summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/generic/mfpic/grafbase.dtx
blob: 0eadd2885a9faa1f34f26c7c5f078cbdf19fa051 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
% \iffalse
% Copyright 2002--2003, Daniel H. Luecking
%
% Mfpic consists of the 3 files mfpic.dtx, grafbase.dtx and mfpic.ins
% and the 5 files they generate: mfpic.tex, mfpic.sty, grafbase.mf,
% grafbase.mp, and dvipsnam.mp.
%
% Mfpic may be distributed and/or modified under the conditions of the
% LaTeX Project Public License, either version 1.2 of this license or (at
% your option) any later version. The latest version of this license is in
%
%    http://www.latex-project.org/lppl.txt
%
% and version 1.2 or later is part of all distributions of LaTeX version
% 1999/12/01 or later.
%
% Documentation, examples, and ancillary files are separate and not
% covered by this license. See readme.1st for a complete list. See
% individual files for any copyright and license restrictions.
%
% With respect to the proposed draft LPPL-1.3: mfpic has maintenance
% status "maintained". The Current Maintainer is Daniel H. Luecking. There
% are several Base Interpreters: TeX, LaTeX, MetaPost and Metafont.
%
%<*driver>
\documentclass[draft]{ltxdoc}
\usepackage{docmfp}
\def\fileversion{0.7a beta}
\def\filedate{2004/04/16}

\addtolength{\textwidth}{.5878pt}

\def\mytt{\upshape\mdseries\ttfamily}
\renewcommand\marg[1]{{\mytt \{#1\}}}
\renewcommand\oarg[1]{{\mytt  [#1]}}
\renewcommand\parg[1]{{\mytt  (#1)}}
\renewcommand{\meta}[1]{{$\langle$\rmfamily\itshape#1$\rangle$}}
\DeclareRobustCommand\cs[1]{{\mytt\char`\\#1}}
\def\prog#1{{\mdseries\scshape #1}}
\def\grafbase{\prog{grafbase}}
\def\Grafbase{\prog{Grafbase}}
\def\mfpic{\prog{mfpic}}
\def\Mfpic{\prog{Mfpic}}
\def\MF{\prog{metafont}}
\def\MP{\prog{metapost}}
\def\CMF{\prog{Metafont}}
\def\CMP{\prog{Metapost}}
\def\opt#1{{\sffamily\upshape#1}}
\def\env#1{{\mytt#1}}
\let\file\env
\let\mfc\env
\let\gbc\env
\renewcommand\{{\char`\{}
\renewcommand\}{\char`\}}
\renewcommand\|{${}\mathrel{|}{}$}

\makeatletter
\newcommand\bsl{{\mytt\@backslashchar}}
% Stupid lists!
\def\@listi{\leftmargin\leftmargini
  \parsep \z@ \@plus\p@ \@minus\z@
  \topsep 4\p@ \@plus\p@ \@minus2\p@
  \itemsep\parsep}
\let\@listI\@listi \@listi
\renewcommand\labelitemi{\normalfont\bfseries \textendash}
\renewcommand\labelitemii{\textasteriskcentered}
\renewcommand\labelitemiii{\textperiodcentered}
\leftmargini\parindent
% Stupid index!
\def\IndexParms{%
  \parindent \z@ \columnsep 15pt
  \parskip 0pt plus 1pt
  \rightskip 5pt plus2em \mathsurround \z@
  \parfillskip=-5pt \small
  % less hanging:
  \def\@idxitem{\par\hangindent 20pt}%
  \def\subitem{\@idxitem\hspace*{15pt}}%
  \def\subsubitem{\@idxitem\hspace*{25pt}}%
  \def\indexspace{\par\vspace{10pt plus 2pt minus 3pt}}}
\renewcommand\routinestring{}
\renewcommand\variablestring{\space(var.)}
% Why does every command have to be indexed twice?
\renewcommand\SpecialMfpIndex[3]{\@bsphack
  \index{%
    \string#1\actualchar
    \string\verb\quotechar*\verbatimchar\string#1\verbatimchar
    #2 \encapchar usage}%
  \@esphack}
\makeatother

\def\pdfTeX{\textrm{pdf\kern.04em\TeX}}
\def\pdfLaTeX{\textrm{pdf\kern.06em\LaTeX}}
\def\ConTeXt{\textrm{Con\kern-.16em\TeX\kern-0.06em t}}
\def\PiCTeX{\textrm{P\kern-.13em\lower.3ex\hbox{I}C\TeX}}

\title{The \grafbase{} macros\thanks{This file has version number
        \fileversion, last revised \filedate. The code described here
        was developed by several people, notably Thomas Leathrum,
        Geoffrey Tobin and Dan Luecking. Dan wrote this documentation.}}
\author{Dan Luecking}
\date{\filedate}
\DisableCrossrefs
\CodelineIndex
\AlsoImplementation

\begin{document}
  \DeleteShortVerb{\|}
  \DocInput{grafbase.dtx}
\end{document}
%</driver>
%\fi
%
% \CheckSum{1}
% \CharacterTable
%  {Upper-case    \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z
%   Lower-case    \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z
%   Digits        \0\1\2\3\4\5\6\7\8\9
%   Exclamation   \!     Double quote  \"     Hash (number) \#
%   Dollar        \$     Percent       \%     Ampersand     \&
%   Acute accent  \'     Left paren    \(     Right paren   \)
%   Asterisk      \*     Plus          \+     Comma         \,
%   Minus         \-     Point         \.     Solidus       \/
%   Colon         \:     Semicolon     \;     Less than     \<
%   Equals        \=     Greater than  \>     Question mark \?
%   Commercial at \@     Left bracket  \[     Backslash     \\
%   Right bracket \]     Circumflex    \^     Underscore    \_
%   Grave accent  \`     Left brace    \{     Vertical bar  \|
%   Right brace   \}     Tilde         \~}
%
% \catcode`\_=12
% \maketitle
%
% \begin{abstract}
% Macros are defined for use with \mfpic{}. The latter is a set of \TeX{}
% macros which allows a \file{.tex} file to write a \file{.mf} or
% \file{.mp} file that, with the help of these macros and \MF{} (or \MP),
% can be used to create pictures in the document, especially mathematical
% pictures. There are two versions of \grafbase, one for \MF{} and one for
% \MP{}. As they are alike more than unlike, we document both here.
%
% This file documents the \grafbase{} source code. The user manual for
% \mfpic{} is \file{mfpicdoc.tex}.
% \end{abstract}
%
% \StopEventually{\PrintIndex}
% \tableofcontents
%
%
% \section{Introduction}\label{intro}
%
% \subsection{Identification and checks}\label{checks}
%
% We start with identifying information. Then we detect if grafbase was
% loaded already, but we don't do anything about it except write a
% message.
%
% The \gbc{grafbaseversion} is required to match the definition of
% \cs{mfpicversion} in \file{mfpic.tex}. The output file written by the
% \mfpic{} macros includes a test that these are the same, but that would
% fail to catch a new \grafbase{} with an old \mfpic. So we also put a test
% here, and it alone would fail to catch the use of older versions of
% \grafbase{} with current versions of \mfpic. Newer versions of \mfpic{}
% signal their version before inputting \file{grafbase}. Unfortunately
% (for error checking), \grafbase{} can also be used without \mfpic, so if
% \gbc{mfpicversion} is unknown, we merely write a message.
%
% It might be possible (at some point) to optimize things for \mfpic{} use
% whenever \gbc{mfpicversion} is defined, but so far we don't do anything
% except test the version and set this boolean.
%
% \DescribeRoutine{GBmsg}
% \DescribeRoutine{GBerrmsg}
% These are used fairly consistently and identify the source of the
% message delivered as being \gbc{"Grafbase"}. The \gbc{GBerrmsg} takes
% care of both the error message and the \mfc{errhelp} string.
%    \begin{macrocode}
%<*MF|MP>
string fileversion, filedate;
fileversion := "0.7a beta"; filedate := "2004/04/16";
def GBmsg expr s = message "Grafbase: " & s; enddef;
def GBerrmsg (expr s) expr t =
  errhelp t;
  errmessage "Grafbase: "& s;
  errhelp "";
enddef;
if (known grafbaseversion) or (known grafbase) :
  GBmsg "You have loaded grafbase more than once! " &
    "Please make sure that it is loaded only once.";
  endinput;
fi

boolean grafbase; grafbase := true;
boolean MFPIC; MFPIC := false;

def checkversions (expr g)=
  numeric grafbaseversion; grafbaseversion := g;
  if unknown mfpicversion :  % no mfpic, or  < 0.63
    GBmsg "Recent mfpic not detected.";
  elseif g = mfpicversion :
    MFPIC := true;
  else:
    GBerrmsg ("version mismatch")
      "The installation may be broken: mfpic and grafbase " &
      "versions do not match.";
  fi
enddef;

checkversions (70);

%    \end{macrocode}
% We try to make sure that the macros of \file{plain.mf} or
% \file{plain.mp} are available.
%    \begin{macrocode}
if unknown base_name :         input plain;
elseif not string base_name :  input plain;
elseif base_name <> "plain" :  input plain;
fi

%    \end{macrocode}
%
% We try to determine which of \MF{} or \MP{} is using these macros.
% Perhaps one day we'll merge both versions of \grafbase{} in one file and
% use the following boolean. For now, we only use it to catch cases where
% the \grafbase{} file is being used by the wrong compiler.
%
% Of course, \MP{} natively knows about colors but \MF{} doesn't, so we
% use that to set a boolean \gbc{METAPOST}. We don't simply check if
% \mfc{known blue} is \mfc{true} because `\mfc{blue}' is certainly a legal
% variable name in \MF. Instead we check \mfc{known color X} for
% some unlikely \gbc{X}. In \MP, \gbc{color X} is either true or
% false (\gbc{X} is a color or it isn't) and therefore always known, so
% \gbc{known color X} is always true.
%
% In \MF{} \mfc{color X} is an identifier (presumably unknown) with the
% base name \mfc{color} and suffix \mfc{X}.
%    \begin{macrocode}
boolean METAPOST;

if known color Maurits Cornelis Escher :  METAPOST := true;
else:  METAPOST := false;
fi

%<*MF>
if METAPOST :
  GBerrmsg ("wrong compiler")
    "You may have input to Metapost a file designed for Metafont. " &
    "Instead of the file grafbase.mf, Metapost should be using " &
    "grafbase.mp. Make sure Metapost can find it.";
fi
%</MF>
%<*MP>
if not METAPOST :
  GBerrmsg ("wrong compiler")
    "You may have input to Metafont a file designed for Metapost. " &
    "Instead of the file grafbase.mp, Metafont should be using " &
    "grafbase.mf.  Make sure the extension was not changed.";
fi
%</MP>

%    \end{macrocode}
%
% \DescribeRoutine{GBdebug}
% \DescribeRoutine{GBenddebug}
% The \gbc{debug} flag is for developers, who should set it before
% inputing \file{grafbase}. These two routines start and end debug
% messages.
%
% \DescribeRoutine{mftitle}
% The \gbc{mftitle} macro is  useful when debugging.
% It will put its argument, which should be a string, as a TFM comment,
% and also print it to the terminal and log file.
%    \begin{macrocode}
if (unknown debug) or (not boolean debug) :
  boolean debug; debug := false;
fi

def GBdebug =
  begingroup
    save >>; def >> =  message  enddef;
    >> "Grafbase DEBUG: ";
enddef;
def GBenddebug =
    >> "End DEBUG";
  endgroup
enddef;

vardef mftitle expr t =
  t; message t;
enddef;

%    \end{macrocode}
%
% \subsection{Setting up the font}\label{font}
%
% Font-related housekeeping is for \MF{} only. \MF{} only produces
% fonts, so we have to define the variables it thinks are needed for
% fonts.
%
% We intercept the \mfc{mode} variable before \mfc{mode_setup} can set
% \mfc{proof} mode. We used to set \mfc{mode := cx} if it was unknown,
% then for a while we just issued an error message; in this version we
% try \mfc{ljfour}.
%
% The font identifier and coding scheme are just for information and end
% up as comments in the \file{.tfm} file (in all capitals). The design
% size just needs to be rather large for graphics, and \mfc{128pt\#} is
% anyway the default if we didn't set it ourselves.
%    \begin{macrocode}
%<*MF>
if unknown mode :
  GBerrmsg ("unknown Metafont mode")
    "Please use \mode:=localfont; or a mode known on your " &
    "system. If you continue, ljfour mode will be tried.";
  mode := lfjour;
fi

mode_setup;
if debug :
  GBdebug;
    >> "pixels_per_inch = " & decimal pixels_per_inch;
  GBenddebug;
fi
font_identifier := "MFpic graphics";
font_coding_scheme := "Arbitrary";
interim designsize := 128pt#;

%</MF>
%    \end{macrocode}
%
% \Mfpic-generated files make reference to \mfc{aspect_ratio} and
% \mfc{pt\#}, while \MP{} has no need for them. Rather than make
% \mfpic{} write different things, and to make the files intended for
% \MF{} also work with \MP, we define them in the obvious way. We also
% add a definition of \mfc{hppp} and \gbc{t_} to simplify maintenance of
% two versions of the \file{grafbase} files. Then we define
% \gbc{currenttransform} for \MP{} sake.
%    \begin{macrocode}
%<MP>pt# := 1pt;
%<MP>def t_ = transformed currenttransform enddef;
if unknown aspect_ratio: aspect_ratio := 1; fi
if unknown hppp : hppp := 1 fi;
if unknown currenttransform :
  transform currenttransform;
  currenttransform := identity yscaled aspect_ratio;
fi

%    \end{macrocode}
%
% Don't complain when variables get too large. For \MF{} this has to be
% after \mfc{mode_setup}, which sets \mfc{warningcheck := 1}. Also don't
% complain if a clockwise path is filled (\MF).
%    \begin{macrocode}
%<MF>interim turningcheck := 0;
interim warningcheck := 0;
%    \end{macrocode}
%
% \subsection{Initializations}\label{init}
%
% Picture size variables would normally be set by a user for each
% picture, or by \mfpic, but we give them default values anyway.
%    \begin{macrocode}
numeric unitlen, xscale, yscale, xneg, xpos, yneg, ypos;

%<MF>unitlen := 1 bp#;
%<MP>unitlen := 1 bp;
xscale := 7.2;  % (xscale * unitlen) = 1/10 inch
yscale := 7.2;  % (yscale * unitlen) = 1/10 inch
xneg := 0; xpos := 10;
yneg := 0; ypos := 10;

%    \end{macrocode}
%
% We support both degrees and radians for angles.  In \MF, one degree is
% the unit of angle. One radian is $180/\pi$ degrees. A user can say
% \gbc{90} or \gbc{90deg} or \gbc{pi/2*radian} for the same effect.
%    \begin{macrocode}
newinternal radian, pi, deg;
deg := 1; pi := 3.14159;
radian := 180/pi;

%    \end{macrocode}
%
% \DescribeRoutine{resizedrawpen}
% Since we need to do this frequently, we define a macro that changes the
% pen width for subsequent drawing. This enables the file written by
% \mfpic{} to be less cluttered. At least that was the original reason.
% Now it gives us the opportunity to localize changes to \mfc{currentpen}
% and \gbc{drawpen}. (We already had this for different
% \gbc{beginmfpic}, since that reinitializes drawpen, but now it is local
% to other groups as well.)

