbezierBetween|; the first macro would
% not save any typing to the operator; furthermore it may be questionable
% if it was really useful even with cubic splines; the second macro with
% quadratic arcs is meaningless, since with quadratic arcs there is just
% one control point and there is no choice on its position.
%
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \section{Conclusion}
%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% I believe that the set of new macros provided by this package can
% really help the user to draw his/her diagrams with more agility; it
% will be the accumulated experience to decide if this is true.
%
% As a personal experience we found very comfortable to draw ellipses and
% to define macros to draw not only such shapes or filled elliptical
% areas, but also to create “legends” with coloured backgrounds and
% borders. But this is an application of the functionality implemented in
% this package.
%
%\iffalse
%</package>
%\fi
%
%
%\iffalse
%<*readme>
%\fi
% \section{The \texttt{README.txt} file}
% The following is the text that forms the contents of the |README.txt|
% file that accompanies the package. We found it handy to have it in
% the documented source, because in this way certain pieces of
% information don't need to be repeated again and again in different
% files. 
%    \begin{macrocode}
The package bundle curve2e is composed of the following files

curve2e.dtx
curve2e.pdf
README.txt
ltxdoc.cfg

curve2e.dtx is the documented TeX source file of file curve2e.sty; you
get curve2e.sty, curve2e.pdf, and curve2e-v161.sty by running pdflatex 
on curve2e.dtx. The ltxdoc.cfg file customises the way the documentation 
file is typeset. This specific .cfg file is part of the ltxdoc package functionality and it is supposed to be configured for each specifica other bundle.

README.txt, this file, contains general information.

Curve2e-v161.sty contains a previous version of the package; see below
why the older version might become necessary for the end user.

Curve2e.sty is an extension of the package pict2e.sty which extends the
standard picture LaTeX environment according to what Leslie Lamport
specified in the second edition of his LaTeX manual (1994).

This further extension curve2e.sty allows to draw lines and vectors 
with any non integer slope parameters, to draw dashed lines of any 
slope, to draw arcs and curved vectors, to draw curves where just 
the interpolating nodes are specified together with the slopes at 
the nodes; closed paths of any shape can be filled with color; all 
coordinates are treated as ordered pairs, i.e. 'complex numbers'; 
coordinates may be expressed also in polar form.
Some of these features have been incorporated in the 2011 version of
pict2e; therefore this package avoids any modification to the original
pict2e commands.

Curve2e now accepts polar coordinates in addition to the usual cartesian
ones; several macros have been upgraded and a new macro for tracing cubic
Bezier splines with their control nodes specified in polar form is
available.  The same applies to quadratic Bezier splines. The \multiput
command has been completely modified in a backwards compatible way, as
to manipulate the increment components in a configurable way.

This version solves a conflict with package eso-pic.

This version of curve2e is almost fully compatible with pict2e dated
2014/01/12 version 0.2z and later.

If you specify

\usepackage[<pict2e options>]{curve2e}

the package pict2e is automatically invoked with the specified options.

The -almost compatible- frase is necessary to explain that this version
of curve2e uses some `functions' of the LaTeX3 language that were made
available to the LaTeX developers by mid October 2018. Should the user
have an older or a basic/incomplete installation of the TeX system,
such L3 functions might not be available. This is why this
package checks the presence of the developer interface; in case
such interface is not available it falls back to the previous version
renamed curve2e-v161.sty, which is part of this bundle, and that must
not be renamed in any way. The compatibility mentioned above implies
that the user macros remain the same, but their implementation requires
the L3 interface.

The package has the LPPL status of author maintained.

According to the LPPL licence, you are entitled to modify this package,
as long as you fulfil the few conditions set forth by the Licence.

Nevertheless this package is an extension to the standard LaTeX package
pict2e (2014). Therefore  any change must be controlled on the
parent package pict2e, so as to avoid redefining or interfering with
what is already contained in the official package.

If you prefer sending me your modifications, as long as I will maintain
this package, I will possibly include every (documented) suggestion or
modification into this package and, of course, I will acknowledge your
contribution.

Claudio Beccari

claudio dot beccari at gmail dot com
%    \end{macrocode}
%\iffalse
%</readme>
%\fi
%\iffalse
%<*v161>
%\fi
% \section{The fall-back package version \texttt{curve2e-v161}}
% this is the fall-back version of |curve2e-v161.sty| to which the main
% file |curve2e.sty| falls back in case the interface package |xfp| is
% not available.
%    \begin{macrocode}
\NeedsTeXFormat{LaTeX2e}[2016/01/01]
\ProvidesPackage{curve2e-v161}%
        [2019/02/07 v.1.61 Extension package for pict2e]

\RequirePackage{color}
\RequirePackageWithOptions{pict2e}[2014/01/01]
\RequirePackage{xparse}
\def\TRON{\tracingcommands\tw@ \tracingmacros\tw@}%
\def\TROF{\tracingcommands\z@ \tracingmacros\z@}%
\ifx\undefined\@tdA \newdimen\@tdA \fi
\ifx\undefined\@tdB \newdimen\@tdB \fi
\ifx\undefined\@tdC \newdimen\@tdC \fi
\ifx\undefined\@tdD \newdimen\@tdD \fi
\ifx\undefined\@tdE \newdimen\@tdE \fi
\ifx\undefined\@tdF \newdimen\@tdF \fi
\ifx\undefined\defaultlinewidth \newdimen\defaultlinewidth \fi
\gdef\linethickness#1{\@wholewidth#1\@halfwidth.5\@wholewidth\ignorespaces}%
\newcommand\defaultlinethickness[1]{\defaultlinewidth=#1\relax
\def\thicklines{\linethickness{\defaultlinewidth}}%
\def\thinlines{\linethickness{.5\defaultlinewidth}}%
\thinlines\ignorespaces}
\def\LIne(#1){{\GetCoord(#1)\@tX\@tY
      \moveto(0,0)
      \pIIe@lineto{\@tX\unitlength}{\@tY\unitlength}\strokepath}\ignorespaces}%
\def\segment(#1)(#2){\@killglue\polyline(#1)(#2)}%
\def\line(#1)#2{\begingroup
  \@linelen #2\unitlength
  \ifdim\@linelen<\z@\@badlinearg\else
    \expandafter\DirOfVect#1to\Dir@line
    \GetCoord(\Dir@line)\d@mX\d@mY
    \ifdim\d@mX\p@=\z@\else
      \DividE\ifdim\d@mX\p@<\z@-\fi\p@ by\d@mX\p@ to\sc@lelen
      \@linelen=\sc@lelen\@linelen
    \fi
    \moveto(0,0)
    \pIIe@lineto{\d@mX\@linelen}{\d@mY\@linelen}%
    \strokepath
  \fi
\endgroup\ignorespaces}%
\ifx\Dashline\undefined
\def\Dashline{\@ifstar{\Dashline@@}{\Dashline@}}
\def\Dashline@(#1)(#2)#3{%
\bgroup
   \countdef\NumA3254\countdef\NumB3252\relax
   \GetCoord(#1)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttA
   \GetCoord(#2)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttB
   \SubVect\V@ttA from\V@ttB to\V@ttC
   \ModOfVect\V@ttC to\DlineMod
   \DivideFN\DlineMod by#3 to\NumD
   \NumA\expandafter\Integer\NumD.??
   \ifodd\NumA\else\advance\NumA\@ne\fi
   \NumB=\NumA \divide\NumB\tw@
   \DividE\DlineMod\p@ by\NumA\p@  to\D@shMod
   \DividE\p@ by\NumA\p@ to \@tempa
   \MultVect\V@ttC by\@tempa,0 to\V@ttB
   \MultVect\V@ttB by 2,0 to\V@ttC
   \advance\NumB\@ne
   \edef\@mpt{\noexpand\egroup
   \noexpand\multiput(\V@ttA)(\V@ttC){\number\NumB}%
      {\noexpand\LIne(\V@ttB)}}%
   \@mpt\ignorespaces}%
\let\Dline\Dashline

