summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/latex/amscls/thmtest.tex
blob: d097f1e00bc855ee069bb8563caf5c5027b2b6ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
%% filename: thmtest.tex
%% version: 2.01
%% date: 2004/08/02
%%
%% American Mathematical Society
%% Technical Support
%% Publications Technical Group
%% 201 Charles Street
%% Providence, RI 02904
%% USA
%% tel: (401) 455-4080
%%      (800) 321-4267 (USA and Canada only)
%% fax: (401) 331-3842
%% email: tech-support@ams.org
%% 
%% Copyright 1996, 2004, 2010 American Mathematical Society.
%% 
%% This work may be distributed and/or modified under the
%% conditions of the LaTeX Project Public License, either version 1.3c
%% of this license or (at your option) any later version.
%% The latest version of this license is in
%%   http://www.latex-project.org/lppl.txt
%% and version 1.3c or later is part of all distributions of LaTeX
%% version 2005/12/01 or later.
%% 
%% This work has the LPPL maintenance status `maintained'.
%% 
%% The Current Maintainer of this work is the American Mathematical
%% Society.
%%
%% ====================================================================

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%    Option test file, will be created during the first LaTeX run;
%    this facility is not available when using an AMS document class.
\begin{filecontents}{exercise.thm}
\def\th@exercise{%
  \normalfont % body font
  \thm@headpunct{:}%
}
\end{filecontents}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\documentclass{article}
\title{Newtheorem and theoremstyle test}
\author{Michael Downes\\updated by Barbara Beeton}

\usepackage[exercise]{amsthm}

\newtheorem{thm}{Theorem}[section]
\newtheorem{cor}[thm]{Corollary}
\newtheorem{prop}{Proposition}
\newtheorem{lem}[thm]{Lemma}

\theoremstyle{remark}
\newtheorem*{rmk}{Remark}

\theoremstyle{plain}
\newtheorem*{Ahlfors}{Ahlfors' Lemma}

\newtheoremstyle{note}% name
  {3pt}%      Space above
  {3pt}%      Space below
  {}%         Body font
  {}%         Indent amount (empty = no indent, \parindent = para indent)
  {\itshape}% Thm head font
  {:}%        Punctuation after thm head
  {.5em}%     Space after thm head: " " = normal interword space;
        %       \newline = linebreak
  {}%         Thm head spec (can be left empty, meaning `normal')

\theoremstyle{note}
\newtheorem{note}{Note}

\newtheoremstyle{citing}% name
  {3pt}%      Space above, empty = `usual value'
  {3pt}%      Space below
  {\itshape}% Body font
  {}%         Indent amount (empty = no indent, \parindent = para indent)
  {\bfseries}% Thm head font
  {.}%        Punctuation after thm head
  {.5em}%     Space after thm head: " " = normal interword space;
        %       \newline = linebreak
  {\thmnote{#3}}% Thm head spec

\theoremstyle{citing}
\newtheorem*{varthm}{}% all text supplied in the note

\newtheoremstyle{break}% name
  {9pt}%      Space above, empty = `usual value'
  {9pt}%      Space below
  {\itshape}% Body font
  {}%         Indent amount (empty = no indent, \parindent = para indent)
  {\bfseries}% Thm head font
  {.}%        Punctuation after thm head
  {\newline}% Space after thm head: \newline = linebreak
  {}%         Thm head spec

\theoremstyle{break}
\newtheorem{bthm}{B-Theorem}

\theoremstyle{exercise}
\newtheorem{exer}{Exercise}

\swapnumbers
\theoremstyle{plain}
\newtheorem{thmsw}{Theorem}[section]
\newtheorem{corsw}[thmsw]{Corollary}
\newtheorem{propsw}{Proposition}
\newtheorem{lemsw}[thmsw]{Lemma}

%    Because the amsmath pkg is not used, we need to define a couple of
%    commands in more primitive terms.
\let\lvert=|\let\rvert=|
\newcommand{\Ric}{\mathop{\mathrm{Ric}}\nolimits}

%    Dispel annoying problem of slightly overlong lines:
\addtolength{\textwidth}{8pt}

\begin{document}
\maketitle

\section{Test of standard theorem styles}

Ahlfors' Lemma gives the principal criterion for obtaining lower bounds
on the Kobayashi metric.