% We could do this for the hatching pen, but it doesn't seem to change as
% often. The \mfc{pickup} command performs \mfc{yscaled aspect_ratio}, but
% so does the \gbc{shpath}, the only other place pens are required. In
% fact, we wouldn't need to \mfc{pickup} the pen at all, except power
% users may want to rely on \gbc{drawpen} always being the current pen. We
% make its diameter \mfc{.5pt} for backward compatibility.  But many
% journal publisher (e.g., AMS) recommend no smaller than \mfc{.5bp} for
% author-supplied drawings.
%
% The default \gbc{hatchwd} used to be larger, but it seemed ugly to me.
% (Backward compatibility? What's that?).
%    \begin{macrocode}
newinternal penwd; penwd := 0.5pt;
pen drawpen;

def resizedrawpen (expr s) =
  interim penwd := s;
  setvariable (pen) (drawpen) (pencircle scaled penwd);
  save currentpen; pen currentpen; pickup drawpen;
enddef;

numeric hatchwd; hatchwd := 0.5bp;
pen hatchpen; hatchpen := pencircle scaled hatchwd;

%    \end{macrocode}
%
% We have two booleans related to clipping. One, \gbc{clipall} is meant to
% be turned on just once (per picture), and it causes the \gbc{endmfpic}
% code to clip the current picture to the boundaries defined by the
% picture size variables. The other, \gbc{ClipOn}, is meant to be turned
% on and off. While on, most drawing macros (all?) will clip their result
% to the current \emph{clipping path array}. The clipping path array is an
% array of paths: \gbc{ClipPath[]} together with a numeric \gbc{ClipPath}.
% The numeric variable contains the number of clipping paths; the paths
% are \gbc{ClipPath[1]} through \gbc{ClipPath[ClipPath]}. A macro later on
% is defined to loop through the array, clipping the current picture to
% the union of their interiors.
%
% The \gbc{truebbox} boolean sets the bounding box of the picture to its
% natural size in \MP. The default behavior of \MP{} is to output a
% bounding box that is the natural size of the graphic. The \grafbase{}
% default is to override this default, setting \gbc{truebbox} to
% \mfc{false}. \CMF's default behavior is to force the user to specify the
% bounding box, and provides no natural way to obtain any information
% about the actual extent of the ink. So, for now, this boolean is only
% for \MP.
%
% \DescribeRoutine{DoClip}
% This is for the frequent conditional code to implement \gbc{ClipOn}.
% The command \gbc{clipsto} is defined later.
%
% \DescribeRoutine{noclip}
% For debugging we sometimes want to make sure something is drawn
% without clipping being applied. For this we have \gbc{noclip}.
%    \begin{macrocode}
boolean clipall; clipall := false;
boolean ClipOn; ClipOn := false;
path ClipPath[]; numeric ClipPath; ClipPath = 0;
boolean truebbox; truebbox := false;

def DoClip (suffix v) =
  if ClipOn and (ClipPath > 0) : clipsto (v, ClipPath); fi
enddef;

def noclip (text t) =
  hide( save ClipOn; boolean ClipOn; ClipOn := false; t)
enddef;

%    \end{macrocode}
%
% The boolean \gbc{showbbox} is for debugging the \gbc{*bbox} macros.
%    \begin{macrocode}
boolean showbbox; showbbox := false;

%    \end{macrocode}
%
% \subsubsection{Colors}\label{colors}
%
% Of course colors are only recognized by \MP. The colors \mfc{black},
% \mfc{white}, \mfc{red}, \mfc{green} and \mfc{blue} are part of
% \file{plain.mp}. We define other standard colors to get all eight
% colors where the coordinates are 0 or 1.
%
% \DescribeRoutine{color}
% We begin trying to merge the format of mfpic output files by defining
% \MF{} replacements for some of the \MP{} color variables and macros. Our
% point of view will be: make each color variable a numeric in \MF. Each
% will lie between $0$ and $1$ representing shades of gray. For
% \emph{drawing} commands we will only between nonwhite (black, ${}<1$) or
% white (${}=1$). For filling commands we will allow levels in between,
% and fill with an approximation using a version of \gbc{shade}
%    \begin{macrocode}
%<*MF>
let color = numeric; color black, white;
black := 0; white := 1;
def _wc_ = killtext enddef;
%</MF>
%<MP>def _wc_ = withcolor enddef;

%    \end{macrocode}
%
% We also define some color variables whose names reflect their use.
% Thus, \gbc{fillcolor} is used for filling, etc. The color
% \gbc{currentcolor} isn't used anywhere yet. The color
% \mfc{background} is used in \MP{} for unfilling a region.
%    \begin{macrocode}
color currentcolor, fillcolor, drawcolor, hatchcolor,
  headcolor, pointcolor, tlabelcolor, background;
currentcolor := fillcolor := drawcolor := hatchcolor :=
  headcolor := pointcolor := tlabelcolor := black;
background := white;

%    \end{macrocode}
%
% \DescribeRoutine{snapto}
% This truncates numerics to the $[0,1]$ range, but also returns a value
% ($0$) for unknown and non-numeric input.
%    \begin{macrocode}
vardef snapto expr t =
  if unknown t           :  0
  elseif not (numeric t) :  0
  elseif t < 0           :  0
  elseif t > 1           :  1
  else                   :  t
  fi
enddef;

%    \end{macrocode}
%
% The \mfpic{} handling of \LaTeX-like color models relies on being able
% to convert those models to \MP's \opt{rgb} system. Because of the use of
% \gbc{snapto}, the following color functions will return \mfc{black} for
% unknown parameters. In the \MF{} case, they are all converted to
% numerics through \gbc{makeclr}.
%
% \DescribeRoutine{gray}
% The simplest is \gbc{gray} which converts a numeric to a multiple of
% white. In \MF, \gbc{white} is a numeric and equal to $1$ so this is
% almost redundant except for handling unknowns and out of range values.
%
% \DescribeRoutine{makeclr}
% This is defined to convert a triple of numerics to a color, mainly for
% \MF. The formula has three desirable properties: it weights the
% different color coordinates approximately like some color luminescence
% models do, it assigns different graylevels to the eight colors that have
% components 0 or 1 only, and it is biased toward lighter grays. Of course
% it takes \mfc{black} to 0 and \mfc{white} to 1. In \MP, it simply turns
% three numeric parameters to a color triple in the obvious way.
%
% \DescribeRoutine{rgb}
% To simplify \mfpic, we have the nearly redundant \gbc{rgb} which
% converts a triple of numeric arguments to \opt{rgb}. Rather than make
% it formally the identity function under \MP, we define it to handle
% unknowns, and truncate out of range values.
%    \begin{macrocode}
vardef gray (expr g) = (snapto g)*white enddef;

vardef makeclr (expr r, g, b) =
%<MF>  gray (sqrt((2r*r + 4g*g + b*b)/7))
%<MP>  (r, g, b)
enddef;

vardef rgb (expr r, g, b) =
  makeclr (snapto r, snapto g, snapto b)
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{cmyk}
% This algorithm for converting \opt{cmyk} values to \opt{rgb} values is
% the one used in the PostScript header file \file{color.pro} (distributed
% with \prog{dvips}).
%    \begin{macrocode}
vardef cmyk (expr c, m, y, k) =
  rgb (1-c-k, 1-m-k, 1-y-k)
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{RGB}
% This merely rescales numbers in the range 0--255 to the range 0--1.
%
% \DescribeRoutine{named}
% \DescribeRoutine{forceclr}
% These, too, are nearly redundant, but they convert numerics to gray, and
% convert other non-color variables and unknown color variables to
% black. The difference between \gbc{named} and \gbc{forceclr} is that the
% former requires a suffix parameter, while the latter takes an
% expression. It may be that the latter will never be needed, but for a
% time it seemed there were cases where we ought to use it to force an
% expression to be a color.
%    \begin{macrocode}
vardef RGB (expr R, G, B) =
  rgb (R/255, G/255, B/255)
enddef;

vardef named (suffix c) = forceclr (c) enddef;
vardef forceclr (expr c) =
  if unknown c     :  black
  elseif numeric c :  gray (c)
  elseif color c   :  c
  else             :  black
  fi
enddef;

%    \end{macrocode}
% And then the standard colors. Using \gbc{rgb} ensures they are defined
% in \MF{} as well as \MP.
%    \begin{macrocode}
color red, green, blue, cyan, magenta, yellow;
red     := rgb (1, 0, 0);
green   := rgb (0, 1, 0);
blue    := rgb (0, 0, 1);
cyan    := rgb (0, 1, 1);
magenta := rgb (1, 0, 1);
yellow  := rgb (1, 1, 0);

%    \end{macrocode}
%
% \subsection{Arrays}\label{arrays}
%
% \gbc{ClipPath} is a standard example of an array. It is based on the
% fact that a variable can be of a different type from (and can be
% almost completely unrelated to) the variables formed by putting numeric
% suffixes on it.
%
% \DescribeRoutine{list}
% The \gbc{list} macro is essentially due to Frank Michielsen, and assigns
% a \emph{list} (i.e., a comma separated sequence of expressions) to an
% array. Note that the items in the list have to be the same type, and the
% same type as \mfc{v[]}. But \mfc{v} itself must be numeric.
%
% \DescribeRoutine{map}
% The \gbc{map} macro takes two text parameters. The first is any
% procedure, the second is a list of expressions. The procedure is applied
% to each expression and the resulting new expressions are separated by
% commas, that is, a new list is generated (for use in \mfc{for} loops).
% This is full of possibilities for errors. One reared its head because
% the original version started with a comma indicating an empty starting
% expression (normally it would be ignored and that turn through the loop
% skipped). However, it managed to produce an error in a reasonable
% but unforeseen usage and so I added the \gbc{_map} variable that
% skips the comma on the first time through the loop. This routine is
% currently only used in the code \mfpic's \cs{plr} writes.
%    \begin{macrocode}
vardef list (suffix v) (text lst) =
  v := 0;  for _itm = lst: v[incr v] := _itm; endfor
enddef;

def map (text proc) (text lst) =
  hide(_map := 0;)
  for _a = lst :
    if _map = 0 :  hide(_map := 1;)  else:  ,  fi
    proc(_a)
  endfor
enddef;

%    \end{macrocode}
% \DescribeRoutine{knownarray}
% Checks if a suffix is the name of an array. Requires \gbc{arr} to be a
% known positive integer, and all the variables \gbc{arr[n]} to be known
% for \gbc{n} from 1 to \gbc{arr}.
%    \begin{macrocode}
vardef knownarray suffix arr =
  save _kna; boolean _kna;
  _kna := (known arr) and (numeric arr);
  if _kna :
    _kna := (arr = floor arr) and (arr >= 1);
    for _idx = 1 upto arr :
      exitif not _kna;
      _kna := known arr[_idx];
    endfor
  fi
  _kna
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{copyarray}
% We only need this once, but it makes the code much more readable. It
% simply steps through an array and copies the values into another array.
%    \begin{macrocode}
def copyarray(suffix from, to) =
  to := 0;
  for _idx = 1 upto from:
    to[incr to] := from[_idx];
  endfor
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{maparr}
% The \gbc{maparr} macro applies a procedure \gbc{proc} to each member of
% array \gbc{p[]} with \gbc{p} members. It returns nothing, and currently
% is unused. Though it could have been used for things like \gbc{maxpair}.
%    \begin{macrocode}
def maparr (text proc) (suffix p) =
  for _idx = 1 upto p: proc (p[_idx]); endfor
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{textpairs}
% This macro takes a suffix (name of an array to be constructed) and a
% list of pairs, and assigns them to the array. It is normally called from
% another macro, which does any necessary \mfc{save}-ing of the variable
% used for the array name. We used to include ``\mfc{save p;}'' in this
% macro, but ran into a problem once when \mfc{p} had a suffix. You can't
% apply \mfc{save} to a variable with a suffix. Moreover, ``\mfc{save p}''
% also renders \mfc{p.x} unknown, so I judged it best to let whoever calls
% this macro decide what to save.
%    \begin{macrocode}
def textpairs (suffix p) (text t) =
  numeric p; pair p[]; list (p) (t);
enddef;

%    \end{macrocode}
% \DescribeRoutine{chpair}
% This applies a procedure \gbc{proc} (which maps numeric to
% numeric) to each part of pair \gbc{p}, and returns the resultant pair.
%
% \DescribeRoutine{floorpair}
% \DescribeRoutine{ceilingpair}
% \DescribeRoutine{hroundpair}
% \gbc{floorpair}, \gbc{ceilingpair} and \gbc{hroundpair} use it with
% \gbc{proc} equal to \mfc{floor}, \mfc{ceiling} and \mfc{hround}.
% The last one is not defined in the \MP{} version of \grafbase{}
% because \mfc{hround} is not defined (only \mfc{round}, which already
% works on pairs). Actually, none of these is used any longer in
% \file{grafbase.mp}.
%    \begin{macrocode}
vardef chpair (text proc) (expr p) =
  (proc (xpart p), proc (ypart p))
enddef;

vardef floorpair (expr p) = chpair (floor) (p) enddef;
vardef ceilingpair (expr p) = chpair (ceiling) (p) enddef;
%<MF>vardef hroundpair (expr p) = chpair (hround) (p) enddef;

%    \end{macrocode}
%
% \DescribeRoutine{emin}
% \DescribeRoutine{emax}
% These are more efficient versions of \prog{plain}'s \mfc{min} and
% \mfc{max}: avoiding a \mfc{for} loop when only two values are compared.
%
% \DescribeRoutine{pairmin}
% \DescribeRoutine{pairmax}
% \gbc{pairmin} operates on two pairs, returning a pair having the
% smaller of the two xparts and the smaller of the two yparts. Of course
% \gbc{pairmax} is analogous, producing the maximum.
%
% \DescribeRoutine{minpair}
% \DescribeRoutine{maxpair}
% The \gbc{minpair} macro returns the pair comprising the minimum $x$ and
% minimum $y$ coordinates of all pairs in the array \gbc{p[]}, where
% \gbc{p} itself is a numeric count of the members in \gbc{p[]}.
% \gbc{maxpair} is analogous. These operate by repeatedly calling
% \gbc{pairmin} or \gbc{pairmax}.
%    \begin{macrocode}
vardef emin (expr a, b) = if a < b :  a  else:  b  fi enddef;
vardef emax (expr a, b) = if a > b :  a  else:  b  fi enddef;

vardef pairmin (expr z, w) =
    ( emin (xpart z,  xpart w), emin (ypart z, ypart w ) )
enddef;
vardef pairmax (expr z, w) =
    ( emax (xpart z,  xpart w), emax (ypart z, ypart w ) )
enddef;

vardef minpair (suffix p) =
  save _mp; pair _mp; _mp := p1;
  for _idx = 2 upto p - 1 :
    _mp := pairmin(_mp, p[_idx]);
  endfor
  pairmin (_mp, p[p])
enddef;
vardef maxpair (suffix p) =
  save _mp; pair _mp; _mp := p1;
  for _idx = 2 upto p - 1: _mp := pairmax(_mp, p[_idx]); endfor
  pairmax (_mp, p[p])
enddef;

%    \end{macrocode}
%
%
% \section{The \grafbase{} coordinate system}\label{coordinate}
%
% We need to make a distinction between graph units, sharped units, and
% device units. In \MF, a device unit is 1 pixel. On a LaserJet IV, one
% inch is 600 pixels. When constructing a character, \MF{} uses the pixel
% as its unit. Since this differs from one printing device to another,
% \file{plain.mf} arranges for \emph{sharped} units (the name comes from the
% convention that they are written using a name that ends in \mfc{\#}). The
% dimension \mfc{1pt\#} in \MF{} is arbitrarily set to 1, and other
% units defined by conversion factors (\mfc{in\#=72.27}; neither \MF{}
% nor \MP{} makes a distinction between distances and numbers: \mfc{2pt}
% just means \mfc{2} times the value of \mfc{pt}).  When one needs to
% draw something actually \emph{one point long}, then \mfc{1pt} is used.
% It is defined to be equal \mfc{pt\#*hppp}, where \mfc{hppp} stands for
% ``horizontal pixels per point'' and its value is usually set by
% \mfc{mode_setup}. So \mfc{1pt} is $600/72.27$ (pixels) if
% \mfc{mode} is \mfc{ljfour}.
%
% Often, when we want numbers not to become too large, we do calculations,
% define paths, etc., in sharped units, then draw by scaling to device
% units. In \grafbase{} we take this one step further: a horizontal graph
% unit (i.e., the difference between the graph points (0, 0) and (1, 0))
% represents \gbc{unitlen*xscale} sharped units, and
% \gbc{unitlen*xscale*hppp} actual pixels. The \grafbase{} macros do much
% of the calculations in graph units.
%
% In \MP, there is no difference between device and sharped units.
% The \emph{postscript point} or \emph{big point} (1/72 inches) is the
% unit in \MP: \mfc{bp = 1}.
%
% Some things need to be in graph units (for example, positions within a
% graph defined by the user) or independent of units (standard shapes)
% that scale appropriately when scales change. Other things (thickness of
% lines) are a design decision that is either independent of scale, or
% scales in a non-obvious way. The diameter of the drawing pen is one of
% the latter things, so the default pen width is in device units. Also for
% the hatching pen.
%
% When drawing a path we want to use device coordinates. When defining
% paths, we typically want to use graph coordinates. The macros that do
% the drawing, therefore, need to convert from one to the other. In
% addition, for inclusion of the picture in a \TeX{} document, we normally
% want the lower left corner of the graph space to have device coordinates
% (0, 0).
%
% We therefore have two transforms: \gbc{vtr} is the \emph{vector} or
% linear transform for pair quantities that remain invariant under shifts,
% and \gbc{ztr} is a \emph{point} or affine transformation for pair
% quantities that change appropriately under shifts.
%
% The quantities \gbc{xneg}, \gbc{xpos}, \gbc{yneg}, and  \gbc{ypos} are
% in \emph{graph} coordinates. Shifting by \gbc{(-xneg, -yneg)} transforms
% the lower left corner to $(0, 0)$.  Multiplication by \gbc{xscale} and
% \gbc{yscale} converts to multiples of \gbc{unitlen} and multiplication
% by \gbc{unitlen} gets us sharped coordinates. For \MF{},
% multiplication by \mfc{hppp} converts to device coordinates, while for
% \MP{} sharped and device are the same (the printer's PostScript
% rasterizing engine -- or \prog{GhostScript} -- does the final conversion
% to actual pixels).
%
% \mfc{currenttransform} (via the macro \mfc{.t_}, defined by
% \mfc{mode_setup}) takes care of the aspect ratio.
%
% \gbc{charwd} and \gbc{charht} are sharped coordinates defined by the
% startup code \gbc{beginmfpic}, and \gbc{w_} and \gbc{h_} are the
% corresponding device (pixel) coordinates
%
% \DescribeRoutine{setztr}
% This macro does the defining of \gbc{ztr} and \gbc{vtr}. It is called
% by \gbc{beginmfpic}, at which time all the necessary quantities should be
% known.
%    \begin{macrocode}
transform ztr, vtr;
def setztr =
  if debug :
    GBdebug;
%<*MF>
      >> "charwd = " & decimal charwd & "pt#";
      >> "charht = " & decimal charht & "pt#";
      >> "w_ = " & decimal w_ & " pixels";
      >> "h_ = " & decimal h_ & " pixels";
      >> "unitlen = " & decimal unitlen & "pt#";
      >> "hppp = " & decimal hppp;
%</MF>
%<*MP>
      >> "w_ = " & decimal w_ & "bp";
      >> "h_ = " & decimal h_ & "bp";
      >> "unitlen = " & decimal unitlen & "bp";
%</MP>
      >> "xneg = " & decimal xneg;
      >> "xpos = " & decimal xpos;
      >> "yneg = " & decimal yneg;
      >> "ypos = " & decimal ypos;
      >> "xscale = " & decimal xscale;
      >> "yscale = " & decimal yscale;
    GBenddebug;
  fi
  save ztr, vtr;
  transform ztr, vtr;
  vtr := identity xscaled (xscale) yscaled (yscale)
    scaled (unitlen*hppp);
  ztr := identity shifted (-(xneg, yneg)) transformed vtr;
  if debug :
    GBdebug;
      >> "ztr: ";
      show ztr;
      >> "vtr: ";
      show vtr;
    GBenddebug;
  fi
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{zconv}
% \DescribeRoutine{invzconv}
% The macro \gbc{zconv} converts a variety of expressions from graph to
% device coords. The expressions include pairs, paths, and transforms.
% This is an affine transform. The inverse, \gbc{invzconv}, converts a
% variety of expressions from device to graph coordinates.
%
% \DescribeRoutine{vconv}
% \DescribeRoutine{invvconv}
% The vector version, \gbc{vconv}, converts a vector \gbc{v} from graph to
% device coordinates. This is a linear (ie, vector) transform. Finally,
% \gbc{invvconv} converts a vector from device to graph coordinates.
%    \begin{macrocode}
vardef zconv (expr a) = a transformed ztr enddef;
vardef invzconv (expr a) = a transformed (inverse ztr) enddef;
vardef vconv (expr v) = v transformed vtr enddef;
vardef invvconv (expr v) = v transformed (inverse vtr) enddef;