\def\Dashline@@(#1)(#2)#3{\put(#1){\Dashline@(0,0)(#2){#3}}}
\fi
\ifx\Dotline\undefined
\def\Dotline{\@ifstar{\Dotline@@}{\Dotline@}}
\def\Dotline@(#1)(#2)#3{%
\bgroup
   \countdef\NumA 3254\relax \countdef\NumB 3255\relax
   \GetCoord(#1)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttA
   \GetCoord(#2)\@tA\@tB \MakeVectorFrom\@tA\@tB to\V@ttB
   \SubVect\V@ttA from\V@ttB to\V@ttC
   \ModOfVect\V@ttC to\DotlineMod
   \DivideFN\DotlineMod by#3 to\NumD
   \NumA=\expandafter\Integer\NumD.??
   \DivVect\V@ttC by\NumA,0 to\V@ttB
   \advance\NumA\@ne
   \edef\@mpt{\noexpand\egroup
   \noexpand\multiput(\V@ttA)(\V@ttB){\number\NumA}%
      {\noexpand\makebox(0,0){\noexpand\circle*{0.5}}}}%
   \@mpt\ignorespaces}%

\def\Dotline@@(#1)(#2)#3{\put(#1){\Dotline@(0,0)(#2){#3}}}
\fi
\AtBeginDocument{\@ifpackageloaded{eso-pic}{%
\renewcommand\LenToUnit[1]{\strip@pt\dimexpr#1*\p@/\unitlength}}{}}

\def\GetCoord(#1)#2#3{%
\expandafter\SplitNod@\expandafter(#1)#2#3\ignorespaces}
\def\isnot@polar#1:#2!!{\def\@tempOne{#2}\ifx\@tempOne\empty
\expandafter\@firstoftwo\else
\expandafter\@secondoftwo\fi
{\SplitNod@@}{\SplitPolar@@}}

\def\SplitNod@(#1)#2#3{\isnot@polar#1:!!(#1)#2#3}%
\def\SplitNod@@(#1,#2)#3#4{\edef#3{#1}\edef#4{#2}}%
\def\SplitPolar@@(#1:#2)#3#4{\DirFromAngle#1to\@DirA
\ScaleVect\@DirA by#2to\@DirA
\expandafter\SplitNod@@\expandafter(\@DirA)#3#4}

\let\originalput\put
\def\put(#1){\bgroup\GetCoord(#1)\@tX\@tY
\edef\x{\noexpand\egroup\noexpand\originalput(\@tX,\@tY)}\x}

\let\originalmultiput\multiput
\let\original@multiput\@multiput

\long\def\@multiput(#1)#2#3{\bgroup\GetCoord(#1)\@mptX\@mptY
\edef\x{\noexpand\egroup\noexpand\original@multiput(\@mptX,\@mptY)}%
\x{#2}{#3}\ignorespaces}

\gdef\multiput(#1)#2{\bgroup\GetCoord(#1)\@mptX\@mptY
\edef\x{\noexpand\egroup\noexpand\originalmultiput(\@mptX,\@mptY)}\x(}%)
  \def\vector(#1)#2{%
    \begingroup
      \GetCoord(#1)\d@mX\d@mY
      \@linelen#2\unitlength
      \ifdim\d@mX\p@=\z@\ifdim\d@mY\p@=\z@\@badlinearg\fi\fi
      \ifdim\@linelen<\z@ \@linelen=-\@linelen\fi
      \MakeVectorFrom\d@mX\d@mY to\@Vect
      \DirOfVect\@Vect to\Dir@Vect
        \YpartOfVect\Dir@Vect to\@ynum \@ydim=\@ynum\p@
        \XpartOfVect\Dir@Vect to\@xnum \@xdim=\@xnum\p@
        \ifdim\d@mX\p@=\z@
        \else\ifdim\d@mY\p@=\z@
          \else
            \DividE\ifdim\@xnum\p@<\z@-\fi\p@ by\@xnum\p@ to\sc@lelen
            \@linelen=\sc@lelen\@linelen
          \fi
        \fi
      \@tdB=\@linelen
\pIIe@concat\@xdim\@ydim{-\@ydim}\@xdim{\@xnum\@linelen}{\@ynum\@linelen}%
        \@linelen\z@
        \pIIe@vector
        \fillpath
      \@linelen=\@tdB
      \@tdA=\pIIe@FAW\@wholewidth
      \@tdA=\pIIe@FAL\@tdA
      \advance\@linelen-\@tdA
      \ifdim\@linelen>\z@
        \moveto(0,0)
        \pIIe@lineto{\@xnum\@linelen}{\@ynum\@linelen}%
        \strokepath\fi
    \endgroup}
\def\Vector(#1){{%
\GetCoord(#1)\@tX\@tY
\ifdim\@tX\p@=\z@\vector(\@tX,\@tY){\@tY}
\else
\vector(\@tX,\@tY){\@tX}\fi}}
\def\VECTOR(#1)(#2){\begingroup
\SubVect#1from#2to\@tempa
\expandafter\put\expandafter(#1){\expandafter\Vector\expandafter(\@tempa)}%
\endgroup\ignorespaces}
\let\lp@r( \let\rp@r)
\renewcommand*\polyline[1][\beveljoin]{\p@lylin@[#1]}