\begin{Ahlfors}
Let $ds^2 = h(z)\lvert dz\rvert^2$ be a Hermitian pseudo-metric on
$\mathbf{D}_r$, $h\in C^2(\mathbf{D}_r)$, with $\omega$ the associated
$(1,1)$-form. If $\Ric\omega\geq\omega$ on $\mathbf{D}_r$,
then $\omega\leq\omega_r$ on all of $\mathbf{D}_r$ (or equivalently,
$ds^2\leq ds_r^2$).
\end{Ahlfors}

\begin{lem}[negatively curved families]
Let $\{ds_1^2,\dots,ds_k^2\}$ be a negatively curved family of metrics
on $\mathbf{D}_r$, with associated forms $\omega^1$, \dots, $\omega^k$.
Then $\omega^i \leq\omega_r$ for all $i$.
\end{lem}

Then our main theorem:
\begin{thm}\label{pigspan}
Let $d_{\max}$ and $d_{\min}$ be the maximum, resp.\ minimum distance
between any two adjacent vertices of a quadrilateral $Q$. Let $\sigma$
be the diagonal pigspan of a pig $P$ with four legs.
Then $P$ is capable of standing on the corners of $Q$ iff
\begin{equation}\label{sdq}
\sigma\geq \sqrt{d_{\max}^2+d_{\min}^2}.
\end{equation}
\end{thm}

\begin{cor}
Admitting reflection and rotation, a three-legged pig $P$ is capable of
standing on the corners of a triangle $T$ iff (\ref{sdq}) holds.
\end{cor}

\begin{rmk}
As two-legged pigs generally fall over, the case of a polygon of order
$2$ is uninteresting.
\end{rmk}

\section{Custom theorem styles}

\begin{exer}
Generalize Theorem~\ref{pigspan} to three and four dimensions.
\end{exer}

\begin{note}
This is a test of the custom theorem style `note'. It is supposed to have
variant fonts and other differences.
\end{note}

\begin{bthm}
Test of the `linebreak' style of theorem heading.
\end{bthm}

This is a test of a citing theorem to cite a theorem from some other source.

\begin{varthm}[Theorem 3.6 in \cite{thatone}]
No hyperlinking available here yet \dots\ but that's not a
bad idea for the future.
\end{varthm}

\section{The proof environment}

\begin{proof}
Here is a test of the proof environment.
\end{proof}

\begin{proof}[Proof of Theorem \ref{pigspan}]
And another test.
\end{proof}

\begin{proof}[Proof \textup(necessity\textup)]
And another.
\end{proof}

\begin{proof}[Proof \textup(sufficiency\textup)]
And another, ending with a display:
\[
1+1=2\,. \qedhere
\]
\end{proof}

\section{Test of number-swapping}

This is a repeat of the first section but with numbers in theorem heads
swapped to the left.

Ahlfors' Lemma gives the principal criterion for obtaining lower bounds
on the Kobayashi metric.
\begin{Ahlfors}
Let $ds^2 = h(z)\lvert dz\rvert^2$ be a Hermitian pseudo-metric on
$\mathbf{D}_r$, $h\in C^2(\mathbf{D}_r)$, with $\omega$ the associated
$(1,1)$-form. If $\Ric\omega\geq\omega$ on $\mathbf{D}_r$,
then $\omega\leq\omega_r$ on all of $\mathbf{D}_r$ (or equivalently,
$ds^2\leq ds_r^2$).
\end{Ahlfors}

\begin{lemsw}[negatively curved families]
Let $\{ds_1^2,\dots,ds_k^2\}$ be a negatively curved family of metrics
on $\mathbf{D}_r$, with associated forms $\omega^1$, \dots, $\omega^k$.
Then $\omega^i \leq\omega_r$ for all $i$.
\end{lemsw}

Then our main theorem:
\begin{thmsw}
Let $d_{\max}$ and $d_{\min}$ be the maximum, resp.\ minimum distance
between any two adjacent vertices of a quadrilateral $Q$. Let $\sigma$
be the diagonal pigspan of a pig $P$ with four legs.
Then $P$ is capable of standing on the corners of $Q$ iff
\begin{equation}\label{sdqsw}
\sigma\geq \sqrt{d_{\max}^2+d_{\min}^2}.
\end{equation}
\end{thmsw}

\begin{corsw}
Admitting reflection and rotation, a three-legged pig $P$ is capable of
standing on the corners of a triangle $T$ iff (\ref{sdqsw}) holds.
\end{corsw}

\begin{thebibliography}{99}
\bibitem{thatone} Dummy entry.
\end{thebibliography}

\end{document}