%    \end{macrocode}
%
% \DescribeRoutine{active_plane}
% \gbc{active_plane} is the active drawing plane. \mfc{currentpicture} is
% unknown at this stage (because it's set in \gbc{beginmfpic}). We use a
% \mfc{def}, and not a picture assignment, partly for this reason but also
% because we can achieve special effects (see \gbc{image} below, and the
% \gbc{tile} macro) by redefining it.
%
% \DescribeRoutine{image}
% The \mfc{image} macro exists in \file{plain.mp} but not \file{plain.mf}.
% The purpose is to just use the \file{plain} \MF{} and \grafbase{} macros
% as you normally would, but wrap the whole thing in parentheses preceded
% by \gbc{X := image} to get all those things drawn on the picture
% variable \gbc{X}.
%    \begin{macrocode}
def active_plane = currentpicture enddef;

%<*MF>
vardef image(text t) =
  save currentpicture; picture currentpicture;
  currentpicture := nullpicture;
  t;
  currentpicture
enddef;

%</MF>
%    \end{macrocode}
%
% \DescribeRoutine{initpic}
% \gbc{initpic} is called by \gbc{beginmfpic} after \gbc{w_} and
% \gbc{h_} are defined. At this point \gbc{xneg}, \gbc{xscale}, etc.,
% have known values and \gbc{setztr} can define the transforms that are
% based on them. Also, the default \gbc{drawpen} is initialized and the
% boundary of the graph space is assigned to the clipping array.
%
% If \gbc{overlaylabels} is \gbc{true}, we try to make labels in \MP{}
% behave the same as labels in \TeX{} (for \mfpic) by adding the labels
% on last. We do this by adding them to the picture variable
% \gbc{current_labels} as they occur, then add that picture onto
% \gbc{active_plane} just before shipout. For backward compatibility,
% the default for \gbc{overlaylabels} is \gbc{false}. We initialize
% \gbc{current_labels} here. The pair variables \gbc{labelbb.ll} and
% \gbc{labelbb.ur} keep track of the bounding box of added labels in case
% \gbc{overlaylabels}, \gbc{truebbox}, and \gbc{clipall} are all
% \gbc{false}.
%    \begin{macrocode}
%<*MP>
boolean overlaylabels;
overlaylabels = false;

%</MP>
def initpic =
  setztr;
  resizedrawpen (penwd);
  if ClipOn : ClipPath := 1;
    ClipPath1 := rect (origin, (w_, h_));
  fi
  if debug :
    GBdebug;
      >> "Drawing nominal bounding box around picture";
    GBenddebug;
    noclip ( safedraw rect (origin, (w_, h_)) );
  fi
%<*MP>
  save current_labels; picture current_labels;
  current_labels := nullpicture;
  save labelbb; pair labelbb.ll, labelbb.ur;
  labelbb.ll := labelbb.ur := origin;
%</MP>
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{mfpicenv}
% \DescribeRoutine{endmfpicenv}
% For compatibility with older \file{graphbase.mf} (for
% \prog{fig2dev}'s \file{genmf.c}). Actually, I have no idea if
% \prog{fig2dev} even works with the current \mfpic.
%    \begin{macrocode}
def mfpicenv = enddef;
def endmfpicenv = enddef;
%    \end{macrocode}
% \DescribeRoutine{bounds}
% This used to be for compatibility also, but I decided it was a
% convenient abbreviation, so \mfpic{} uses it now.
%    \begin{macrocode}
def bounds (expr a, b, c, d) =
  xneg := a; xpos := b;
  yneg := c; ypos := d;
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{setvariable}
% This is mainly to save space in \mfpic-generated files.
def setvariable (text kind) (suffix name) (expr value) =
  save name; kind name; name := value;
enddef;

%    \begin{macrocode}
%    \end{macrocode}
%
% \DescribeRoutine{beginmfpic}
% This is the figure wrapper.  \mfpic{} used to begin with figure 1 and
% progressively increment the number. The current value of \gbc{gcode} was
% always equal to the current figure number. Now, \mfpic{} explicitly
% writes the figure number, so we assign \gbc{gcode} to that number in
% case any old files made use of the current number through the
% \gbc{gcode} variable.
%
% Originally, \gbc{beginmfpic} defined \mfc{w}, \mfc{h} and \mfc{d}, but
% that caused problems if an \mfpic{} user tried to store a path in a
% variable named \gbc{h}, etc. So now we use the less obvious names ending
% in underscore. Apart from this, the code below is a clone of
% \file{plain.mf}'s \mfc{beginchar} (for \MF). In fact, it used to invoke
% \mfc{beginchar}. For \MP, we invoke \mfc{beginfig} explicitly. This does
% the \mfc{clear...} actions and \mfc{charcode} assignment.
%
% The `\mfc{extra_...mfpic}' strings provide a compiler-independent way
% to add to the extra beginning and ending tokens.
%    \begin{macrocode}
string extra_beginmfpic; extra_beginmfpic := "";
string   extra_endmfpic;   extra_endmfpic := "";

def beginmfpic (expr ch) =
%<MP>  beginfig (ch);
%<MF>  begingroup
    gcode := ch;
    save w_, h_, d_; numeric w_, h_, d_;
    charwd := (xpos-xneg)*xscale*unitlen;
    charht := (ypos-yneg)*yscale*unitlen;
    chardp := 0;
%<*MF>
    charcode := if known ch :  byte ch  else:  0  fi;
    w_ := hround(charwd*hppp);
    h_ := vround(charht*hppp);
    d_ := vround(chardp*hppp);
    charic := 0; clearxy; clearit; clearpen;
    scantokens extra_beginchar;
%</MF>
%<*MP>
    w_ := charwd;
    h_ := charht;
    d_ := chardp;
%</MP>
    initpic;
    scantokens extra_beginmfpic;
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{endmfpic}
% For \MF, we again clone \file{plain.mf}'s \mfc{endchar}, adding support
% for the \gbc{clipall} (clip to the graph rectangle), and \gbc{ClipOn}
% (clip to some user specified array of paths), and \gbc{showbbox} (draw
% the boundary of the graph for debugging purposes).
%    \begin{macrocode}
def endmfpic =
  scantokens extra_endmfpic;
  if debug :
    GBdebug;
%<MF>      >> "TFM charwd = " & decimal charwd & "pt#";
%<MF>      >> "TFM charht = " & decimal charht & "pt#";
%<MP>      >> "width = " & decimal w_ & "bp";
%<MP>      >> "height = " & decimal h_ & "bp";
    GBenddebug;
  fi
%<*MF>
  if proofing>0 : makebox(proofrule); fi
  chardx := w_;     % desired width of character in pixels
%</MF>
  DoClip (active_plane);
  if clipall : clipto (active_plane) rect(origin, (w_, h_)); fi
  if showbbox : noclip ( safedraw rect (origin, (w_, h_)) ); fi
%<*MF>
  shipit;
  if displaying > 0 : makebox(screenrule); showit; fi
  endgroup
%</MF>
%    \end{macrocode}
%
% \MP's code is more involved due to the possibility to put typeset text
% in a picture. In addition to the \gbc{clipall}, \gbc{ClipOn} and
% \gbc{showbbox} support, we have support for labels and \gbc{truebbox}.
%    \begin{macrocode}
%<*MP>
  save _ll, _ur;
  pair _ll, _ur;
  if truebbox :
    _ll := llcorner active_plane;
    _ur := urcorner active_plane;
%    \end{macrocode}
% We try to let the bbox include labels, even when they extend beyond the
% nominal picture boundaries. However, they will have been clipped off if
% \gbc{clipall} is set. In that case, just set the bounding box to the
% coordinates determined by \gbc{w_} and \gbc{h_}
%    \begin{macrocode}
  elseif clipall:
    _ll := origin;
    _ur := (w_,h_);
  else:             % expand to accomodate labels
    _ll := pairmin((0,  0 ), labelbb.ll);
    _ur := pairmax((w_, h_), labelbb.ur);
  fi
%    \end{macrocode}
% A bounding box in the output PostScript code can have a side with
% length 0 (e.g., a picture drawn with \mfpic{} that contains only
% text placed by \TeX). This can cause division by 0 errors in some
% contexts. That's why we don't just let \MP{} determine the bounding box,
% but force the upper and lower coordinates to differ.
%    \begin{macrocode}
  _ur := pairmax(_ur, _ll + eps*(1, 1));
  setbounds active_plane to rect(_ll, _ur);
%    \end{macrocode}
% If \gbc{overlaylabels} was true during a \gbc{newgblabel} command,
% then \gbc{current_labels} contains that labels. We add them now, on top
% of the picture. This might also extend the bbox, but that is an effect
% we want to achieve.
%    \begin{macrocode}
    addto active_plane also current_labels;
  endfig;
%</MP>
enddef;

%    \end{macrocode}
%
%
% \section{Text}\label{text}
%
% In the \MP{} version, \gbc{label_adjust} and \gbc{label_sep} are the
% equivalent of \mfpic's \cs{tlabeloffset} and \cs{tlabelsep}. In the
% \MF{} version they are still needed (in \gbc{textrect}, etc.) to place
% the paths that are to surround the text that \TeX{} places.
%
% \gbc{label_adjust} is a vector displacement for the label,
% while \gbc{label_sep} is the distance from the label to
% the point of placement, when that point is on the edges of the label's
% bounding box. Both are in device coordinates (e.g., \mfc{3bp}).
%    \begin{macrocode}
pair label_adjust; label_adjust := (0, 0);
numeric label_sep;    label_sep :=  0;

%    \end{macrocode}
%
% Another aspect of trying to make \mfpic's \file{.mp} and \file{.mf}
% the same, we here define a version of \mfc{verbatimtex} for \MF. This
% works only if \mfc{etex} is fillowed by a semicolon, and no semicolons
% appear in the \TeX{} material. (There may be other forbidden things, and
% certainly any parentheses have to be in matching pairs.)  We would like
% the output of \mfpic{} under the \opt{metapost} option to be usable in
% \MF{} with minimal changes.
%    \begin{macrocode}
%<MF>def verbatimtex = killtext enddef;

%    \end{macrocode}
%
% \subsection{Placement of text, \MP{} only}\label{placement}
%
% \DescribeRoutine{newgblabel}
% \DescribeRoutine{gblabel}
% This is how \mfpic{} places labels when \opt{mplabels} is in effect.
% Since labels will typically be \mfc{btex...etex}, which are picture
% expressions, it will actually place any picture, \gbc{s}. If you feed it
% a string or path, it will convert it to a picture (with the \mfc{infont}
% operator or the \gbc{picpath} macro). The first two parameters could easily
% be condensed into one if \mfpic{} support were all that was required,
% however I thought it best to generalize. The first two parameters
% \gbc{hf} and \gbc{vf} are numeric. The \gbc{hf} represent the fraction of
% the text that lies left of the point where the text is placed. Normally,
% \gbc{vf} represents the fraction of text that lies below the point, but
% if the third parameter is \mfc{true}, this fraction is relative to the
% baseline (i.e., the depth is ignored). Currently we only use this with
% \gbc{vf = 0} to get placement on the baseline. (Actually, \mfpic{} only
% ever uses values of 0, .5 and 1 for \gbc{hf} or \gbc{vf}).
%
% The macro \gbc{newgblabel} takes 6 parameters. The first 3, as explained
% above, effect the justification of the text (location of the point of
% placement relative to the label). They correspond to the optional
% parameter of \cs{tlabel} in \mfpic{} as follows:
% \begin{itemize}
% \item \gbc{hf} determines horizontal position: 0 = \texttt{l},
%   .5 = \texttt{c}, and  1 = \texttt{r}.
% \item \gbc{vf} and \gbc{BL} determine vertical position. For placement
%   option \texttt{B}, \gbc{vf} = 0 and \gbc{BL} is \mfc{true}. For the
%   rest, \gbc{BL} is \mfc{false} and \gbc{vf} corresponds as follows:
%   0 = \texttt{b}, .5 = \texttt{c} and 1 = \texttt{t}.
% \item \gbc{r} is degrees of rotation about the specified point.
% \item \gbc{s} is a string or picture expression (typically
% \mfc{btex ... etex} code)
% \item \gbc{pts} is a list of pairs in graph coordinates.
% \end{itemize}
% First the bounding box of the picture is extended by \gbc{label_sep} in
% all directions by \gbc{labeldims}, then a new reference point for the
% picture is calculated using
% \DescribeRoutine{ref_shift}\gbc{ref_shift}
% and then \gbc{thegblabel} rotates it around the reference
% point and adds the \gbc{label_adjust}. Finally, for each \gbc{_itm} in
% \gbc{pts}, the result is shifted by \gbc{_itm}. If \gbc{overlaylabels}
% is true, the label is placed on the picture \gbc{current_labels} and
% added to \gbc{active_plane} at \gbc{endmfpic}. Otherwise, it is added
% directly to \gbc{active_plane} and and the \gbc{labelbb} are adjusted.
%
% We also use \gbc{ref_shift} in \MF{} since the curves that surround text
% require it.
%
% We keep \gbc{gblabel} for backward compatibility with old \mfpic{}
% files, but it merely calls \gbc{newgblabel}. While the old \gbc{gblabel}
% had the same flexibility as \gbc{newgblabel}, this one assumes that the
% parameters are only those that \mfpic{} would write. We provide a null
% definition for \MF{} to allow \mfpic's \file{.mp} files to be usable with
% minimal changes.
%    \begin{macrocode}
%<MF>def newgblabel (expr hf, vf, BL, r) (text s) (text pts) = enddef;
%<*MP>
vardef newgblabel (expr hf, vf, BL, r) (expr s) (text pts) =
  save _lab, _ll, _ur; picture _lab; pair _ll, _ur;
  _lab :=
    if picture s    :  s
    elseif string s :  s infont defaultfont scaled defaultscale
    elseif path s   :  picpath (s)
    else            :  nullpicture
    fi;
  labeldims (origin, _lab) (_ll, _ur);
  _lab := thegblabel(ref_shift (hf, vf, BL, _ll, _ur), r, _lab);
  save _b; pair _b;
  for _itm = pts :
    _b := zconv(_itm);
    if overlaylabels :
      addto current_labels also _lab shifted _b _wc_ tlabelcolor;
    else:
      addto active_plane also _lab shifted _b _wc_ tlabelcolor;
      labelbb.ll := pairmin (_b + llcorner _lab, labelbb.ll);
      labelbb.ur := pairmax (_b + urcorner _lab, labelbb.ur);
    fi
  endfor
enddef;

% Assumes a+b=1 and either c+d=1 or c=d=0:
vardef gblabel (expr a, b, c, d, r) (expr s) (text t) =
  newgblabel (b, d, (c = 0) and (d = 0), r) (s) (t);
enddef;

%</MP>
vardef ref_shift (expr hf, vf, BL, ll, ur) =
  - ( (hf)[xpart ll, xpart ur],
      (vf)[if BL: 0 else: (ypart ll) fi, ypart ur] )
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{thegblabel}
% When \gbc{thegblabel} is called by the above, \gbc{p} is a text picture,
% but it is also called by the \gbc{textrect}, etc., in which case \gbc{p}
% is a path. This is why it is needed in the \MF{} version.
%    \begin{macrocode}
vardef thegblabel (expr z, r, p) =
  ((p shifted z) rotated r) shifted label_adjust
enddef;