\def\p@lylin@[#1](#2){\@killglue#1\GetCoord(#2)\d@mX\d@mY
    \pIIe@moveto{\d@mX\unitlength}{\d@mY\unitlength}%
    \@ifnextchar\lp@r{\p@lyline}{%
    \PackageWarning{curve2e}%
    {Polylines require at least two vertices!\MessageBreak
     Control your polyline specification\MessageBreak}%
    \ignorespaces}}

\def\p@lyline(#1){\GetCoord(#1)\d@mX\d@mY
    \pIIe@lineto{\d@mX\unitlength}{\d@mY\unitlength}%
    \@ifnextchar\lp@r{\p@lyline}{\strokepath\ignorespaces}}
\providecommand\polygon{}
\RenewDocumentCommand\polygon{s O{\beveljoin} }{\@killglue\begingroup
\IfBooleanTF{#1}{\@tempswatrue}{\@tempswafalse}%
\@polygon[#2]}

\def\@polygon[#1](#2){\@killglue#1\GetCoord(#2)\d@mX\d@mY
    \pIIe@moveto{\d@mX\unitlength}{\d@mY\unitlength}%
    \@ifnextchar\lp@r{\@@polygon}{%
    \PackageWarning{curve2e}%
    {Polygons require at least two vertices!\MessageBreak
     Control your polygon specification\MessageBreak}%
    \ignorespaces}}

  \def\@@polygon(#1){\GetCoord(#1)\d@mX\d@mY
    \pIIe@lineto{\d@mX\unitlength}{\d@mY\unitlength}%
    \@ifnextchar\lp@r{\@@polygon}{\pIIe@closepath
      \if@tempswa\pIIe@fillGraph\else\pIIe@strokeGraph\fi
      \endgroup
      \ignorespaces}}
\def\GraphGrid(#1,#2){\bgroup\textcolor{red}{\linethickness{.1\p@}%
\RoundUp#1modulo10to\@GridWd \RoundUp#2modulo10to\@GridHt
\@tempcnta=\@GridWd \divide\@tempcnta10\relax \advance\@tempcnta\@ne
\multiput(0,0)(10,0){\@tempcnta}{\line(0,1){\@GridHt}}%
\@tempcnta=\@GridHt \divide\@tempcnta10\advance\@tempcnta\@ne
\multiput(0,0)(0,10){\@tempcnta}{\line(1,0){\@GridWd}}\thinlines}%
\egroup\ignorespaces}
\def\RoundUp#1modulo#2to#3{\expandafter\@tempcnta\Integer#1.??%
\count254\@tempcnta\divide\count254by#2\relax
\multiply\count254by#2\relax
\count252\@tempcnta\advance\count252-\count254
\ifnum\count252>0\advance\count252-#2\relax
\advance\@tempcnta-\count252\fi\edef#3{\number\@tempcnta}\ignorespaces}%
\def\Integer#1.#2??{#1}%
\ifdefined\dimexpr
    \unless\ifdefined\DividE
\def\DividE#1by#2to#3{\bgroup
\dimendef\Num2254\relax \dimendef\Den2252\relax
\dimendef\@DimA 2250
\Num=\p@ \Den=#2\relax
\ifdim\Den=\z@
  \edef\x{\noexpand\endgroup\noexpand\def\noexpand#3{\strip@pt\maxdimen}}%
\else
  \@DimA=#1\relax
  \edef\x{%
    \noexpand\egroup\noexpand\def\noexpand#3{%
       \strip@pt\dimexpr\@DimA*\Num/\Den\relax}}%
\fi
\x\ignorespaces}%
\fi
    \unless\ifdefined\DivideFN
         \def\DivideFN#1by#2to#3{\DividE#1\p@ by#2\p@ to{#3}}%
    \fi
    \unless\ifdefined\MultiplY
        \def\MultiplY#1by#2to#3{\bgroup
        \dimendef\@DimA 2254 \dimendef\@DimB2255
        \@DimA=#1\p@\relax \@DimB=#2\p@\relax
        \edef\x{%
           \noexpand\egroup\noexpand\def\noexpand#3{%
             \strip@pt\dimexpr\@DimA*\@DimB/\p@\relax}}%
        \x\ignorespaces}%
        \let\MultiplyFN\MultiplY
    \fi
\fi

\unless\ifdefined\Numero
  \def\Numero#1#2{\bgroup\dimen3254=#2\relax
    \edef\x{\noexpand\egroup\noexpand\edef\noexpand#1{%
      \strip@pt\dimen3254}}\x\ignorespaces}%
\fi
\def\g@tTanCotanFrom#1to#2and#3{%
\DividE 114.591559\p@ by#1to\X@ \@tdB=\X@\p@
\countdef\I=2546\def\Tan{0}\I=11\relax
\@whilenum\I>\z@\do{%
   \@tdC=\Tan\p@ \@tdD=\I\@tdB
   \advance\@tdD-\@tdC \DividE\p@ by\@tdD to\Tan
   \advance\I-2\relax}%
\def#2{\Tan}\DividE\p@ by\Tan\p@ to\Cot \def#3{\Cot}\ignorespaces}%
\def\SinOf#1to#2{\bgroup%
\@tdA=#1\p@%
\ifdim\@tdA>\z@%
  \@whiledim\@tdA>180\p@\do{\advance\@tdA -360\p@}%
\else%
  \@whiledim\@tdA<-180\p@\do{\advance\@tdA 360\p@}%
\fi \ifdim\@tdA=\z@
  \def\@tempA{0}%
\else
  \ifdim\@tdA>\z@
    \def\Segno{+}%
  \else
    \def\Segno{-}%
    \@tdA=-\@tdA
  \fi
  \ifdim\@tdA>90\p@
    \@tdA=-\@tdA \advance\@tdA 180\p@
  \fi
  \ifdim\@tdA=90\p@
    \def\@tempA{\Segno1}%
  \else
    \ifdim\@tdA=180\p@
      \def\@tempA{0}%
    \else
      \ifdim\@tdA<\p@
        \@tdA=\Segno0.0174533\@tdA
        \DividE\@tdA by\p@ to \@tempA%
      \else
        \g@tTanCotanFrom\@tdA to\T and\Tp
        \@tdA=\T\p@ \advance\@tdA \Tp\p@
        \DividE \Segno2\p@ by\@tdA to \@tempA%
      \fi
    \fi
  \fi
\fi
\edef\endSinOf{\noexpand\egroup
  \noexpand\def\noexpand#2{\@tempA}\noexpand\ignorespaces}%
\endSinOf}%
\def\CosOf#1to#2{\bgroup%
\@tdA=#1\p@%
\ifdim\@tdA>\z@%
  \@whiledim\@tdA>360\p@\do{\advance\@tdA -360\p@}%
\else%
  \@whiledim\@tdA<\z@\do{\advance\@tdA 360\p@}%
\fi
\ifdim\@tdA>180\p@
  \@tdA=-\@tdA \advance\@tdA 360\p@
\fi
\ifdim\@tdA<90\p@
  \def\Segno{+}%
\else
  \def\Segno{-}%
  \@tdA=-\@tdA \advance\@tdA 180\p@
\fi
\ifdim\@tdA=\z@
  \def\@tempA{\Segno1}%
\else
  \ifdim\@tdA<\p@
    \@tdA=0.0174533\@tdA \Numero\@tempA\@tdA
    \@tdA=\@tempA\@tdA \@tdA=-.5\@tdA
    \advance\@tdA \p@
    \DividE\@tdA by\p@ to\@tempA%
  \else
    \ifdim\@tdA=90\p@
      \def\@tempA{0}%
    \else
      \g@tTanCotanFrom\@tdA to\T and\Tp
      \@tdA=\Tp\p@ \advance\@tdA-\T\p@
      \@tdB=\Tp\p@ \advance\@tdB\T\p@
      \DividE\Segno\@tdA by\@tdB to\@tempA%
    \fi
  \fi
\fi
\edef\endCosOf{\noexpand\egroup
    \noexpand\def\noexpand#2{\@tempA}\noexpand\ignorespaces}%
\endCosOf}%
\def\TanOf#1to#2{\bgroup%
\@tdA=#1\p@%
\ifdim\@tdA>90\p@%
  \@whiledim\@tdA>90\p@\do{\advance\@tdA -180\p@}%
\else%
  \@whiledim\@tdA<-90\p@\do{\advance\@tdA 180\p@}%
\fi%
\ifdim\@tdA=\z@%
  \def\@tempA{0}%
\else
  \ifdim\@tdA>\z@
    \def\Segno{+}%
  \else
    \def\Segno{-}%
    \@tdA=-\@tdA
  \fi
  \ifdim\@tdA=90\p@
    \def\@tempA{\Segno16383.99999}%
  \else
    \ifdim\@tdA<\p@
        \@tdA=\Segno0.0174533\@tdA
        \DividE\@tdA by\p@ to\@tempA%
    \else
      \g@tTanCotanFrom\@tdA to\T and\Tp
      \@tdA\Tp\p@ \advance\@tdA -\T\p@
      \DividE\Segno2\p@ by\@tdA to\@tempA%
    \fi
  \fi
\fi
\edef\endTanOf{\noexpand\egroup
   \noexpand\def\noexpand#2{\@tempA}\noexpand\ignorespaces}%
\endTanOf}%
\def\ArcTanOf#1to#2{\bgroup
\countdef\Inverti 4444\Inverti=0
\def\Segno{}
\edef\@tF{#1}\@tdF=\@tF\p@ \@tdE=57.295778\p@
\@tdD=\ifdim\@tdF<\z@ -\@tdF\def\Segno{-}\else\@tdF\fi
\ifdim\@tdD>\p@
\Inverti=\@ne
\@tdD=\dimexpr\p@*\p@/\@tdD\relax
\fi
\unless\ifdim\@tdD>0.02\p@
    \def\@tX{\strip@pt\dimexpr57.295778\@tdD\relax}%
\else
    \edef\@tX{45}\relax
    \countdef\I 2523 \I=9\relax
    \@whilenum\I>0\do{\TanOf\@tX to\@tG
    \edef\@tG{\strip@pt\dimexpr\@tG\p@-\@tdD\relax}\relax
    \MultiplY\@tG by57.295778to\@tG
    \CosOf\@tX to\@tH
    \MultiplY\@tH by\@tH to\@tH
    \MultiplY\@tH by\@tG to \@tH
    \edef\@tX{\strip@pt\dimexpr\@tX\p@ - \@tH\p@\relax}\relax
    \advance\I\m@ne}%
\fi
\ifnum\Inverti=\@ne
\edef\@tX{\strip@pt\dimexpr90\p@-\@tX\p@\relax}
\fi
\edef\x{\egroup\noexpand\edef\noexpand#2{\Segno\@tX}}\x\ignorespaces}%
\def\MakeVectorFrom#1#2to#3{\edef#3{#1,#2}\ignorespaces}%
\def\CopyVect#1to#2{\edef#2{#1}\ignorespaces}%
\def\ModOfVect#1to#2{\GetCoord(#1)\t@X\t@Y
\@tempdima=\t@X\p@ \ifdim\@tempdima<\z@ \@tempdima=-\@tempdima\fi
\@tempdimb=\t@Y\p@ \ifdim\@tempdimb<\z@ \@tempdimb=-\@tempdimb\fi
\ifdim\@tempdima=\z@
    \ifdim\@tempdimb=\z@
        \def\@T{0}\@tempdimc=\z@
    \else
        \def\@T{0}\@tempdimc=\@tempdimb
    \fi
\else
    \ifdim\@tempdima>\@tempdimb
       \DividE\@tempdimb by\@tempdima to\@T
       \@tempdimc=\@tempdima
    \else
          \DividE\@tempdima by\@tempdimb to\@T
          \@tempdimc=\@tempdimb
    \fi
\fi
\unless\ifdim\@tempdimc=\z@
    \unless\ifdim\@T\p@=\z@
       \@tempdima=\@T\p@ \@tempdima=\@T\@tempdima
       \advance\@tempdima\p@%
       \@tempdimb=\p@%
       \@tempcnta=5\relax
       \@whilenum\@tempcnta>\z@\do{\DividE\@tempdima by\@tempdimb to\@T
       \advance\@tempdimb \@T\p@ \@tempdimb=.5\@tempdimb
       \advance\@tempcnta\m@ne}%
       \@tempdimc=\@T\@tempdimc
    \fi
\fi
\Numero#2\@tempdimc
\ignorespaces}%
\def\DirOfVect#1to#2{\GetCoord(#1)\t@X\t@Y
\ModOfVect#1to\@tempa
\unless\ifdim\@tempdimc=\z@
   \DividE\t@X\p@ by\@tempdimc to\t@X
   \DividE\t@Y\p@ by\@tempdimc to\t@Y
\fi
\MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%
\def\ModAndDirOfVect#1to#2and#3{%
\GetCoord(#1)\t@X\t@Y
\ModOfVect#1to#2%
\ifdim\@tempdimc=\z@\else
  \DividE\t@X\p@ by\@tempdimc to\t@X
  \DividE\t@Y\p@ by\@tempdimc to\t@Y