%    \end{macrocode}
%
% \subsection{Decorating the text}\label{decorating}
%
% \DescribeRoutine{textrect}
% \DescribeRoutine{textoval}
% \DescribeRoutine{textellipse}
% The three macros \gbc{textrect}, \gbc{textoval} and \gbc{textellipse}
% are designed to surround a bit of text with some curve. These macros
% return the path in graph coordinates. In the first one, the path is a
% rectangle with rounded corners. The second parameter, \gbc{rad}, is the
% radius of quarter circles at the corners (in device units). In the other
% two cases, the path is an ellipse. They differ in the meaning of the
% second parameter.
%
% In \gbc{textoval}, the second parameter \emph{multiplies} the ratio of
% width to height of the text to produce the ratio for the ellipse. Thus,
% with \gbc{mult}=1, the ratio will be the same as that of the text. In
% \gbc{textellipse}, the second parameter \gbc{rat} is the actual value of
% the ratio of width to height of the ellipse and a value of 1 produces a
% circle. In either macro, if that parameter is 0, we draw a rectangle.
%
% The size of each path is determined so that, when the text is placed and
% the path drawn, it passes through the four corners of the following
% rectangle: the rectangle which just encloses the text plus the amount of
% space on all sides determined by \gbc{label_sep}. Note that this means
% a rectangle with rounded corners will have larger height and width than
% one without.
%
% The placement of each path is: centered at the point given in the third
% parameter \gbc{loc}, shifted by the vector specified in \gbc{label_adjust}.
%
% The first parameter \gbc{lbl} is either a pair representing the
% height and width of the text (only possibility in \MF) or the actual
% text. These macros are being kept for backward compatibity, but now they
% call the extended versions that allow the path to follow arbitrary
% text placement. The parameters \gbc{(.5,.5,false,0)} were those
% assumed in the past version: centered at the point, with no rotation.
%
% The extended versions of \gbc{textoval} and \gbc{textellipse} are both
% now implemented in a single command \gbc{xellipse}, with a boolean to
% specify whether the aspect ratio of the text is used to calculate the
% aspect of the ellipse.
%    \begin{macrocode}
vardef textrect (expr lbl, rad, loc) =
  textrectx (.5, .5, false, 0) (origin, lbl, rad, loc)
enddef;
vardef textoval (expr lbl, mult, loc) =
  xellipse (true, .5, .5, false, 0) (origin, lbl, mult, loc)
enddef;
vardef textellipse (expr lbl, rat, loc) =
  xellipse (false, .5, .5, false, 0) (origin, lbl, rat, loc)
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{textrectx}
% \DescribeRoutine{textovalx}
% \DescribeRoutine{textellipsex}
% These are extended versions of the previous three. They will now be
% able adjust the position of the path in the same manner as \gbc{newgblabel}
% does the text. In fact, they calculate the position in exactly the same
% manner as that macro, and the first 4 parameters encode that in the same
% way.
%
% \gbc{lbl} is either the upper right corner of the text or the label
% itself. In the first case \gbc{xy} is the lower left corner, in the
% second case it is a dummy parameter, the bounding box being obtained (in
% \gbc{labeldims}) by measuring the label. For these extended macros, the
% parameters \gbc{lbl}, \gbc{mult}, \gbc{rad}, and \gbc{loc} are as in
% the unextended versions.
%
% \gbc{roundends} is a boolean. We really only need it to be a type
% distinguishable from any numeric value. \Mfpic{} users can specify it
% rather than an explicit radius, and when the code of \gbc{textrectx}
% detects this, it uses the maximum radius for the corners (making the
% short side of the `rectangle' a semicircle).  That is, if \gbc{rad} is
% a boolean (and \mfc{true}) then the radius at the corners is so chosen.
% (If \gbc{rad} is \mfc{false} the corners are not rounded at all.)
%    \begin{macrocode}
boolean roundends; roundends := true;
vardef textrectx (expr a, b, c, rot, xy, lbl, rad, loc) =
  save ll, ur, _r, f, zz;
  pair ll, ur, zz;  path f;
  labeldims (xy, lbl) (ll, ur);
  _r :=
    if boolean rad :
      if rad :  emin (xpart (ur-ll), ypart (ur-ll))/sqrt(2)
      else:     0
      fi
    elseif numeric rad :  rad
    else:                 0
    fi;
  if _r = 0 :
    f :=  rect(ll, ur);
  else:
    save p, q;
    pair p[];  path q;
    p1 := ur - _r*dir(45);    % center of upper right arc
    p3 := ll + _r*dir(45);    % lower left
    p2 := (xpart p3, ypart p1); % upper left
    p4 := (xpart p1, ypart p3); % lower right
    q  := quartercircle scaled 2_r;
    if _r > 0:
      f  := (q shifted p1) -- (q rotated 90 shifted p2)
            -- (q rotated 180 shifted p3)
            -- (q rotated -90 shifted p4)
            -- cycle;
    else:
      f  := (q shifted p1) -- (q rotated -90 shifted p4)
            -- (q rotated 180 shifted p3)
            -- (q rotated 90 shifted p2)
            -- cycle;
    fi
  fi
  invvconv(thegblabel(ref_shift(a, b, c, ll, ur), rot, f)) shifted loc
enddef;

%    \end{macrocode}
%
% As the coding of \gbc{textoval} and \gbc{textellipse} was refined, it
% turned out that each refinement in one suggested a similar change in the
% other. In the end the two differed only in two lines, so now both call
% another macro \gbc{xellipse}.
%    \begin{macrocode}
def textovalx = xellipse (true) enddef;
def textellipsex = xellipse (false) enddef;

%    \end{macrocode}
% \DescribeRoutine{xellipse}
% In \gbc{xellipse}, \gbc{aa} and \gbc{bb} are the horizontal and
% vertical radii of the resulting ellipse, while \gbc{ww} and \gbc{hh}
% are half the width and height size of the text. If the boolean
% \gbc{aspect} is true, the aspect ratio of the ellipse (i.e., \gbc{aa/bb})
% equals \gbc{mult*hh/ww}, otherwise it equals \gbc{mult}.
%    \begin{macrocode}
vardef xellipse (expr aspect, a, b, c, r, xy, lbl, mult, loc) =
  if mult = 0 :
    textrectx (a, b, c, r) (xy, lbl, 0, loc)
  else:
    save ll, ur, cc, ww, hh, f;
    pair ll, ur, cc;  path f;
    labeldims (xy, lbl) (ll, ur);
    cc := .5[ll, ur]; % center
    (ww, hh) = ur - cc;
    if (ww = 0) or (hh = 0) : % make a line:
      f = (ll--ur);
    else:
      save aa, bb, mm;
      mm := if aspect : ww/hh*mult else: mult fi;
      aa := ww ++ hh*mm;
      bb := aa/mm;
      f := ellipse(cc, aa, bb, 0);
    fi
    invvconv(thegblabel (ref_shift (a, b, c, ll, ur), r, f)) shifted loc
  fi
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{labeldims}
% This has been changed to make the code of \mfpic{} a bit simpler and
% to aid in backward compatibility. It takes a couple of pairs (the actual
% or nominal label bounding box corners) or something visible (picture,
% string or path) and assigns suitable values to \gbc{ll} and \gbc{ur}
% then expands the bbox by \gbc{label_sep}.
%    \begin{macrocode}

def labeldims (expr xy, lbl) (suffix ll, ur) =
  if pair lbl :
    ll := xy; ur := lbl;
  else:
%<MF>    ll := ur := (0, 0);
%<*MP>
    save _lbl; picture _lbl;
    _lbl :=
      if picture lbl    :  lbl
      elseif string lbl :
        lbl infont defaultfont scaled defaultscale
      elseif path lbl   :  picpath (lbl)
      else              :  nullpicture
      fi;
    ll := llcorner _lbl;
    ur := urcorner _lbl;
%</MP>
  fi
  ll := ll - label_sep*(1, 1);
  ur := ur + label_sep*(1, 1);
enddef;

%    \end{macrocode}
%
%
% \section{Additional functions}\label{functions}
%
% Complex variable functions are provided, which interpret a pair $(x, y)$
% as the complex number $z = x + iy$. We also provide for the use of
% radians, add the standard exponential and logarithms, and add the
% hyperbolic functions and their inverses.
%
% The value \gbc{eps/2 + epsilon} is the smallest value with
% reciprocal less than \mfc{infinity}. I set \gbc{nottoosmall} a speck
% bigger to ensure that the same is true of \gbc{2*(nottoosmall/2)}.
%
% Normally \mfc{infinity = 2**12 - epsilon} is the largest number allowed
% (as a value involved in actual drawing in \MF). Since we set
% \mfc{warningcheck=0}, values not assigned to a variable and not
% written to the \file{.tfm} file (and any value in \MP) can be as high as
% \mfc{2**15 - epsilon}, which is a speck smaller than \mfc{1/(2epsilon)}.
% So \gbc{reallysmall} is to be the smallest number whose reciprocal is a
% usable number. (\mfc{epsilon} is the smallest possible positive number
% in \MF.)
%
% We set \gbc{secd x = 1/(cosd x)} unless \gbc{cosd x} is less than ``really
% small'', then we set it equal to \gbc{1/reallysmall}. We do a similar
% thing with \gbc{cscd}.
%^^A
% \DescribeRoutine{TruncateWarn}
% (When such a substitution happens \gbc{TruncateWarn} prints a message
% that a truncation has taken place.)
%
% Why not just determine what number will produce arithmetic overflow and
% test for that?  Because I'm lazy: it would require a different number
% for each of the functions. Instead, since \MF{} has no ``arithmetic
% underflow'', I compute something that is guaranteed to work and occurs
% in the formula for the function as a reciprocal (e.g., $t = e^{-|x|}$
% for \gbc{cosh x}) and make sure the number is not too small to take its
% reciprocal.
%
% \DescribeRoutine{signof}
% This expands to a minus sign if its argument is negative, otherwise
% nothing.
%    \begin{macrocode}
newinternal nottoosmall; nottoosmall := eps/2 + 2epsilon;
newinternal reallysmall; reallysmall := 3epsilon;
def signof (expr X) = if X < 0 : - fi enddef;
def TruncateWarn expr s =  GBmsg s & " too large; truncating";  enddef;

%    \end{macrocode}
% In addition to \mfc{sind} and \mfc{cosd} which take angles in degrees,
% we define the remaining trig functions \gbc{tand}, \gbc{cotd},
% \gbc{secd}, and \gbc{cscd}.
%
% \DescribeRoutine{secd}
% \DescribeRoutine{tand}
% \DescribeRoutine{cscd}
% \DescribeRoutine{cotd}
% We define \gbc{secd}, one of the simplest, to include an ``out of range''
% test (which also prevents division by 0). Then \gbc{tand} can make use
% of it without any division. We do the same with \gbc{cscd} and
% \gbc{cotd}.
%    \begin{macrocode}
vardef secd primary X =
  save temp; temp := cosd(X);
  if abs(temp) < reallysmall :
    TruncateWarn "Secant";
    temp := signof (temp) reallysmall;
  fi
  1/temp
enddef;
vardef tand primary X =  sind(X)*secd(X)  enddef;

vardef cscd primary X =
  save temp; temp := sind(X);
  if abs(temp) < reallysmall :
    TruncateWarn "Cosecant";
    temp := signof(temp) reallysmall;
  fi
  1/temp
enddef;
vardef cotd primary X =  cosd(X)*cscd(X)  enddef;

%    \end{macrocode}
% \DescribeRoutine{acos}
% \DescribeRoutine{asin}
% \DescribeRoutine{atan}
% These are the inverse functions, which return an angle in degrees.
%    \begin{macrocode}
vardef acos primary X =  angle (X, 1 +-+ X)  enddef;
vardef asin primary X =  angle (1 +-+ X, X)  enddef;
vardef atan primary X =  angle (1, X)  enddef;

%    \end{macrocode}
% \DescribeRoutine{sin}
% \DescribeRoutine{cos}
% \DescribeRoutine{tan}
% \DescribeRoutine{cot}
% \DescribeRoutine{sec}
% \DescribeRoutine{csc}
% Now the trig functions that take angles in radians.
%    \begin{macrocode}
vardef sin primary X =  sind (X*radian)  enddef;
vardef cos primary X =  cosd (X*radian)  enddef;
vardef tan primary X =  tand (X*radian)  enddef;
vardef cot primary X =  cotd (X*radian)  enddef;
vardef sec primary X =  secd (X*radian)  enddef;
vardef csc primary X =  cscd (X*radian)  enddef;

%    \end{macrocode}
% \DescribeRoutine{invsin}
% \DescribeRoutine{invcos}
% \DescribeRoutine{invtan}
% And the inverses that return angles in radians.
%    \begin{macrocode}
vardef invcos primary X =  (acos X)/radian  enddef;
vardef invsin primary X =  (asin X)/radian  enddef;
vardef invtan primary X =  (atan X)/radian  enddef;

%    \end{macrocode}
% \DescribeRoutine{exp}
% \DescribeRoutine{ln}
% \DescribeRoutine{log}
% \DescribeRoutine{logbase}
% \DescribeRoutine{logtwo}
% \DescribeRoutine{logten}
% Here we define the standard exponential function. (The \MF{} function
% \mfc{mexp} has the unusual base $e^{1/256}$ to avoid overflow.) The
% inverse of \gbc{exp} is the natural logarithm (\gbc{ln} or \gbc{log}).
% We also have the general base logarithm \gbc{logbase} and its two
% special instances \gbc{logtwo} and \gbc{logten}.
%    \begin{macrocode}
vardef exp primary X = mexp (256 * X) enddef;
vardef ln  primary X = (mlog X) / 256 enddef;
def log = ln enddef;
vardef logbase (expr B) primary X = (mlog X)/(mlog B) enddef;
def logtwo = logbase( 2) enddef;
def logten = logbase(10) enddef;

%    \end{macrocode}
% \DescribeRoutine{Arg}
% \DescribeRoutine{Log}
% \DescribeRoutine{cis}
% \DescribeRoutine{zexp}
% \DescribeRoutine{sgn}
% \CMF's pair variables are a decent replacement for complex variables.
% These give some of the more basic functions of standard complex
% analysis.
%    \begin{macrocode}
vardef Arg primary Z = (angle Z)/radian enddef;
vardef Log primary Z = (ln(abs(Z)), Arg (Z)) enddef;
vardef cis primary T  = dir(radian*T) enddef;
vardef zexp primary Z = (exp (xpart Z))*(cis(ypart Z)) enddef;
vardef sgn primary Z =
  if Z = origin :  origin  else:  unitvector Z  fi
enddef;

%    \end{macrocode}
% \DescribeRoutine{cosh}
% \DescribeRoutine{sinh}
% \DescribeRoutine{tanh}
% \DescribeRoutine{sech}
% \DescribeRoutine{csch}
% \DescribeRoutine{coth}
% The hyperbolic functions.
%    \begin{macrocode}
vardef cosh primary X =
  save temp; temp := 2 exp (-abs(X));
  if temp < reallysmall :
    TruncateWarn "Cosh";
    temp := reallysmall;
  fi
  1/temp + temp/4
enddef;

vardef sinh primary X =
  save temp; temp := 2 exp (-abs(X));
  if temp < reallysmall :
    TruncateWarn "Sinh";
    temp := reallysmall;
  fi
  signof (X) (1/temp - temp/4)
enddef;

vardef sech primary X =
  save temp; temp := exp(-(abs (X)));
  2temp/(1 + temp*temp)
enddef;

vardef tanh primary X =
  save temp; temp := exp(-2(abs (X)));
  signof (X) (1 - temp)/(1 + temp)
enddef;

vardef csch primary X =
  save temp; temp := exp(-(abs (X)));
  if abs(1 - temp*temp) < reallysmall :
    TruncateWarn "Csch";
    signof (X) 2temp / reallysmall
  else:
    signof (X) 2temp / (1 - temp*temp)
  fi
enddef;

vardef coth primary X =
  save temp; temp := tanh(X);
  if abs(temp) < reallysmall :
    TruncateWarn "Coth";
    temp := signof (temp) reallysmall;
  fi
  1/temp
enddef;

%    \end{macrocode}
% \DescribeRoutine{acosh}
% \DescribeRoutine{asinh}
% \DescribeRoutine{atanh}
% The inverses of some of the hyperbolic functions.
%    \begin{macrocode}
vardef acosh primary y =
  if y < 1 :
    GBerrmsg ("Undefined function: acosh " & decimal y)
      "If you proceed, a value of 0 will be used. " &
      "Expect more errors later.";
    0
  else:
    ln (y + (y+-+1))
  fi
enddef;

vardef asinh primary y = ln (y + (y++1)) enddef;

vardef atanh primary y =
  if abs (y) < 1 :
    (ln(1+y) - ln(1-y))/2
  else:
    GBerrmsg ("Undefined function: atanh " & decimal y)
      "If you proceed, a value of plus or minus infinity " &
      "will be used. Expect more errors later.";
    signof (y) infinity
  fi
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{polar}
% \DescribeRoutine{id}
% \gbc{polar} converts a polar coordinate pair $(r, \theta)$ to the
% corresponding rectangular coordinate pair.
%
% \gbc{id} returns its argument, which can be any expression of any type.
%    \begin{macrocode}
vardef polar (expr p) = (xpart p) * dir (ypart p) enddef;
def id (expr x) = x enddef;

%    \end{macrocode}
%
%
% \section{Coordinate systems and transformations}\label{systems}
%
% \DescribeRoutine{T_push}
% \DescribeRoutine{T_pop}
% \DescribeRoutine{bcoords}
% \DescribeRoutine{ecoords}
% We want to define a localization of the ``current transform''. To do
% this we define a LIFO stack of transforms \gbc{T_stack[]}, a pair of
% macros \gbc{T_push} puts its argument (a transform) on the stack, and
% \gbc{T_pop} pops it off into its argument (a transform variable name).
% We also define two localizing macros \gbc{bcoords} that pushes our
% \gbc{ztr} and \gbc{vtr} on the stack, and \gbc{ecoords} that pops them
% off.
%    \begin{macrocode}
transform T_stack[]; T_stack := 0;
def T_push (expr T) = T_stack[incr T_stack] := T; enddef;
def T_pop (suffix $) =
  if T_stack > 0 :
    $ := T_stack[T_stack]; T_stack := T_stack - 1;
  fi
enddef;

def bcoords = hide ( T_push (ztr); T_push (vtr) ) enddef;
def ecoords = hide ( T_pop (vtr); T_pop (ztr) ) enddef;