\fi
\MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%
\def\DistanceAndDirOfVect#1minus#2to#3and#4{%
\SubVect#2from#1to\@tempa
\ModAndDirOfVect\@tempa to#3and#4\ignorespaces}%
\def\XpartOfVect#1to#2{%
\GetCoord(#1)#2\@tempa\ignorespaces}%
\def\YpartOfVect#1to#2{%
\GetCoord(#1)\@tempa#2\ignorespaces}%
\def\DirFromAngle#1to#2{%
\CosOf#1to\t@X
\SinOf#1to\t@Y
\MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%
\def\ArgOfVect#1to#2{\bgroup\GetCoord(#1){\t@X}{\t@Y}%
\def\s@gno{}\def\addflatt@ngle{0}
\ifdim\t@X\p@=\z@
  \ifdim\t@Y\p@=\z@
    \def\ArcTan{0}%
  \else
    \def\ArcTan{90}%
    \ifdim\t@Y\p@<\z@\def\s@gno{-}\fi
  \fi
\else
  \ifdim\t@Y\p@=\z@
    \ifdim\t@X\p@<\z@
      \def\ArcTan{180}%
    \else
      \def\ArcTan{0}%
    \fi
  \else
    \ifdim\t@X\p@<\z@%
      \def\addflatt@ngle{180}%
      \edef\t@X{\strip@pt\dimexpr-\t@X\p@}%
      \edef\t@Y{\strip@pt\dimexpr-\t@Y\p@}%
      \ifdim\t@Y\p@<\z@
        \def\s@gno{-}%
        \edef\t@Y{-\t@Y}%
      \fi
    \fi
  \DivideFN\t@Y by\t@X to \t@A
  \ArcTanOf\t@A to\ArcTan
  \fi
\fi
\edef\ArcTan{\unless\ifx\s@gno\empty\s@gno\fi\ArcTan}%
\unless\ifnum\addflatt@ngle=0\relax
   \edef\ArcTan{%
   \strip@pt\dimexpr\ArcTan\p@\ifx\s@gno\empty-\else+\fi
   \addflatt@ngle\p@\relax}%
\fi
\edef\x{\noexpand\egroup\noexpand\edef\noexpand#2{\ArcTan}}%
\x\ignorespaces}
\def\ScaleVect#1by#2to#3{\GetCoord(#1)\t@X\t@Y
\@tempdima=\t@X\p@ \@tempdima=#2\@tempdima\Numero\t@X\@tempdima
\@tempdima=\t@Y\p@ \@tempdima=#2\@tempdima\Numero\t@Y\@tempdima
\MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%
\def\ConjVect#1to#2{\GetCoord(#1)\t@X\t@Y
\@tempdima=-\t@Y\p@\Numero\t@Y\@tempdima
\MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%
\def\AddVect#1and#2to#3{\GetCoord(#1)\tu@X\tu@Y
\GetCoord(#2)\td@X\td@Y
\@tempdima\tu@X\p@\advance\@tempdima\td@X\p@ \Numero\t@X\@tempdima
\@tempdima\tu@Y\p@\advance\@tempdima\td@Y\p@ \Numero\t@Y\@tempdima
\MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%
\def\SubVect#1from#2to#3{\GetCoord(#1)\tu@X\tu@Y
\GetCoord(#2)\td@X\td@Y
\@tempdima\td@X\p@\advance\@tempdima-\tu@X\p@ \Numero\t@X\@tempdima
\@tempdima\td@Y\p@\advance\@tempdima-\tu@Y\p@ \Numero\t@Y\@tempdima
\MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%
\def\MultVect#1by{\@ifstar{\@ConjMultVect#1by}{\@MultVect#1by}}%
\def\@MultVect#1by#2to#3{\GetCoord(#1)\tu@X\tu@Y
\GetCoord(#2)\td@X\td@Y
\@tempdima\tu@X\p@ \@tempdimb\tu@Y\p@
\@tempdimc=\td@X\@tempdima\advance\@tempdimc-\td@Y\@tempdimb
\Numero\t@X\@tempdimc
\@tempdimc=\td@Y\@tempdima\advance\@tempdimc\td@X\@tempdimb
\Numero\t@Y\@tempdimc
\MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%
\def\@ConjMultVect#1by#2to#3{\GetCoord(#1)\tu@X\tu@Y
\GetCoord(#2)\td@X\td@Y \@tempdima\tu@X\p@ \@tempdimb\tu@Y\p@
\@tempdimc=\td@X\@tempdima\advance\@tempdimc+\td@Y\@tempdimb
\Numero\t@X\@tempdimc
\@tempdimc=\td@X\@tempdimb\advance\@tempdimc-\td@Y\@tempdima
\Numero\t@Y\@tempdimc
\MakeVectorFrom\t@X\t@Y to#3\ignorespaces}
\def\DivVect#1by#2to#3{\ModAndDirOfVect#2to\@Mod and\@Dir
\DividE\p@ by\@Mod\p@ to\@Mod \ConjVect\@Dir to\@Dir
\ScaleVect#1by\@Mod to\@tempa
\MultVect\@tempa by\@Dir to#3\ignorespaces}%
\def\Arc(#1)(#2)#3{\begingroup
\@tdA=#3\p@
\unless\ifdim\@tdA=\z@
  \@Arc(#1)(#2)%
\fi
\endgroup\ignorespaces}%
\def\@Arc(#1)(#2){%
\ifdim\@tdA>\z@
  \let\Segno+%
\else
  \@tdA=-\@tdA \let\Segno-%
\fi
\Numero\@gradi\@tdA
\ifdim\@tdA>360\p@
 \PackageWarning{curve2e}{The arc aperture is \@gradi\space degrees
      and gets reduced\MessageBreak%
      to the range 0--360 taking the sign into consideration}%
 \@whiledim\@tdA>360\p@\do{\advance\@tdA-360\p@}%
\fi
\SubVect#2from#1to\@V \ModOfVect\@V to\@Raggio \CopyVect#2to\@pPun
\CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY
\@@Arc
\strokepath\ignorespaces}%
\def\@@Arc{%
\pIIe@moveto{\@pPunX\unitlength}{\@pPunY\unitlength}%
\ifdim\@tdA>180\p@
  \advance\@tdA-180\p@
  \Numero\@gradi\@tdA
  \SubVect\@pPun from\@Cent to\@V
  \AddVect\@V and\@Cent to\@sPun
  \MultVect\@V by0,-1.3333333to\@V \if\Segno-\ScaleVect\@V by-1to\@V\fi
  \AddVect\@pPun and\@V to\@pcPun
  \AddVect\@sPun and\@V to\@scPun
  \GetCoord(\@pcPun)\@pcPunX\@pcPunY
  \GetCoord(\@scPun)\@scPunX\@scPunY
  \GetCoord(\@sPun)\@sPunX\@sPunY
  \pIIe@curveto{\@pcPunX\unitlength}{\@pcPunY\unitlength}%
               {\@scPunX\unitlength}{\@scPunY\unitlength}%
               {\@sPunX\unitlength}{\@sPunY\unitlength}%
  \CopyVect\@sPun to\@pPun
\fi
\ifdim\@tdA>\z@
  \DirFromAngle\@gradi to\@Dir \if\Segno-\ConjVect\@Dir to\@Dir \fi
  \SubVect\@Cent from\@pPun to\@V
  \MultVect\@V by\@Dir to\@V
  \AddVect\@Cent and\@V to\@sPun
  \@tdA=.5\@tdA \Numero\@gradi\@tdA
  \DirFromAngle\@gradi to\@Phimezzi
  \GetCoord(\@Phimezzi)\@cosphimezzi\@sinphimezzi
  \@tdB=1.3333333\p@ \@tdB=\@Raggio\@tdB
  \@tdC=\p@ \advance\@tdC -\@cosphimezzi\p@ \Numero\@tempa\@tdC
  \@tdB=\@tempa\@tdB
  \DividE\@tdB by\@sinphimezzi\p@ to\@cZ
  \ScaleVect\@Phimezzi by\@cZ to\@Phimezzi
  \ConjVect\@Phimezzi to\@mPhimezzi
  \if\Segno-%
    \let\@tempa\@Phimezzi
    \let\@Phimezzi\@mPhimezzi
    \let\@mPhimezzi\@tempa
  \fi
  \SubVect\@sPun from\@pPun to\@V
  \DirOfVect\@V to\@V
  \MultVect\@Phimezzi by\@V to\@Phimezzi
  \AddVect\@sPun and\@Phimezzi to\@scPun
  \ScaleVect\@V by-1to\@V
  \MultVect\@mPhimezzi by\@V to\@mPhimezzi
  \AddVect\@pPun and\@mPhimezzi to\@pcPun
  \GetCoord(\@pcPun)\@pcPunX\@pcPunY
  \GetCoord(\@scPun)\@scPunX\@scPunY
  \GetCoord(\@sPun)\@sPunX\@sPunY
  \pIIe@curveto{\@pcPunX\unitlength}{\@pcPunY\unitlength}%
               {\@scPunX\unitlength}{\@scPunY\unitlength}%
               {\@sPunX\unitlength}{\@sPunY\unitlength}%
\fi}
\def\VectorArc(#1)(#2)#3{\begingroup
\@tdA=#3\p@ \ifdim\@tdA=\z@\else
  \@VArc(#1)(#2)%
\fi
\endgroup\ignorespaces}%
\def\VectorARC(#1)(#2)#3{\begingroup
\@tdA=#3\p@
\ifdim\@tdA=\z@\else
  \@VARC(#1)(#2)%
\fi
\endgroup\ignorespaces}%
\def\@VArc(#1)(#2){%
\ifdim\@tdA>\z@
  \let\Segno+%
\else
  \@tdA=-\@tdA \let\Segno-%
\fi \Numero\@gradi\@tdA
\ifdim\@tdA>360\p@
 \PackageWarning{curve2e}{The arc aperture is \@gradi\space degrees
      and gets reduced\MessageBreak%
      to the range 0--360 taking the sign into consideration}%
 \@whiledim\@tdA>360\p@\do{\advance\@tdA-360\p@}%
\fi
\SubVect#1from#2to\@V \ModOfVect\@V to\@Raggio \CopyVect#2to\@pPun
\@tdE=\pIIe@FAW\@wholewidth \@tdE=\pIIe@FAL\@tdE
\DividE\@tdE by \@Raggio\unitlength to\DeltaGradi
\@tdD=\DeltaGradi\p@
\@tdD=57.29578\@tdD \Numero\DeltaGradi\@tdD
\@tdD=\ifx\Segno--\fi\@gradi\p@ \Numero\@tempa\@tdD
\DirFromAngle\@tempa to\@Dir
\MultVect\@V by\@Dir to\@sPun
\edef\@tempA{\ifx\Segno-\m@ne\else\@ne\fi}%
\MultVect\@sPun by 0,\@tempA to\@vPun
\DirOfVect\@vPun to\@Dir
\AddVect\@sPun and #1 to \@sPun
\GetCoord(\@sPun)\@tdX\@tdY
\@tdD\ifx\Segno--\fi\DeltaGradi\p@
\@tdD=.5\@tdD \Numero\DeltaGradi\@tdD
\DirFromAngle\DeltaGradi to\@Dird
\MultVect\@Dir by*\@Dird to\@Dir
\GetCoord(\@Dir)\@xnum\@ynum
\put(\@tdX,\@tdY){\vector(\@xnum,\@ynum){0}}%
\@tdE =\ifx\Segno--\fi\DeltaGradi\p@
\advance\@tdA -\@tdE \Numero\@gradi\@tdA
\CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY
\@@Arc
\strokepath\ignorespaces}%
\def\@VARC(#1)(#2){%
\ifdim\@tdA>\z@
  \let\Segno+%
\else
  \@tdA=-\@tdA \let\Segno-%
\fi \Numero\@gradi\@tdA
\ifdim\@tdA>360\p@
 \PackageWarning{curve2e}{The arc aperture is \@gradi\space degrees
      and gets reduced\MessageBreak%
      to the range 0--360 taking the sign into consideration}%
 \@whiledim\@tdA>360\p@\do{\advance\@tdA-360\p@}%
\fi
\SubVect#1from#2to\@V \ModOfVect\@V to\@Raggio \CopyVect#2to\@pPun
\@tdE=\pIIe@FAW\@wholewidth \@tdE=0.8\@tdE
\DividE\@tdE by \@Raggio\unitlength to\DeltaGradi
\@tdD=\DeltaGradi\p@ \@tdD=57.29578\@tdD \Numero\DeltaGradi\@tdD
\@tdD=\if\Segno--\fi\@gradi\p@ \Numero\@tempa\@tdD
\DirFromAngle\@tempa to\@Dir
\MultVect\@V by\@Dir to\@sPun% corrects the end point
\edef\@tempA{\if\Segno--\fi1}%
\MultVect\@sPun by 0,\@tempA to\@vPun
\DirOfVect\@vPun to\@Dir
\AddVect\@sPun and #1 to \@sPun
\GetCoord(\@sPun)\@tdX\@tdY
\@tdD\if\Segno--\fi\DeltaGradi\p@
\@tdD=.5\@tdD \Numero\@tempB\@tdD
\DirFromAngle\@tempB to\@Dird
\MultVect\@Dir by*\@Dird to\@Dir
\GetCoord(\@Dir)\@xnum\@ynum
\put(\@tdX,\@tdY){\vector(\@xnum,\@ynum){0}}% end point arrowt ip
\@tdE =\DeltaGradi\p@
\advance\@tdA -2\@tdE \Numero\@gradi\@tdA
\CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY
\SubVect\@Cent from\@pPun to \@V
\edef\@tempa{\if\Segno-\else-\fi\@ne}%
\MultVect\@V by0,\@tempa to\@vPun
\@tdE\if\Segno--\fi\DeltaGradi\p@
\Numero\@tempB{0.5\@tdE}%
\DirFromAngle\@tempB to\@Dird
\MultVect\@vPun by\@Dird to\@vPun% corrects the starting point
\DirOfVect\@vPun to\@Dir\GetCoord(\@Dir)\@xnum\@ynum
\put(\@pPunX,\@pPunY){\vector(\@xnum,\@ynum){0}}% starting point arrow tip
\edef\@tempa{\if\Segno--\fi\DeltaGradi}%
\DirFromAngle\@tempa to \@Dir
\SubVect\@Cent from\@pPun to\@V
\MultVect\@V by\@Dir to\@V
\AddVect\@Cent and\@V to\@pPun
\GetCoord(\@pPun)\@pPunX\@pPunY
\@@Arc
\strokepath\ignorespaces}%
\def\CurveBetween#1and#2WithDirs#3and#4{%
\StartCurveAt#1WithDir{#3}\relax
\CurveTo#2WithDir{#4}\CurveFinish\ignorespaces}%
\def\StartCurveAt#1WithDir#2{%
\begingroup
\GetCoord(#1)\@tempa\@tempb
\CopyVect\@tempa,\@tempb to\@Pzero
\pIIe@moveto{\@tempa\unitlength}{\@tempb\unitlength}%
\GetCoord(#2)\@tempa\@tempb
\CopyVect\@tempa,\@tempb to\@Dzero
\DirOfVect\@Dzero to\@Dzero
\ignorespaces}
\def\ChangeDir<#1>{%
\GetCoord(#1)\@tempa\@tempb
\CopyVect\@tempa,\@tempb to\@Dzero
\DirOfVect\@Dzero to\@Dzero
\ignorespaces}
\def\CurveFinish{\strokepath\endgroup\ignorespaces}%
\def\FillCurve{\fillpath\endgroup\ignorespaces}
\def\CurveEnd{\fillstroke\endgroup\ignorespaces}
\def\CbezierTo#1WithDir#2AndDists#3And#4{%
\GetCoord(#1)\@tX\@tY \MakeVectorFrom\@tX\@tY to\@Puno
\GetCoord(#2)\@tX\@tY \MakeVectorFrom\@tX\@tY to \@Duno
\DirOfVect\@Duno to\@Duno
\ScaleVect\@Dzero by#3to\@Czero \AddVect\@Pzero and\@Czero to\@Czero
\ScaleVect\@Duno by-#4to \@Cuno \AddVect\@Puno and\@Cuno to \@Cuno
\GetCoord(\@Czero)\@XCzero\@YCzero
\GetCoord(\@Cuno)\@XCuno\@YCuno
\GetCoord(\@Puno)\@XPuno\@YPuno
\pIIe@curveto{\@XCzero\unitlength}{\@YCzero\unitlength}%
             {\@XCuno\unitlength}{\@YCuno\unitlength}%
             {\@XPuno\unitlength}{\@YPuno\unitlength}%
\CopyVect\@Puno to\@Pzero
\CopyVect\@Duno to\@Dzero
\ignorespaces}%
\def\CbezierBetween#1And#2WithDirs#3And#4UsingDists#5And#6{%
\StartCurveAt#1WithDir{#3}\relax
\CbezierTo#2WithDir#4AndDists#5And{#6}\CurveFinish}