%    \end{macrocode}
%
% \subsection{Coordinate changes}\label{changes}
%
% \DescribeRoutine{apply_t}
% Here we define a mechanism for changing \gbc{ztr} and \gbc{vtr} by
% composing them with a new transform. Since a transform can be any affine
% transform, we get \gbc{ztr} by composing with the transform, but we
% calculate \gbc{vtr} from \gbc{ztr} by arranging that \mfc{origin
% transformed vtr} is \mfc{origin}. The syntax is \gbc{apply_t(rotated
% theta)} or \gbc{apply_t(transformed T)} if \mfc{T} is a variable or
% expression of type transform. Thus the argument of \gbc{apply_t} is
% phrase which, were it to follow a path, would produce a transformed
% path. Knuth calls such a phrase a \emph{transformer}.
%    \begin{macrocode}
def apply_t (text Transformer) =
  ztr := identity Transformer transformed ztr;
  vtr := ztr shifted - zconv(origin);
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{xslant}
% \DescribeRoutine{yslant}
% \DescribeRoutine{zslant}
% \DescribeRoutine{xyswap}
% \DescribeRoutine{boost}
% And now we define some available transformers. The only two that
% need comment are \gbc{zslant} and \gbc{boost}. I know that boost comes
% from special relativity, but I have no idea what zslant is about.
%    \begin{macrocode}
def xslant = slanted enddef;  % (x+sy, y).
def yslant primary s =  % (x, y+sx).
  transformed
    begingroup
      save _T; transform _T;
      origin transformed _T = origin;
      (1, 0) transformed _T = (1, s);
      (0, 1) transformed _T = (0, 1);
      _T
    endgroup
enddef;

def zslant primary p =  % (xu+yv, xv+yu), where p = (u, v).
  transformed
    begingroup
      save _T; transform _T;
      xpart _T = ypart _T = 0;
      xxpart _T = yypart _T = xpart p;
      xypart _T = yxpart _T = ypart p;
      _T
    endgroup
enddef;

def xyswap =  zslant (0, 1) enddef;
def boost primary X = zslant (cosh X, sinh X) enddef;

%    \end{macrocode}
%
% \subsection{Path transformation}\label{transformation}
%
% These are functions that accept a path and return a path in graph
% coordinates. For the most part they are named and defined to
% apply a similarly named transform to the path and return the result.
% There are two exceptions. When we draw things, we expect that rotated
% and reflected objects appear congruent to the originals. If we define a
% path in graph coordinates, and the x and y directions are scaled
% differently, then simply rotating the graph coordinates will distort
% angles. The same is true of reflection. Therefore, we apply \gbc{vtr}
% (so we are in drawing coordinates) then rotate, then apply \gbc{inverse
% vtr}. This may be a mistake, or perhaps we should do it for all of
% these. For now, I'm sticking with the scheme I inherited. One can
% always use \gbc{coords} and \gbc{apply_t} if one wants the difference in
% scales ignored.
%
% \DescribeRoutine{rotatedpath}
% This returns the path rotated around point \gbc{p} by angle
% \gbc{th} in degrees.
%
% \DescribeRoutine{scaledpath}
% This returns the path scaled so that distances from the point
% \gbc{p} are multiplied by \gbc{s}.
%
% \DescribeRoutine{xslantedpath}
% This returns the path x-slanted with line $y = {}$\gbc{b}
% being the pivot rather than the x-axis.
%
% \DescribeRoutine{yslantedpath}
% This returns the path y-slanted with line $x = {}$\gbc{a}
% being the pivot rather than the y-axis.
%
% \DescribeRoutine{xscaledpath}
% This returns the path scaled so that vertical distances
% from the line $y={}$\gbc{a} are multiplied by \gbc{s}.
%
% \DescribeRoutine{yscaledpath}
% This returns the path scaled so that vertical distances
% from the line $x={}$\gbc{b} are multiplied by \gbc{s}.
%
% \DescribeRoutine{shiftedpath}
% This returns the path shifted by the vector (pair) \gbc{v}.
%
% \DescribeRoutine{reflectedpath}
% This returns the path relected about the line through the
% points \gbc{p} and \gbc{q}.
%
% \DescribeRoutine{xyswappedpath}
% Finally, this returns the path in which all coordinates
% have had the coordinates exchanged $(a, b) \to (b, a)$. Note that this
% is not the same as \gbc{reflectedpath ((0, 0), (1, 1))}, as it performs the
% reflection in graph coordinates, as its name implies. If \gbc{vtr} has
% not been changed (by \gbc{apply_t}) then \gbc{xyswappedpath} will
% convert vertical lines to horizontal and vice versa. The
% \gbc{reflectedpath} version will not when x and y are scaled differently,
% for then the line \gbc{(0, 0)--(1, 1)} is not at a 45 degree angle in
% device coordinates where drawing takes place.
%    \begin{macrocode}
vardef rotatedpath (expr p, th) expr f =
  f transformed vtr rotatedaround (p transformed vtr, th)
    transformed (inverse vtr)
enddef;
vardef scaledpath (expr p, s) expr f =
  f shifted -p scaled s shifted p
enddef;
vardef xslantedpath (expr b, s) expr f =
  f shifted (0, -b) slanted s shifted (0, b)
enddef;
def slantedpath = xslantedpath enddef;
vardef yslantedpath (expr a, s) expr f =
  f shifted (-a, 0) yslant s shifted (0, a)
enddef;
vardef xscaledpath (expr a, s) expr f =
  f shifted (-a, 0) xscaled s shifted (a, 0)
enddef;
vardef yscaledpath (expr b, s) expr f =
  f shifted (0, -b) yscaled s shifted (0, b)
enddef;
vardef shiftedpath (expr v) expr f = f shifted v enddef;
vardef reflectedpath (expr p, q) expr f =
  f transformed vtr
    reflectedabout (p transformed vtr, q transformed vtr)
    transformed (inverse vtr)
enddef;
vardef xyswappedpath expr f = f xyswap enddef;
vardef transformedpath (text Transformer) expr f =
    f Transformer
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{partialpath}
% \DescribeRoutine{gsubpath}
% It seems odd, in retrospect, that we got by with a user interface that
% didn't include any subpath operations. But recently a user asked for the
% ability to add an arrowhead to the \emph{middle} of a path, and it
% seemed best to provide a subpath and use existing commands to add an
% arrowhead on its end. This macro takes two fractions $\alpha$ and
% $\beta$ between 0 and 1, and a path \gbc{f}, and returns the subpath
% from $\alpha * {} $\meta{length of \gbc{f}} to $\beta * {}$\meta{length
% of \gbc{f}} of \gbc{f}. \gbc{gsubpath} is the same as \MF's subpath
% primitive, but follows the prefix macro syntax of accepting a path
% expression (rather than a primary) and wrapping the result in a
% \mfc{vardef}.
%    \begin{macrocode}
vardef partialpath (expr a, b) expr f =
  save p; path p;
  p := zconv (f) scaled (1/unit_of_length);
  save cumlen, totlen, idx, ta, tb;
  totlen := makelengtharray(cumlen) p;
%    \end{macrocode}
% \gbc{idx} holds the current index into the array \gbc{cumlen[]}. The
% code of \gbc{gettime} is optimized for sorted lengths. If we always
% found \gbc{ta} first, we'd have to re-initialize \gbc{idx} in case
% \gbc{tb < ta}, i.e., search from the beginning again.
%    \begin{macrocode}
  idx := 0;
  if a <= b:
    ta := gettime (cumlen, idx) (a*totlen);
    tb := gettime (cumlen, idx) (b*totlen);
  else:
    tb := gettime (cumlen, idx) (b*totlen);
    ta := gettime (cumlen, idx) (a*totlen);
  fi
  subpath (ta, tb) of f
enddef;
vardef gsubpath (expr a, b) expr f = subpath (a, b) of f enddef;

%    \end{macrocode}
%
%
% \section{Picture level operations}\label{picture}
%
% None of these operations are available in \MP. Mostly these are used by
% higher level operations. Those higher level operations are available in
% \MP, but need to be defined differently.
%
% \subsection{Bitwise logical operations}\label{logical}
%
% We have two types of operations. One type is a binary operator that
% takes two picture expressions and returns a picture, the other type
% returns nothing, but merely modifies a given picture variable. These
% take the name of a picture and a picture expression and modify the named
% one. The binary operators are not used elsewhere in graphbase except
% for \gbc{picsub}, which occurs in \gbc{picneg} and \gbc{shadepic}.
%
% \DescribeRoutine{mono}
% Here we define the bitwise logical operations:  and, or, xor, and
% difference. These mostly only work if all pixels have values 0 or 1.
% Since \MF{} allows other integer values, we define a \gbc{mono} operator
% that converts all pixels with weight ${}\ge 1$ to 1 and all pixels
% with weight ${}\le 0$ to 0.
%    \begin{macrocode}
%<*MF>
def mono (suffix u) = cull u keeping (1, infinity); enddef;

%    \end{macrocode}
% \DescribeRoutine{andto}
% \DescribeRoutine{picand}
% The bitwise and:  in the resulting picture, a pixel is \emph{on} if and
% only if it is \emph{on} in both \gbc{u} and \gbc{v}.
%    \begin{macrocode}
def andto (suffix u) (expr v) =
  mono (u); addto u also v; cull u keeping (2, 2);
enddef;
primarydef u picand v =
  begingroup  save t; picture t;
    t := u; andto (t, v); t
  endgroup
enddef;

%    \end{macrocode}
% \DescribeRoutine{orto}
% \DescribeRoutine{picor}
% The inclusive or: in the result, a pixel is \emph{on} if and only if it
% is \emph{on} in \gbc{u} or \gbc{v} or both.
%    \begin{macrocode}
def orto (suffix u) (expr v) =
  mono (u); addto u also v; cull u keeping (1, 2);
enddef;
primarydef u picor v =
  begingroup  save t; picture t;
    t := u; orto (t, v); t
  endgroup
enddef;

%    \end{macrocode}
% \DescribeRoutine{xorto}
% \DescribeRoutine{picxor}
% The exclusive or, also called the symmetric difference:
% in the result, a pixel is \emph{on} if and only if it is \emph{on} in
% \gbc{u} or \gbc{v}, but not both. These are not used elsewhere in
% \grafbase.
%    \begin{macrocode}
def xorto (suffix u) (expr v) =
  mono (u); addto u also v; cull u keeping (1, 1);
enddef;
primarydef u picxor v =
  begingroup  save t; picture t;
    t := u; xorto (t, v); t
  endgroup
enddef;

%    \end{macrocode}
% \DescribeRoutine{subto}
% \DescribeRoutine{picsub}
% The nonsymmetric difference: in the result, a pixel is \emph{on} if
% and only if it is \emph{on} in \gbc{u} and off in \gbc{v}.
%    \begin{macrocode}
def subto (suffix u) (expr v) =
  mono (u); addto u also -v; cull u keeping (1, 1);
enddef;
primarydef u picsub v =
  begingroup save t; picture t;
    t := u; mono (t); subto (t, v); t
  endgroup
enddef;

%</MF>
%    \end{macrocode}
%
% \subsection{Producing and modifying pictures}
%
% Here we define some slightly higher level commands that make use (in \MF)
% of the previous bitmap operations. In \MP, they mostly need different
% definitions, but we have merged most of them by providing a \MP{}
% alternative for the most frequently used bitmap operation in the
% previous section, \gbc{orto}. These operations either return a picture
% or modify a picture variable. They do not draw anything unless
% \gbc{active_plane} is the modified picture. All curves, points,
% dimension, etc., are in device coordinates.
%
% \DescribeRoutine{coloraddto}
% This has become a useful abbreviation. In \MF{} it adds when the color
% is not white, subtracts when it is. Grays are handles in \MF{} by
% appropriate preparation of \gbc{u} and \gbc{v}. See, for example, the
% code of \gbc{colorsafefill}. In \MP{} it is an abbreviation for the
% basic \mfc{addto} operation, and is defined only so that \MP{} and \MF{}
% can share the same higher level code.
%    \begin{macrocode}
def coloraddto (expr clr) (suffix u) (expr v) =
%<*MF>
  if clr < white :
    orto (u, v);
  else:
    subto (u) (v);
  fi;
%</MF>
%<MP>  addto u also v _wc_ clr;
enddef;

%<MP>def  orto (suffix u) (expr v) = addto u also v; enddef;
%<MP>
%    \end{macrocode}
%
% \DescribeRoutine{interior}
% This takes the following expresion, \gbc{c}, which must be a
% closed path, and returns the picture expression which is that path
% filled. The cull command (\MF{} only) retains negative pixels
% (converting them to positive). This way, clockwise contours are filled
% also. \gbc{interior} is one of the most used commands throughout the
% rest of \grafbase.
%
% We ignore color (new behavior), since the higher level commands now
% implement the coloring operations.
%    \begin{macrocode}
vardef interior expr c =
  save v; picture v; v := nullpicture;
  addto v contour (c.t_);
%<MF>  cull v dropping (0, 0);
  v
enddef;
%    \end{macrocode}
%
% \DescribeRoutine{interiors}
% This is followed by the name of an array of closed paths and
% returns the picture of the interiors of those closed paths. It builds
% the returned picture from \mfc{nullpicture} by successively adding
% the result of \gbc{interior} applied to each path in the array. This is
% only used once by \grafbase, in \gbc{clipsto}, which might be a better
% place to put the \mfc{for}-loop and not use this at all.
%    \begin{macrocode}
vardef interiors suffix cc =
  save _ints; picture _ints; _ints := nullpicture;
  for _idx = 1 upto cc:
    addto _ints also interior cc[_idx]);
  endfor
%<MF>  mono (_ints);
  _ints
enddef;

%    \end{macrocode}
%
% \subsection{Clipping}\label{basicclipping}
%
% \DescribeRoutine{clipto}
% \gbc{clipto} takes the name of a picture \gbc{vt} and a closed path
% \gbc{c} and modifies the picture leaving only the part inside the path.
% In \MP{} we just invoke the \mfc{clip} primitive.
%
% \DescribeRoutine{clipsto}
% This is similar, except it takes an array of paths \gbc{cc} and
% leaves what is interior to any of the paths. This is one case where
% \MP{} requires a substantially different point of view. In \MF, we
% create the interiors and `and' the result to the named picture. In \MP,
% we have to create the picture which is \gbc{vt} clipped to each separate
% path, and combine the results. \Grafbase{} only uses this in the
% \gbc{DoClip} command.
%    \begin{macrocode}
def clipto (suffix vt) expr c =
%<MF>  andto (vt, interior c);
%<MP>  clip vt to c;
enddef;
def clipsto (suffix vt, cc) =
%<MF>  andto (vt, interiors cc);
%<*MP>
  begingroup
    save _cl, _cl_; picture _cl, _cl_; _cl_ := nullpicture;
    for _idx = 1 upto cc:
      _cl := vt; clip _cl to cc[_idx]; addto _cl_ also _cl;
    endfor
    vt := _cl_;
  endgroup
%</MP>
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{Clipped}
% Here, rather than modify a given picture, \gbc{Clipped} is a vardef
% returning the picture which is the result of clipping the given picture
% to the path.
%
% Having found out that \mfc{clipped} is a \MP{} primitive, I've
% changed the name to the uppercase version, but keep the lowercase
% version for now (backward compatibility). We save the primitive
% meaning in \gbc{clipped_}. We also define \gbc{clip} in \MF{} for
% backward compatibility.
%    \begin{macrocode}
vardef Clipped (suffix vt) expr c =
  save _Cl; picture _Cl; _Cl := vt; clipto (_Cl) c; _Cl
enddef;
%<MP>let clipped_ = clipped;
def clipped = Clipped enddef;
%<MF>def clip = Clipped enddef;