\def\@isTension#1;#2!!{\def\@tempA{#1}%
\def\@tempB{#2}\unless\ifx\@tempB\empty\strip@semicolon#2\fi}
\def\strip@semicolon#1;{\def\@tempB{#1}}
\def\CurveTo#1WithDir#2{%
\def\@Tuno{1}\def\@Tzero{1}\relax
\edef\@Puno{#1}\@isTension#2;!!%
\expandafter\DirOfVect\@tempA to\@Duno
\bgroup\unless\ifx\@tempB\empty\GetCoord(\@tempB)\@Tzero\@Tuno\fi
\DistanceAndDirOfVect\@Puno minus\@Pzero to\@Chord and\@DirChord
\MultVect\@Dzero by*\@DirChord to \@Dpzero
\MultVect\@Duno by*\@DirChord to \@Dpuno
\GetCoord(\@Dpzero)\@DXpzero\@DYpzero
\GetCoord(\@Dpuno)\@DXpuno\@DYpuno
\DivideFN\@Chord by2 to\@semichord
\ifdim\@DXpzero\p@=\z@
   \@tdA=1.333333\p@
   \Numero\@KCzero{\@semichord\@tdA}%
\fi
\ifdim\@DYpzero\p@=\z@
  \@tdA=1.333333\p@
  \Numero\@Kpzero{\@semichord\@tdA}%
\fi
\unless\ifdim\@DXpzero\p@=\z@
  \unless\ifdim\@DYpzero\p@=\z@
    \edef\@CosDzero{\ifdim\@DXpzero\p@<\z@ -\fi\@DXpzero}%
    \edef\@SinDzero{\ifdim\@DYpzero\p@<\z@ -\fi\@DYpzero}%
    \@tdA=\@semichord\p@ \@tdA=1.333333\@tdA
    \DividE\@tdA by\@SinDzero\p@ to \@KCzero
    \@tdA=\dimexpr(\p@-\@CosDzero\p@)\relax
    \DividE\@KCzero\@tdA by\@SinDzero\p@ to \@KCzero
  \fi
\fi
\MultiplyFN\@KCzero by \@Tzero to \@KCzero
\ScaleVect\@Dzero by\@KCzero to\@CPzero
\AddVect\@Pzero and\@CPzero to\@CPzero
\ifdim\@DXpuno\p@=\z@
   \@tdA=-1.333333\p@
   \Numero\@KCuno{\@semichord\@tdA}%
\fi
\ifdim\@DYpuno\p@=\z@
  \@tdA=-1.333333\p@
  \Numero\@KCuno{\@semichord\@tdA}%
\fi
\unless\ifdim\@DXpuno\p@=\z@
    \unless\ifdim\@DYpuno\p@=\z@
    \edef\@CosDuno{\ifdim\@DXpuno\p@<\z@ -\fi\@DXpuno}%
    \edef\@SinDuno{\ifdim\@DYpuno\p@<\z@ -\fi\@DYpuno}%
    \@tdA=\@semichord\p@ \@tdA=-1.333333\@tdA
    \DividE\@tdA by \@SinDuno\p@ to \@KCuno
    \@tdA=\dimexpr(\p@-\@CosDuno\p@)\relax
    \DividE\@KCuno\@tdA by\@SinDuno\p@ to \@KCuno
  \fi
\fi
\MultiplyFN\@KCuno by \@Tuno to \@KCuno
\ScaleVect\@Duno by\@KCuno to\@CPuno
\AddVect\@Puno and\@CPuno to\@CPuno
\GetCoord(\@Puno)\@XPuno\@YPuno
\GetCoord(\@CPzero)\@XCPzero\@YCPzero
\GetCoord(\@CPuno)\@XCPuno\@YCPuno
\pIIe@curveto{\@XCPzero\unitlength}{\@YCPzero\unitlength}%
             {\@XCPuno\unitlength}{\@YCPuno\unitlength}%
             {\@XPuno\unitlength}{\@YPuno\unitlength}\egroup
\CopyVect\@Puno to\@Pzero
\CopyVect\@Duno to\@Dzero
\ignorespaces}%
\def\Curve{\@ifstar{\let\fillstroke\fillpath\Curve@}%
{\let\fillstroke\strokepath\Curve@}}
\def\Curve@(#1)<#2>{%
    \StartCurveAt#1WithDir{#2}%
    \@ifnextchar\lp@r\@Curve{%
    \PackageWarning{curve2e}{%
    Curve specifications must contain at least two nodes!\Messagebreak
    Please, control your Curve specifications\MessageBreak}}}
\def\@Curve(#1)<#2>{%
    \CurveTo#1WithDir{#2}%
    \@ifnextchar\lp@r\@Curve{%
    \@ifnextchar[\@ChangeDir\CurveEnd}}
\def\@ChangeDir[#1]{\ChangeDir<#1>\@Curve}
\def\Qurve{\@ifstar{\let\fillstroke\fillpath\Qurve@}%
{\let\fillstroke\strokepath\Qurve@}}