%    \end{macrocode}
%
% \DescribeRoutine{picneg}
% The reverse video is easy in \MF, where \gbc{picneg} takes a picture
% name and a closed path, and returns the part of the picture inside the
% path, but with pixels reversed. In \MP{} we can only approximate this:
% we clip the given picture and add that (using  color \gbc{background})
% on top of the \gbc{interior} of the curve. This is not used elsewhere
% in \file{grafbase.mp} so it is not really important if \gbc{fillcolor}
% or \mfc{black} is the right choice.
%    \begin{macrocode}
vardef picneg (suffix vt) expr c =
%<*MF>
  mono (vt);
  (interior c) picsub vt
%</MF>
%<*MP>
  save _pn; picture _pn; _pn := nullpicture;
  addto _pn (interior c) _wc_ fillcolor;
  addto _pn also (Clipped (vt) c) _wc_ background;
  _pn
%</MP>
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{shpath}
% \gbc{shpath} does most of the work of drawing curves in \grafbase. It is
% called by \gbc{safedraw} which is used by almost all the commands that
% somehow draw a curve. It takes the name of a picture, a pen expression
% and a path expression. It draws the path on the picture with the pen.
% Since we use this (ultimately) for almost all drawing of paths, we
% automatically have the aspect ratio taken care of by the \mfc{.t_}
% macro.
%
% \DescribeRoutine{picpath}
% \gbc{picpath} accepts a path expression and returns a picture, which is
% either \gbc{nullpicture} (\gbc{penwd} too small) or the path drawn with
% \gbc{drawpen}. This is mostly how \gbc{shpath} gets used: curve drawing
% commands produce a picture with \gbc{picpath} and that gets used.
%
%    \begin{macrocode}
def shpath (suffix v) (expr q, f) =
  addto v doublepath (f.t_) withpen (q.t_);
enddef;

numeric minpenwd;
%<MF>minpenwd := 1;      % 1 pixel
%<MP>minpenwd := .05bp;  % 1 pixel at 1440dpi
vardef picpath expr d =
  save v; picture v; v := nullpicture;
  if penwd >= minpenwd :
    shpath (v, drawpen) (d);
%<MF>    mono (v);
  fi
  v
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{picdot}
% This places a specified picture expression (\gbc{w}) at a specified
% location (\gbc{p}) in a specified picture variable (\gbc{v}). It is used
% a number of places. It's \MF{} version takes care of the aspect ratio
% via \mfc{.t_}. This is how we draw points and symbols and dots along a
% curve: make the symbol into a picture \gbc{w} and add that picture with
% \gbc{picdot}.
%    \begin{macrocode}
def picdot (suffix v) (expr w, p) =
  addto v also
%<MP>    (w shifted p);
%<MF>    (w shifted hroundpair (p.t_));
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{setdot}
% \gbc{setdot} is named for its use rather than what it does. It takes a
% path and a scale (numeric expression) and returns a picture which is a
% drawing of the filled interior of the path (if it is a cycle) or the
% path itself (not a cycle). In \MF, we ensure that the scale is at least
% one pixel (assumes that the \gbc{apath} has dimension about 1 and
% \gbc{minpenwd} is 1). This usually assures that something is drawn. In
% \MP, \gbc{minpenwd} has the same purpose (though it is probably not
% necessary). This routine is used a number of times where dots are
% needed. Not in \gbc{shaded} (just below) but later in \gbc{shade}, an
% older command taking paths in graph coordinates.
%    \begin{macrocode}
vardef setdot (expr apath, sc) =
  if cycle apath : interior
  else           : picpath
  fi
%<MF>    (apath scaled emax(ceiling (sc), minpenwd))
%<MP>    (apath scaled emax(sc, minpenwd))
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{shadepic}
% We want to shade regions with a very regular pattern of black and white
% pixels for best appearance. Experiments show that symmetric dots
% (e.g., circles, squares) work better than non-symmetric (e.g.,
% rectangular). Circular dots are not significantly better than square at
% the size needed. I believe that the default result of \gbc{shade} looks
% reasonably good on my system. (That happens to produce two 3-pixel by
% 3-pixel square dots in a 8-pixel square on a 360dpi printer.) So we try
% to produce something similar. That is, the shading picture is 1.6bp
% (8 pixels at 360dpi) square.
%
% As a compromise (symmetric dots look better, but rectangular dots give
% more gray levels) we allow dots to be $k\times (k+1)$-pixels (assuming
% the aspect ratio is 1) rectangles. This produces twice the number of
% gray levels. In my 360dpi example we get 15 gray levels. The two
% farthest apart (4 by 4 dots versus 3 by 4 dots) differ by 1/8 in
% fraction of area of coverage (which we equate to grayness).
%
% The parameter \gbc{dims} needs to be a pair variable, and it will be
% assigned the actual dimensions of the picture returned. These routines
% are complicated by the fact that we may have an aspect ratio unequal to
% $1$. When \mfc{aspect_ratio = 1} the basic concept is simple: make an
% $n\times n$ square with two dots, each nearly $k \times k$ and nearly
% square, where $2k^2/n^2$ is the gray level needed.
%
% First \gbc{dims} is equated to half the size needed, the dot is created
% (\gbc{_shp}) and then the dot is repeated and \gbc{dims} is doubled.
% Finally, for dark gray (gray levels less than .5) we calculate the shade
% picture for \gbc{1 - greylevel} and subtract it from a black square.
%    \begin{macrocode}
%<*MF>
numeric shadepicsize; shadepicsize := 0.8bp;
vardef shadepic (suffix dims) (expr grparam) =
  pair dims;
  save _frac; _frac := 2*emin(grparam, 1 - grparam);
  save _hp, _vp, _dotwd, _dotht;
  if aspect_ratio < 1 :
    _vp := emax (2, hround(shadepicsize.o_));
    _hp := hround (_vp._o_);
    _dotwd := hround (_hp*sqrt _frac);
    _dotht := if _dotwd = 0 : 0
              else: hround (_hp*_vp*_frac/_dotwd)
              fi;
  else:
    _hp := emax (2, hround (shadepicsize));
    _vp := hround (_hp.o_);
    _dotht := hround (_vp*sqrt _frac);
    _dotwd := if _dotht = 0 : 0
              else: hround (_hp*_vp*_frac/_dotht)
              fi;
  fi
  dims := ( _hp, _vp._o_ );
  save _shp; picture _shp; _shp := nullpicture;
  addto _shp contour rect ((0,0), (_dotwd, _dotht));
  picdot (_shp, _shp, dims);
  dims := 2dims; mono (_shp);
  if grparam >= .5 :  _shp
  else : (interior (rect ((0,0), dims))) picsub _shp
  fi
enddef;

%</MF>
%    \end{macrocode}
%
% \DescribeRoutine{shaded}
% This fills the interior of a contour (device coordinates) with copies of
% \gbc{shadepic}. The routine \gbc{filledwith} is defined later, but its
% name reflects its effect: a bounding rectangle (corners at \gbc{ll} and
% \gbc{ur}) is filled with copies of a picture (\gbc{shpic} in this case),
% the picture having nominal dimensions \gbc{shdims} in this case.
%
% It may seem odd that black and white return the same thing. That is
% because white is handled in the calling routine by subtracting the
% result.
%
% The \gbc{gbbox} command is defined in the next section. The bounding
% rectangle it obtains is only approximate in \MF{}, but that is
% sufficient, since we only use it to produce things that are eventually
% clipped.
%
% I am not sure why we return \gbc{picpath} for non-cycles, but I think
% I once thought to make \gbc{shaded} a replacement for setdot to get gray
% dots (in the \gbc{polkadot} routine).
%    \begin{macrocode}
vardef shaded (expr clr) expr c =
  if cycle c :
%<*MP>
    save v; picture v;
    v := nullpicture;
    addto v contour c _wc_ clr;
    v
%</MP>
%<*MF>
    if (clr <= black) or (clr >= white) :
      interior c
    else:
      save vsh, shpic, shdims, ll, ur;
      picture vsh, shpic; pair shdims, ll, ur;
      shpic := shadepic (shdims) (clr);
      gbbox (c, ll, ur);
      vsh := filledwith (shpic) (shdims, ll, ur);
      Clipped (vsh) c
    fi
%</MF>
  else: picpath c % should we? or just make it null?
  fi
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{filledwith}
% This is one of the ways we obtain something other than a solid fill. The
% routines \gbc{polkadot}, \gbc{tess} and (in \MF) \gbc{shade} and
% \gbc{shaded} all use it.
%
% It takes a picture expression, along with its dimensions (the pair
% \gbc{dims}) in device coordinates, plus the opposite corners, \gbc{ll}
% and \gbc{ur}, of a boundingbox rectangle, and returns the picture which
% is that rectangle filled with copies of the picture.
%
% One might do this with two nested loops, but it turns out to be much
% (much!) faster to do two separate loops: the second one stacking the row
% built by the first loop.
%
% We try to do any rounding that might have been forgotten. This code
% takes a mode's aspect ratio into account so that (most) calling routines
% don't have to. (That is, \gbc{dims} should be measured in horizontal
% pixels, while \gbc{fwdims} is in actual pixels. I would have written
% this in terms of \gbc{picdot}, which already handles aspect, but it
% has got to be more efficient to do the aspect ratio calculations
% once rather than every time through the loop.)
%    \begin{macrocode}
vardef filledwith (expr pic, dims, ll, ur) =
  save b, v; picture b, v;
  b := v := nullpicture;
%<*MF>
  save fwdims, _ll, _ur; pair fwdims, _ll, _ur;
  fwdims := hroundpair (dims.t_);
  _ll   := floorpair  (ll.t_);
  _ur   := ur.t_;
  for s = xpart _ll step xpart fwdims until xpart _ur:
    addto b also pic shifted (s, 0);
  endfor
  for s = ypart _ll step ypart fwdims until ypart _ur:
    addto v also b shifted (0, s);
  endfor
  mono (v);
%</MF>
%<*MP>
  for s = xpart ll step xpart dims until xpart ur:
    addto b also pic shifted (s, 0);
  endfor
  for s = ypart ll step ypart dims until ypart ur:
    addto v also b shifted (0, s);
  endfor
%</MP>
  v
enddef;

%    \end{macrocode}
%
% \subsection{Hatching}\label{basichatching}
%
% \DescribeRoutine{thatchf}
% This is the all-purpose macro called by the other macros that
% fill a region with hatching. It takes the name of a picture \gbc{v},
% a transform expression \gbc{CT}, a numeric expresion \gbc{sp} giving the
% space between hatch lines, and two pairs, \gbc{a} and \gbc{b},
% that represent the lower left and upper right limits of a rectangle.
% The expression \gbc{sp} must be nonzero. The calling macros should take
% care of that.
%
% It modifies the picture by adding to it the rectangle full of
% hatching lines spaced \gbc{sp} apart. The rectangle is initially upright
% and the lines horizontal, but they are drawn transformed by the
% transform \gbc{CT}. This is how diagonal hatching is accomplished: the
% transform is a rotation.
%
% We guard against \gbc{ypart a} being greater than \gbc{ypart b} or
% \gbc{sp} being negative: \gbc{_sp} is \gbc{sp} modified to have the same
% sign as \gbc{ypart (b - a)}. Thus, repeatedly adding it to \gbc{ypart a}
% gets one to \gbc{ypart b}. We make the starting value an integer
% multiple of \gbc{_sp} to make sure adjacent regions don't have jarringly
% misaligned hatch lines. (I guess that's the reason; this algorithm
% predates me.)
%    \begin{macrocode}
vardef thatchf (suffix v) (expr CT, sp, a, b) =
  save _sp;
  _sp = signof (ypart(b - a)) abs(sp);
  for _y = _sp*( ceiling ((ypart a)/_sp) ) step _sp until ypart b:
    shpath (v, hatchpen)
      ( ( (xpart a, _y)--(xpart b, _y) ) transformed CT );
  endfor
%<MF>  mono(v);
enddef;

%    \end{macrocode}
%
% \subsection{Tiles}\label{tiles}
%
% Tesselations are a generalization type of fill in which a rectangular
% pattern is repeated throughout a region. The rectangular pattern is
% called a tile. We provide here an environment in which the drawing commands
% add to a picture variable other than \mfc{currentpicture}. We do this
% very simply by redefining \gbc{active_plane}, localizing the
% redefinition between \gbc{tile} and \gbc{endtile}
%
% \DescribeRoutine{tile}
% \DescribeRoutine{endtile}
% \gbc{tile} accepts one suffix parameter, the name of the tile, followed
% by three numeric expressions and a boolean. \gbc{unit} should be a
% dimension in device units and is the unit of length for all high level
% drawing commands within the environment. \gbc{height} and \gbc{width}
% specify the size of the tile in multiples of \gbc{unit}, and
% \gbc{clipit} is a boolean that determines if the resulting picture is
% clipped to the rectangle these parameters determine. For example,\\
% \indent \gbc{tile (fred)(1in, 1, 2, true)} \\
% starts a tile named \gbc{fred} which will be 1 inch wide and 2 inches
% tall, and any marks that extend beyond this rectangle are clipped off.
%
% In \MF, the picture should be a whole number of pixels in size, so that
% the tiles fit perfectly together. The fact that shifts must be integer
% values is only mildly relevant, because the placement code does the
% rounding.
%
% For tesselation (filling with tiles), we need to know various properties
% of the tile so, in fact, a tile is a composite object consisting of a
% picture, \gbc{fred.pic} in our example (the actual tile), two numerics
% \gbc{fred.wd} and \gbc{fred.ht} (the device dimensions) and a boolean
% \gbc{fred.clipon}.
%    \begin{macrocode}
def tile (suffix atile) (expr unit, width, height, clipit) =
  picture atile.pic; atile.pic := nullpicture;
  numeric atile.wd, atile.ht;
%<MF>  (atile.wd, atile.ht) = round ((width, height)*unit);
%<MP>  (atile.wd, atile.ht) = (width, height)*unit;
  boolean atile.clipon; atile.clipon := clipit;
  begingroup
%    \end{macrocode}
% We simply do a subset of what we do in \gbc{beginmfpic}, redefining
% \gbc{active_plane} so that all drawing commands that add to it will
% contribute to the tile.
%    \begin{macrocode}
%    save active_plane;
    save active_plane;
    def active_plane = atile.pic enddef;
    save ztr, vtr; transform ztr, vtr;
    ztr := identity scaled unit; vtr := ztr;
%    \end{macrocode}
% And if clipit is true we set the \gbc{ClipPath} to the bounding
% rectangle so that all commands that respect \gbc{ClipOn} will draw only
% inside the tile. And in case some don't, \gbc{endtile} clips it all
% anyway.
%    \begin{macrocode}
    save ClipOn; boolean ClipOn;
    if clipit :
      ClipOn := true;
      save ClipPath; path ClipPath[];
      ClipPath = 1;
      ClipPath[1] = rect(origin, (atile.wd, atile.ht));
    else:
      ClipOn := false;
    fi
enddef;
def endtile =
    DoClip (active_plane);
  endgroup
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{is_tile}
% To test whether \gbc{atile} is really a tile, just see if all the
% components are defined and of the correct type.
%    \begin{macrocode}
vardef is_tile (suffix atile) =
  (known atile.pic   ) and (picture atile.pic   ) and
  (known atile.wd    ) and (numeric atile.wd    ) and
  (known atile.ht    ) and (numeric atile.ht    ) and
  (known atile.clipon) and (boolean atile.clipon)
enddef;

%    \end{macrocode}
%
% \section{Bounding boxes of paths}\label{bboxes}
%
% To fill a region with other than a solid fill, we normally fill a
% rectangle with copies of a picture (or a path) and then clip to the
% boundary curve. In order not to place too many copies, we try to find a
% rectangle that is not too much larger than that region. For this we have
% the macro \gbc{gbbox} which takes a path expression and two pair
% variables, and sets the pairs to the lower left corner and upper right
% corner, respectively, of a rectangle enclosing the path. In \MF, this
% finds a rather loose box, the smallest rectangle containing all the
% control points and all the nodes of the path. Or rather it used to do
% that. Now we break the path into twice as many nodes and use the control
% points relative to that, which gives a tighter box. Both algorithms make
% use of the fact that the convex hull of the points and controls for a
% path segment contains the segment.
%
% The bounding box macros are used on paths in device coordinates, but
% there is no intrinsic reason that has to be so: they will return the
% bounding box in whatever coordinates the supplied path is in.
%
% We also have \gbc{tightbbox} and \gbc{tbbox} in \MF{} but these are no
% longer used so we'll omit them from \grafbase, but keep them in the
% documentation for now.
%
% \DescribeRoutine{tightbbox}
% Calculate tight bounding box points \gbc{ll} and \gbc{ur} for path
% \gbc{g}. The tight bounding box is accurate to the limits of the
% \mfc{solve} macro, which is the numeric \mfc{tolerance}, which we set to
% \mfc{.5} (pixel). This is only called by \gbc{tbbox}, which is never
% used.
%
% \DescribeRoutine{xlimit}
% \DescribeRoutine{ylimit}
% \gbc{xlimit(x)} returns a value of true if the path \gbc{g} doesn't
% cross the vertical line at \gbc{x}. \gbc{ylimit(y)} is the same for
% the horizontal line at \gbc{y}.
%    \begin{macrocode}
%<*unused>
vardef tightbbox (expr g) (suffix ll, ur) =
  % true iff horizontal at y does not intersect g:
  vardef xlimit (expr x) =
    (((x, -infinity)--(x, infinity)) intersectiontimes g) < origin
  enddef;
  % true iff vertical at x does not intersect g:
  vardef ylimit (expr y) =
     (((-infinity, y)--(infinity, y)) intersectiontimes g) < origin
  enddef;
  interim tolerance := .5;
  ll := ( (solve xlimit (-infinity, xpart pnt 0 (g))),
          (solve ylimit (-infinity, ypart pnt 0 (g))) );
  ur := ( (solve xlimit ( infinity, xpart pnt 0 (g))),
          (solve ylimit ( infinity, ypart pnt 0 (g))) );
  if showbbox :
    noclip ( safedraw rect (ll, ur) );
  fi
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{tbbox}
% \gbc{tbbox} simply calls \gbc{tightbbox} on each of an array of paths
% and takes the maximum of all the upper right corners and the minimum of
% all the lowerleft. Same syntax as \gbc{tightbbox} except that, instead
% of a path parameter, \gbc{g} must be the name of an array of paths.
%
% This macro is never used elsewhere in \grafbase. Changed recently to
% use the new \gbc{pairmin} and \gbc{pairmax} macros. This avoids two
% \mfc{for} loops (which seem to be something of a \MF{} bottleneck).
%    \begin{macrocode}
vardef tbbox (suffix g) (suffix ll, ur) =
  save _gll, _gur; pair _gll, _gur;
  tightbbox (g1, ll, ur);
  for _idx = 2 upto g:
    tightbbox (g[_idx], _gll, _gur);
    ll := pairmin(ll, _gll); ur := pairmax(ll, _gur);
  endfor
  if showbbox : noclip ( safedraw rect (ll, ur) ); fi
enddef;
%</unused>
%    \end{macrocode}
%
% \DescribeRoutine{gbbox}
% One can get a rather loose bounding rectangle by using the fact that
% each segment of a path (from \mfc{point j of g} to \mfc{point j+1 of g})
% is contained in the convex set determined by all 4 control points for
% that segment. So we get a containing rectangle by getting the smallest
% and largest values of the x- and y-coordinates of all those points. We
% can get a considerably tighter fit if we cut each segment in half.
%
% \DescribeRoutine{ctrlsbbox}
% There is a difference between `\mfc{postcontrol j of (subpath (j,j+1/2)
% of p)}' and `\mfc{postcontrol j of p}'. To gain the tighter box we have
% to look at the former. \gbc{ctrlsbbox} just updates the previously found
% corners \gbc{ll} and \gbc{ur} of the bounding box based on the controls
% of the path segment \gbc{p}, and the calling routine \gbc{gbbox} passes
% it half a segment at a time. We don't actually examine both endpoints of
% the half-segment, only those that are nodes of the original path. The
% reason is that the subdivision points are already on the line segment
% connecting the controls of the subpaths on either side. We've given this
% potentially unlimited accuracy by allowing the number of subdivisions
% (\gbc{bbox_split}) to be arbitrary. We choose 2 for the default.
%
% This description applies only to \MF, because \MP{} has primitive
% facilities for determining the bounding box.
%
% \DescribeRoutine{pnt}
% \DescribeRoutine{pre}
% \DescribeRoutine{post}
% I got tired of typing long expressions like `\gbc{precontrol length p of p}',
% and now use the abbreviation `\gbc{pre[length p](p)}'.
%    \begin{macrocode}
vardef pnt@#  (expr p) = point       @# of p enddef;
vardef pre@#  (expr p) = precontrol  @# of p enddef;
vardef post@# (expr p) = postcontrol @# of p enddef;

vardef gbbox (expr g) (suffix ll, ur) =
%<MP>  ll := llcorner g; ur := urcorner g;
%<*MF>
  save _s; _s := emax(1, ceiling bbox_split);
  ur := ll := pnt 0 (g);
  if (length g) > 0 :
    for _j = 1 upto length g:
      ll := pairmin(ll, pnt[_j] (g)); ur := pairmax(ur, pnt[_j] (g));
    endfor
    for _j = 1 upto _s*(length g):
      ctrlsbbox (subpath ((_j-1)/_s, _j/_s) of g) (ll, ur);
    endfor
  fi
%</MF>
  if showbbox : noclip ( safedraw rect (ll, ur) ); fi
enddef;

%<*MF>
numeric bbox_split; bbox_split := 2;
def ctrlsbbox (expr p) (suffix ll, ur) =
  ll := pairmin (ll, post0 (p)); ll := pairmin (ll, pre 1 (p));
  ur := pairmax (ur, post0 (p)); ur := pairmax (ur, pre 1 (p));
enddef;

%</MF>
%    \end{macrocode}
%
% \section{Device coordinate rendering
% commands}\label{basicrendering}
%
% We use the word rendering to refer to commands that accept a path
% expression as one parameter and use it to modify the \gbc{active_plane}.
% All the commands in this section expect paths, pairs and dimensions in
% device coordinates.
%
% \subsection{Drawing}\label{basicdrawing}
%
% \DescribeRoutine{safedraw}
% \gbc{safedraw} accepts a path expression, and adds the result to
% \gbc{active_plane}. It is the first drawing command to draw
% exclusively on \gbc{active_plane}. This is the first of many uses of
% \gbc{coloraddto}. In \MP{} it is basically the primitive \mfc{addto
% ... also ... withcolor ...}, but in \MF{} it adds when the color is less
% than 1 (gray or black), otherwise it subtracts (white).
%
% \DescribeRoutine{colorsafedraw}
% \gbc{safedraw} merely calls colorsafedraw, which calls \gbc{picpath},
% which calls \gbc{shpath}. One reason for this roundabout path
% is to support older files (\gbc{colorsafedraw} not defined). Another
% is that color handling in \MF{} requires a picture with pixels of
% weight 1 or 0 only (\gbc{picpath}). Moreover, \gbc{shpath} guarantees
% that the mode's aspect ratio is respected.
%    \begin{macrocode}
def safedraw = colorsafedraw (drawcolor) enddef;
vardef colorsafedraw (expr clr) expr d =
  save v; picture v; v := picpath d;
  DoClip (v);
  coloraddto (clr) (active_plane, v);
enddef;

%    \end{macrocode}
%
% \subsection{Filling}\label{basicfilling}
%
% \DescribeRoutine{NoCycleWarn}
% This is a common warning for all those commands that require a cycle
% (closed) path but an open path is supplied. In addition to the warning
% in those commands, we also call \gbc{safedraw} for debugging purposes.
% We make no attempt to color the path, but maybe we should.
%
% \DescribeRoutine{safefill}
% \DescribeRoutine{colorsafefill}
% \DescribeRoutine{safeunfill}
% These three take one parameter that is a path expression, and
% \gbc{colorsafefill} takes another that is a color. These commands fill
% (or unfill) it in the \gbc{active_plane}. In \MF, when the color is
% strictly between $0$ and 1, a gray fill is simulated with the
% \gbc{shaded} macro.
%
% To simulate the effect of painting over in gray, the \MF{} version
% clears the region before adding the shaded fill.
%
% \gbc{safeunfill} is just \gbc{safefill} with the color \mfc{background}.
% In \MF{}, when \gbc{background = white = 1}, this is detected by
% \gbc{coloraddto} which then subtracts the picture.
%    \begin{macrocode}
def NoCycleWarn expr s =
  GBmsg  s & " cannot be applied to an open path. "
           & "The path will be drawn instead.";
enddef;

def safefill = colorsafefill (fillcolor) enddef;
vardef colorsafefill (expr clr) expr c =
  if cycle c :
    save v; picture v; v := interior c;
    DoClip (v);
%<*MF>
    if (clr > black) and (clr < white) :
      subto (active_plane) (v);
      v := nullpicture;
      v := shaded (clr) c;
    fi
%</MF>
    coloraddto (clr) (active_plane, v);
  else: NoCycleWarn "fill"; safedraw c;
  fi
enddef;
def safeunfill expr c =
  if cycle c : noclip (colorsafefill (background) c);
  else: NoCycleWarn "unfill"; safedraw c;
  fi
enddef;

%    \end{macrocode}
%
% \subsection{Clipping}\label{clipping}
%
% \DescribeRoutine{safeclip}
% This applies \gbc{clipto} to the active drawing plane. It follows the
% pattern started with \gbc{safefill} where commands that require a cycle
% will \gbc{safedraw} non-cyclic paths.
%    \begin{macrocode}
def safeclip expr c =
  if cycle c : clipto (active_plane) c;
  else: NoCycleWarn "clip"; safedraw c;
  fi
enddef;

%    \end{macrocode}
%
% \section{Rendering: the highest level commands}\label{rendering}
%
% \DescribeRoutine{store}
% Now we come to the highest level rendering operations. These are the
% commands written to the output file by \mfpic. They accept a path in
% \emph{graph} coordinates, convert it to device coordinates, rendering
% the result, and return the original path. This way one can render a
% path and pass it on to the preceding command for further processing.
% This is how \mfpic{} implements multiple prefix macros. However, this
% cannot be kept up because \MF{} abhors an isolated expression. Therefore
% we provide a command that accepts a path and doesn't pass it on. In
% theory, it could do nothing, but in \mfpic{} we store the path in
% \gbc{curpath}, making every \mfpic{} figure a path assigment command
% and the rendering is merely a side-effect.
%
% \DescribeRoutine{stored}
% The macro \gbc{stored} performs \gbc{store}, but passes the same path as
% its return value. This is used by \mfpic{} to implements the \cs{store}
% command, allowing it to also be a prefix macro
%
% I don't know if \gbc{store} needs to employ \mfc{hide()}, but it seems
% not to hurt.
%    \begin{macrocode}
def store (suffix fs) expr f =
hide(
  if (not path f) and (not pair f) :
    GBerrmsg ("Second argument to `store' must be a path or pair")
      "";
  fi
  if not path fs : path fs; fi
  fs := f
)
enddef;
vardef stored (suffix fs) expr f = store (fs) f; f enddef;

%    \end{macrocode}
%
% \subsection{Drawing}\label{drawing}
%
% \DescribeRoutine{drawn}
% \DescribeRoutine{colordrawn}
% \gbc{drawn} and \gbc{colordrawn} accept a path
% expression \gbc{f} and return the same. In between, \gbc{zconv(f)} is
% subjected to \gbc{colorsafedraw}.
%    \begin{macrocode}
def drawn = colordrawn (drawcolor) enddef;
vardef colordrawn (expr clr) expr f =
  colorsafedraw (clr) (zconv (f)); f
enddef;

%    \end{macrocode}
%
% \subsection{Filling, unfilling and clipping}\label{filling}
%
% \DescribeRoutine{filled}
% \DescribeRoutine{colorfilled}
% \DescribeRoutine{unfilled}
% \DescribeRoutine{Clip}
% These subject \gbc{zconv(f)} to \gbc{colorsafefill}, \gbc{safeunfill} or
% \gbc{safeclip}. The name \gbc{clip} (lowercase) is taken: it is a \MP{}
% primitive and an old \file{grafbase.mf} command we keep for compatibility.
%
%    \begin{macrocode}
def filled = colorfilled (fillcolor) enddef;
vardef colorfilled (expr clr) expr c =
  colorsafefill (clr) zconv (c); c
enddef;
vardef unfilled expr c = safeunfill zconv (c); c enddef;
vardef Clip expr c = safeclip zconv(c); c enddef;

%    \end{macrocode}
%
% \subsection{Shading}\label{shading}
%
% Shading is accomplished differently in \MP{} from \MF; however, many of
% the same parameters are used for compatibility (so that \MP{} can be run
% on a \file{.mf} created for \grafbase{} by \mfpic). In \MP, shading is
% just filling with some level of gray. In \MF, we place a pattern of
% small dots with the size and spacing adjustable. For compatibility,
% \MP{} accepts these size and spacing parameters, but simply uses them to
% calculate the darkness of gray.
%
% Ideally (i.e., for best appearance) one would shade with single pixels
% placed in a regular pattern. Unfortunately, this is the most memory
% intensive for \MF, which stores bitmaps by scanning each row of pixels,
% and records where changes from black to white occur. We do use simple
% dots, but make them quite a bit larger than one pixel. By default,
% \gbc{0.5bp} in diameter, spaced (in \mfpic) a default \gbc{1pt} between
% centers.
%
% \DescribeRoutine{shade}
% This is the old \gbc{shade} macro, filling a contour with small dots.
% The shape and size of the dot used can be selected by defining
% \gbc{shadedotpath} and \gbc{shadewd}.
%
% A closed path representing the boundary of one dot of unit size,
% \gbc{shadedotpath} is initialized to a circle.
%
% The parameter \gbc{sp} is the distance between the centers of the dots in
% device coordinates, and \gbc{f} is the path to be filled in \emph{graph
% coordinates}.
%
% As usual, if the path is not closed, we draw the curve instead. If the
% spacing is too small relative to \gbc{shadewd}, we fill the curve. Otherwise the \gbc{filledwith} macro is used to fill with copies of
% a dot picture. For speed, it actually fills with a two-dot picture.
%    \begin{macrocode}
numeric shadewd; shadewd := 0.5bp;
path shadedotpath;
shadedotpath := fullcircle; % unitsquare;

vardef shade (expr sp) expr f =
  save g; path g; g := zconv (f);
%    \end{macrocode}
% It seems clear that the gray level (\gbc{gr}) should depend
% quadratically on \gbc{shadewd/sp}. Also, there is a point where the
% result is essentially black and a fill would be more efficient.
% The value .88 is arrived at empirically and is a compromise so that
% \MF{} and \MP{} produce similar levels of gray on both printers available
% to me. Theoretically, no white will appear when
% \gbc{sqrt(2)*shadewd/sp >= 1}
%    \begin{macrocode}
  save gr; numeric gr;
  gr :=  1 - (.88*abs(shadewd)/sp)**2;
  if not cycle g : NoCycleWarn "shade"; safedraw g;
  elseif gr <= 0 : safefill g;
  else:
%<*MF>
    save ll, ur; pair ll, ur;
    gbbox (g, ll, ur);
    ll := floorpair (ll);
%    \end{macrocode}
%
% What we do is draw a row of dots and stack the rows to fill a rectangle.
% We call \gbc{filledwith} to draw these copies. To save a little memory
% we do this twice with half the dots each time. The second set
% interleaves the first and is staggered from the first by half the
% horizontal spacing. I wonder which which uses less memory, rendering
% \gbc{v} unknown with \mfc{picture v}, or null with \mfc{v := nullpicture}?
%
% Shifts of pictures need to be by integer number of pixels, but this is
% ensured by \gbc{filledwith}, using \mfc{ceiling} to define \gbc{dx} is
% more to ensure it is not rounded down to 0.
%    \begin{macrocode}
    save sh, v; picture sh, v;
    save dx; dx := ceiling(sp/(sqrt 2));
    sh := setdot (shadedotpath, abs(shadewd));
    v := filledwith (sh, 2(dx, dx), ll, ur);
    DoClip(v);
    orto (active_plane, Clipped (v) g);
    sh := sh shifted hroundpair ((dx, dx).t_);
    v := nullpicture;
    v := filledwith (sh, 2(dx, dx), ll, ur);
    DoClip(v);
    orto (active_plane, Clipped (v) g);
%</MF>
%    \end{macrocode}
% In \MP{} we just fill with gray. The gray level having been calculated
% at the beginning.
%    \begin{macrocode}
%<*MP>
    colorsafefill (gr*white) g;
%</MP>
  fi
  f
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{polkadot}
% The macro \gbc{polkadot} is intended to fill a region with \emph{large}
% dots. The diameter, \gbc{polkadotwd}, is initialized to \mfc{5bp}. The
% code is similar to that of \gbc{shade}, but here we attempt a hexagonal
% array: each dot surrounded by 6 equally spaced dots. Because of their
% larger size and presumably larger spacing, we can be a little less
% efficient and so we aim for improved visual appearance. We do what we
% can to avoid unsightly slivers of partial dots, and only draw a dot if
% its center lies in the bounding box.
%
% We also permit the circles to overlap, and only replace the code with a
% fill if the dots overlap so much that no background can show (this assumes
% that \gbc{polkadotpath} is a circle).
%
% If the space \gbc{sp} and \gbc{polkadotwd} are too small, there will
% be a great many tiny dots. It is quite easy to overflow \MP{} capacity
% and the dots are really ugly. In \MF, we already have \gbc{shade} to
% place tiny dots. Therefore, we merely fill if \gbc{sp} is less that a
% certain minimum, even if that minimum is greater than \gbc{polkadotwd}.
%    \begin{macrocode}
polkadotwd := 5bp;
mindotspace := 1bp;
path polkadotpath; polkadotpath := fullcircle;

vardef polkadot (expr sp) expr f =
  save g; path g; g := zconv (f);
  if not cycle g : NoCycleWarn "polkadot"; safedraw g;
  elseif sp <= emax (2*polkadotwd/3, mindotspace) :
    safefill g;
  else:
    save ll, ur; pair ll, ur;
    gbbox (g, ll, ur);
%    \end{macrocode}
% As with \gbc{shade}, we shift alternate rows by half the spacing between
% dot centers, \gbc{dx}. The vertical shift \gbc{dy} is slightly larger
% (relatively speaking) and the horizontal smaller. We also apply a
% horizontal and vertical shift to avoid small pieces of dots. What it does
% is take only those dots whose centers lie in the bounding box, and center
% the whole array relative to that box.
%    \begin{macrocode}
    save dx, dy; dx := sp/2; dy := dx*(sqrt 3);
    hshift := ((xpart (ur - ll)) mod dx)/2;
    vshift := ((ypart (ur - ll)) mod dy)/2;
%    \end{macrocode}
% Here, \gbc{p} is the center of the first dot in the lower left corner.
%    \begin{macrocode}
    save p, dims; pair p, dims;
    p := ll + (hshift, vshift);
    dims :=  2(dx, dy);
%    \end{macrocode}
% The extra \MF{} code is to clear what's under the dots in case they
% are gray dots. And then to `gray' the dots when fillcolor demands it.
%    \begin{macrocode}
    save v, thepolkadot; picture v, thepolkadot;
    thepolkadot := setdot (polkadotpath, polkadotwd);
    v := filledwith (thepolkadot, dims, p, ur);
    p := p + (dx, dy);
    orto (v, filledwith (thepolkadot, dims, p, ur));
    DoClip (v); clipto (v) g;
%<*MF>
    if (fillcolor > black) and (fillcolor < white): % gray
      subto (active_plane) (v);
      thepolkadot :=
        shaded (fillcolor) polkadotpath scaled ceiling(polkadotwd);
      v := filledwith (thepolkadot, dims, p, ur);
      p := p - (dx, dy);
      orto (v, filledwith (thepolkadot, dims, p, ur));
      DoClip (v); clipto (v) g;
    fi
%</MF>
    coloraddto (fillcolor) (active_plane) (v);
  fi
  f
enddef;