\def\Qurve@(#1)<#2>{%
    \StartCurveAt#1WithDir{#2}%
    \@ifnextchar\lp@r\@Qurve{%
    \PackageWarning{curve2e}{%
      Quadratic curve specifications must contain at least
      two nodes!\Messagebreak
      Please, control your Qurve specifications\MessageBreak}}}%
\def\@Qurve(#1)<#2>{\QurveTo#1WithDir{#2}%
    \@ifnextchar\lp@r\@Qurve{%
    \@ifnextchar[\@ChangeQDir\CurveEnd}}%
\def\@ChangeQDir[#1]{\ChangeDir<#1>\@Qurve}%
\def\QurveTo#1WithDir#2{%
\edef\@Puno{#1}\DirOfVect#2to\@Duno\bgroup
\DistanceAndDirOfVect\@Puno minus\@Pzero to\@Chord and\@DirChord
\MultVect\@Dzero by*\@Duno to \@Scalar
\YpartOfVect\@Scalar to \@YScalar
\ifdim\@YScalar\p@=\z@
\PackageWarning{curve2e}%
   {Quadratic Bezier arcs cannot have their starting\MessageBreak
   and ending directions parallel or antiparallel with\MessageBreak
   each other. This arc is skipped and replaced with
   a dotted line.\MessageBreak}%
   \Dotline(\@Pzero)(\@Puno){2}\relax
\else
\MultVect\@Dzero by*\@DirChord to \@Dpzero
\MultVect\@Duno by*\@DirChord to \@Dpuno
\GetCoord(\@Dpzero)\@DXpzero\@DYpzero
\GetCoord(\@Dpuno)\@DXpuno\@DYpuno
\MultiplyFN\@DXpzero by\@DXpuno to\@XXD
\MultiplyFN\@DYpzero by\@DYpuno to\@YYD
\unless\ifdim\@YYD\p@<\z@\ifdim\@XXD\p@<\z@
\PackageWarning{curve2e}%
   {Quadratic Bezier arcs cannot have inflection points\MessageBreak
   Therefore the tangents to the starting and ending arc\MessageBreak
   points cannot be directed to the same half plane.\MessageBreak
   This arc is skipped and replaced by a dotted line\MessageBreak}%
   \Dotline(\@Pzero)(\@Puno){2}\fi
\else
\edef\@CDzero{\@DXpzero}\relax
\edef\@SDzero{\@DYpzero}\relax
\edef\@CDuno{\@DXpuno}\relax
\edef\@SDuno{\@DYpuno}\relax
\MultiplyFN\@SDzero by\@CDuno to\@tempA
\MultiplyFN\@SDuno by\@CDzero to\@tempB
\edef\@tempA{\strip@pt\dimexpr\@tempA\p@-\@tempB\p@}\relax
\@tdA=\@SDuno\p@ \@tdB=\@Chord\p@ \@tdC=\@tempA\p@
\edef\@tempC{\strip@pt\dimexpr \@tdA*\@tdB/\@tdC}\relax
\MultiplyFN\@tempC by\@CDzero to \@XC
\MultiplyFN\@tempC by\@SDzero to \@YC
\ModOfVect\@XC,\@YC to\@KC
\ScaleVect\@Dzero by\@KC to\@CP
\AddVect\@Pzero and\@CP to\@CP
\GetCoord(\@Pzero)\@XPzero\@YPzero
\GetCoord(\@Puno)\@XPuno\@YPuno
\GetCoord(\@CP)\@XCP\@YCP
\@ovxx=\@XPzero\unitlength \@ovyy=\@YPzero\unitlength
\@ovdx=\@XCP\unitlength \@ovdy=\@YCP\unitlength
\@xdim=\@XPuno\unitlength \@ydim=\@YPuno\unitlength
      \pIIe@bezier@QtoC\@ovxx\@ovdx\@ovro
      \pIIe@bezier@QtoC\@ovyy\@ovdy\@ovri
      \pIIe@bezier@QtoC\@xdim\@ovdx\@clnwd
      \pIIe@bezier@QtoC\@ydim\@ovdy\@clnht
      \pIIe@moveto\@ovxx\@ovyy
      \pIIe@curveto\@ovro\@ovri\@clnwd\@clnht\@xdim\@ydim
\fi\fi\egroup
\CopyVect\@Puno to\@Pzero
\CopyVect\@Duno to\@Dzero
\ignorespaces}

%    \end{macrocode}
%\iffalse
%</v161>
%\fi
% \Finale
% \endinput

%^^A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%