%    \end{macrocode}
%
% \subsection{Hatching}\label{hatching}
%
% \DescribeRoutine{thatch}
% \DescribeRoutine{colorthatch}
% Hatch interior of path \gbc{f} (graph coordinates) with lines at angle
% \gbc{theta}, spaced \gbc{sp} apart (device coordinates). As usual an
% unclosed path is simply drawn. The thickness of the lines is determined
% by \gbc{hatchwd}. If \gbc{sp} is not greater than \gbc{abs(hatchwd)}, we
% simply fill. This will ensure \gbc{thatchf} is called only for positive
% \gbc{sp}.
%
% We find the bounding box of the backward rotated path, so when that box
% is filled with lines and rotated, it will cover the path. After calling
% \gbc{thatchf} we add the picture, clipped to the path.
%    \begin{macrocode}
def thatch = colorthatch (hatchcolor) enddef;
vardef colorthatch (expr clr) (expr sp, theta) expr f =
  save g; path g; g := zconv (f);
  if not cycle g : NoCycleWarn "hatch"; safedraw g;
  elseif sp <= abs(hatchwd) : colorsafefill (clr) g;
  else:
    save v; picture v; v := nullpicture;
    save CT; transform CT; CT := identity rotated theta;
    save ll, ur; pair ll, ur;
    gbbox (g transformed inverse CT, ll, ur);
    thatchf (v, CT, sp, ll, ur);
    DoClip(v);
    coloraddto (clr) (active_plane) (Clipped (v) g);
  fi
  f
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{hhatch}
% \DescribeRoutine{vhatch}
% \DescribeRoutine{lhatch}
% \DescribeRoutine{rhatch}
% \DescribeRoutine{xhatch}
% We offer some special cases, calling \gbc{thatch} with different angles.
% These take only the spacing (in device coordinates) and a path
% expression (in graph coordinates) as parameters. \gbc{hhatch} has angle
% 0 and so produces horizontal lines; \gbc{vhatch} produces vertical
% lines; \gbc{lhatch} produces lines tilted to the left (running from
% upper left to lower right), and \gbc{rhatch} produces lines running from
% lower left to upper right. \gbc{xhatch} produces cross-hatching, and
% essentially runss \gbc{lhatch} and \gbc{rhatch}.
%
% Color is a parameter only for \gbc{colorxhatch}. The reason for that
% is to make code written by \mfpic{} simpler. The \mfpic{} commands for
% the others actual write calls to \gbc{thatch} or \gbc{colorthatch}.
%
%    \begin{macrocode}
def hhatch (expr sp) = thatch (sp, 0)   enddef;
def vhatch (expr sp) = thatch (sp, 90)  enddef;
def lhatch (expr sp) = thatch (sp, -45) enddef;
def rhatch (expr sp) = thatch (sp, 45)  enddef;

def xhatch = colorxhatch (hatchcolor) enddef;
vardef colorxhatch (expr clr, sp) expr f =
  colorthatch (clr) (sp, 45) colorthatch (clr) (sp, -45) f
enddef;

%    \end{macrocode}
%
% \subsection{Tesselations}\label{tess}
%
% \DescribeRoutine{tess}
% Tesselation of interior of closed path is filling with copies of a tile
% (see subsection~\ref{tiles}). The path is in graph units, the tile is a
% suffix parameter and is the name of a previously defined tile. In fact,
% one can create the picture any way one likes (it doesn't have to be with
% the \gbc{tile} environment). Thus \gbc{tess (fred) f;} will work as long
% as \gbc{fred.pic} is a picture \gbc{fred.wd} is its width, etc.
%    \begin{macrocode}
vardef tess (suffix atile) expr c =
  save _g; path _g; _g := zconv (c);
  if not is_tile (atile) :
    GBerrmsg ("Tile parameter " & str atile & " of tess() is invalid")
      "This tile may be undefined or incorrectly defined. " &
      "If you proceed, tess() will be abandoned and the curve " &
      "merely drawn."; safedraw _g;
  elseif not cycle _g : NoCycleWarn "tess"; safedraw _g;
  else:
    save _ll, _ur; pair _ll, _ur;
    gbbox (_g, _ll, _ur);
    save _ts; picture _ts;
    _ts := filledwith (atile.pic, (atile.wd, atile.ht), _ll, _ur);
    DoClip (_ts);
    orto (active_plane, Clipped (_ts) _g);
  fi
  c
enddef;

%    \end{macrocode}
%
% \subsection{Dots and Dashes}\label{dashes}
%
% \MP{} has some builtin commands for drawing a dashed or dotted curve,
% but \MF{} does not. Considerable effort went into making this possible
% (before \MP{} even existed). The code is reasonably fast and the result
% is actually better quality than the builtin commands of \MP{} so we use
% the same code in both versions. The \grafbase{} dashing code is designed
% to produce a whole number of dashes on any curve to which it is applied,
% and (usually) to begin and end with half a dash (so that when dashed
% curves abut the result looks decent). The built-in facilities do neither
% of these. In addition, the dotting code is flexible enough that copies
% of any picture (not just a circular dot) can be used to trace a path.
%
% The general command is \gbc{gendashed} which takes a suffix parameter
% (the name of a \emph{dashing pattern}, see below) and a path expression
% in graph coordinates.
%
% A dashing pattern \gbc{pat} consists of three arrays, \gbc{pat.start},
% which is used to draw the beginning of the path (half a dash in the
% default \gbc{dashed} command), \gbc{pat.finish}, which is used to draw
% the other end, and \gbc{pat.rep}, which is the repeating pattern for
% drawing the rest of the curve. Each of these is an \emph{array} of
% numerics. These should be lengths, in device units, and represent the
% lengths of dashes and spaces.
%
% We start with some variables and their defaults, some of which are no
% longer used. \gbc{segment_split} is used in the code for finding the
% approximate length of a curve. This is needed so that adjustments
% can be made so that a whole number of repeated patterns are used.
% \gbc{dashsize} and \gbc{dashgap} are no longer used. Originally they
% gave the lengths of default dashes and the spaces in between.
% \gbc{dash_start} and \gbc{dash_finish} are the fractions of a dash
% length that are used at the start and finish if the command
% \gbc{dashpat} is used to create the dashing pattern.
%
% And \gbc{unit_of_length} is used to adjust numbers downward and avoid
% arithmetic overflow. For a 1200dpi \MF{} mode, a curve 4 inches long
% will be over \mfc{infinity} pixels in length, but only 40 deci-inches.
% Our default for this variable is just that: 1/10 inch.
%    \begin{macrocode}
if unknown segment_split : segment_split := 8; fi
if unknown dashsize :     dashsize  := 3bp; fi
if unknown dashgap :      dashgap := dashsize + 2penwd; fi
if unknown dash_finish :   dash_finish := .5; fi
if unknown dash_start :    dash_start := .5; fi
if unknown unit_of_length : unit_of_length := 0.1in; fi

%    \end{macrocode}
%
% \DescribeRoutine{gendashed}
% The main idea is to have a list of lengths represent the repeating
% pattern of dashes and dots. These lengths represent a dash length,
% followed by a gap length, etc., so there are an even number. To start
% dashing a path, we normally take a fraction (\gbc{dash_start}) of the
% first dash, then the rest of the pattern. We continue by repeating the
% pattern as many times as will fit, then we finish off with a fraction
% (\gbc{dash_finish}) of the first dash. A dash of length 0 is a dot. A
% gap of length 0 is OK, but useless unless it's between a dot and a dash,
% and you arrange for the dot's size to be different from \gbc{penwd}.
%
% We generalize this so that \gbc{pat.start} and \gbc{pat.finish} can be
% any patterns, not necessarily related to \gbc{pat.rep}. Also "dots" can be
% symbols like \gbc{Triangle}. We also supply (later) the \gbc{dashpat}
% command which takes a list of lengths, equates \gbc{pat.rep} to them,
% and generates \gbc{pat.start} and \gbc{pat.finish} according to the
% description above.
%    \begin{macrocode}
vardef gendashed (suffix pat) expr f =
  save _g; path _g; _g := zconv(f);
  if (unknown pat.rep) : % no "pattern"
    GBmsg "Dash pattern " & str pat & " undefined. " &
      "Path will be drawn instead.";
    safedraw _g;
  elseif pat.rep < 2 : % no "spaces"
    safedraw _g;
  else:
%    \end{macrocode}
% We want to manipulate the values of \gbc{pat} so that a whole number of
% repetitions are used. So we copy \gbc{pat} to \gbc{_tmppat}.
%
% After this loop, \gbc{_dl.s} is the total length of the corresponding
% \gbc{pat.s} in multiples of \gbc{unit_of_length}, and \gbc{_tmppat.s[i]}
% is \gbc{pat.s[i]} converted to these units.
%    \begin{macrocode}
    save _dl, _tmppat;
    forsuffixes _s = start, rep, finish :
      _dl._s := 0; _tmppat._s := pat._s;
      for i = 1 upto pat._s :
        _tmppat._s[i] := pat._s[i]/unit_of_length;
        _dl._s := _dl._s + _tmppat._s[i];
      endfor
    endfor
    if _dl.rep = 0 :
      GBmsg "Dash pattern " & str pat & " has length 0. " &
      "Path will be drawn instead.";
      safedraw _g;
    else:
%    \end{macrocode}
% Here \gbc{_g} is our path in device units, but we convert that to our
% unit of length to avoid having paths of length \gbc{infinity}.
%
% This is how we process a path mathematically: let $f(t)$, $0 \le t \le
% k$ be the formula for the path \gbc{f}, $k$ being the number of segments
% of \gbc{f}, we consider the polygon connecting the points $f(0), f(1/8),
% f(2/8),\ldots,f(k)$ and compute the length of \emph{that} path (assuming
% \gbc{segment_split = 8}). Actually, we compute and save the cumulative
% lengths at each vertex of this polygon, since we use that later to
% determine ``when'' (i.e., at what values of $t$) to place a dot or draw
% a dash. The command \gbc{makelengtharray} does this, storing the
% cumulative lengths in the array \gbc{_cumlen} and returning the total
% length.
%    \begin{macrocode}
      save _p; path _p;
      _p := _g scaled (1/unit_of_length);
      save _cumlen, _totlen, _n, _sf;
      _totlen := makelengtharray(_cumlen) _p;
%    \end{macrocode}
% Now we scale the dashes so that a whole number of patterns make up
% the lengths of the approximating polygon. \gbc{scale_adjust} returns
% the scaling factor, equates \gbc{_n} to the total number of
% \gbc{pat.rep} to use. If the path length is already less than the length
% of the start and finish patterns, this is equated to $-1$ as a flag to
% draw the path instead. (recall \gbc{_dl.s} holds the length of part
% \gbc{s}).
%
% After this we rescale the dashes and spaces stored in \gbc{_tmppat}, and
% the length of the patterns in \gbc{_dl}.
%    \begin{macrocode}
      _sf := scale_adjust (_n, _dl)(_totlen);
      if _n < 0 : safedraw _g;
      else:
        forsuffixes _s = start, rep, finish :
          for _i = 1 upto _tmppat._s :
            _tmppat._s[_i] := _tmppat._s[_i]*_sf;
          endfor
          _dl._s := _dl._s*_sf;
        endfor
%    \end{macrocode}
% The user has the capability to use something other than a small disk for
% a dot by defining \gbc{plot_pic}. The utility \gbc{makesymbol} is
% defined later. It examines \gbc{plot_pic} and makes a picture depending
% on what type of variable it is. The default \gbc{dotpath} is
% \mfc{fullcircle}, but user may also change that to get different dots.
% \gbc{makesymbol} scales by \gbc{penwd} \emph{only if the first
% parameter is a path}. This is how to increase the dot size (the code in
% \gbc{plot} uses this.)
%    \begin{macrocode}
        save dashingdot; picture dashingdot;
        if known plot_pic :  dashingdot := makesymbol(plot_pic, penwd);
        else:  dashingdot := makesymbol(dotpath,  penwd);
        fi
%    \end{macrocode}
% The macro \gbc{dashit} draws the dashes, computing where they go and
% drawing the appropriate subpaths of \gbc{_g} or placing a dot at the
% appropriate point. \gbc{dashit} returns nothing and assumes all the
% information accumulated so far, so it can only be called by
% \gbc{gendashed}.
%
% \gbc{_t} and \gbc{_d} are temporary variables used by
% \gbc{dashit}, but we declare them here since we initialize them
% differently for each call. \gbc{_d0} and \gbc{_d1} hold the
% position along the curve of the ends of a dash in distance from the
% start; \gbc{_t0} and \gbc{_t1} are the same, but in terms of time.
% A macro \gbc{gettime} converts the first to the second. It uses the
% cumulative length array \gbc{_cumlen} for this, and maintains
% \gbc{_ct} as the current index into that array. The parameters to
% \gbc{dashit} are the name of the part of the dashing pattern that is being
% drawn, and a temporary picture variable. The latter holds the picture
% until \gbc{DoClip} can process it, then it is added to \gbc{active_plane}.
% The code of \gbc{dashit} leaves \gbc{_d0} pointing to the current
% position on the curve, but for safety and to reduce accumulated
% round-off error, we initialize it to what it should be before each call.
%    \begin{macrocode}
        save _ct, _t, _d, _v;
        picture _v; _v := nullpicture;
        _ct := 0;
        %   Begin with pat.start
        _d0 := 0; _t0 := 0;
        dashit (_tmppat.start) (_v);
%    \end{macrocode}
% The repeating pattern has the tendency to use lots of memory. Previously
% I added all the dashes to \gbc{_v} and then added it all at once to
% \gbc{active_plane}. The purpose was to be able to \gbc{DoClip} it once,
% and add it once with \gbc{coloraddto} to get it drawn in color under \MF.
% This was simplest, but a memory hog requiring $O(n)$ in memory, where
% $n$ is the number of repeated patterns. Then we tried clipping and adding
% within \gbc{dashit}. This was terribly slow, requiring $O(n)$ in time.
% Now I'm going to try a standard programming trick: accumulate $m < n$
% repetitions before adding them, the memory should be $O(m)$ and the
% time $O(n/m)$. As a first try, we make $m$ about $\sqrt n$.
%    \begin{macrocode}
        % then pat.rep
        if _n > 0 :
          save _m; _m := ceiling sqrt(_n);
          for _j = 0 step _m until _n - 1 :
            for _i = 0 upto _m - 1 :
              exitif (_i + _j) > _n - 1;
              _d0 := _dl.start + (_j + _i)*_dl.rep;
              _t0 := gettime(_cumlen, _ct) (_d0);
              dashit (_tmppat.rep) (_v);
            endfor
            % add _m patterns and reset.
            DoClip(_v);
%<MF>            mono (_v)
            coloraddto (drawcolor) (active_plane, _v);
            _v := nullpicture;
          endfor
        fi
        %   and finally, pat.finish
        _d0 := _totlen - _dl.finish;
        _t0 := gettime(_cumlen, _ct) (_d0);
        dashit (_tmppat.finish) (_v);
        DoClip(_v);
%<MF>        mono(_v)
        coloraddto (drawcolor) (active_plane, _v);
      fi
    fi
  fi
  f
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{makelengtharray}
% This takes an array name and a path expression (any coordinates),
% computes the array of partial lengths (of the polygon approximation),
% and returns the total length.
%    \begin{macrocode}
vardef makelengtharray (suffix clen) expr p =
  save _s; _s := emax (1, ceiling segment_split);
  clen := _s*length p; clen[0] := 0;
  for _i = 1 upto clen :
    clen[_i] := clen[_i-1] + abs (pnt[_i/_s] (p) - pnt[(_i-1)/_s] (p));
  endfor
  clen[clen]
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{scale_adjust}
% Here \gbc{n} is a suffix defined by the calling routine,
% \gbc{pl.\{start\|ref\|finish\}} are the lengths of corresponding parts
% of a dashing pattern, \gbc{lngth} is the length of some path (determined
% by the calling routine). It determines how many times \gbc{pl.rep} goes
% into \gbc{lngth - pl.start - pl.finish}. If this is negative it remains
% negative, otherwise it is rounded.  \gbc{scale_adjust} then determines
% and returns the scaling factor \gbc{sf} required to make
% \gbc{sf*(pl.start + n*pl.rep + pl.finish)} equal to \gbc{lngth}.
%    \begin{macrocode}
vardef scale_adjust (suffix n, pl) (expr lngth) =
  n := (lngth - pl.start - pl.finish)/pl.rep;
  n := if n < 0 : -1 else: round(n) fi;
  lngth/(pl.start + emax(n, 0)*pl.rep + pl.finish)
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{gettime}
% \gbc{arr} is an increasing array of lengths, defined by the calling
% routine. \gbc{ct} is current index into that array; it will vary with
% subsequent calls. Calling routine initializes it before the first call,
% \gbc{gettime} updates it. \gbc{lngth} is a length interpreted as the
% length along the path associated to the array.
%
% Since this array is generated by splitting the segments of the path at
% times \gbc{i/segment_split} we first determine in which of these splits
% the given distance is (i.e., find \gbc{ct} so that \gbc{lngth} lies
% between \gbc{arr[ct-1]} and \gbc{arr[ct]}). To avoid problems with
% round-off error, bad length parameter, etc., we force \gbc{lngth} to
% satisfy this for some index between the current value of \gbc{ct} and
% \gbc{arr} inclusive.
%
% Once we know what segment we are in, we determine the time by linear
% interpolation between the times corresponding to \gbc{ct} and
% \gbc{ct+1}.
%    \begin{macrocode}
vardef gettime (suffix arr, ct) (expr lngth) =
  save _gtl, _s;
  _s := emax(1, ceiling segment_split);
  _gtl := emax (arr[ct], emin (arr[arr], lngth));
  forever:
    exitif ( (arr[ct] <= _gtl) and (_gtl <= arr[ct+1]) );
    ct := ct + 1; % need to exit *before* incrementing
  endfor
  if arr[ct] = arr[ct+1] :  ct
  else: ( ct + (_gtl - arr[ct]) / (arr[ct+1] - arr[ct]) )
  fi /_s
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{dashit}
% No variables are saved or initialized; \gbc{gendashed} defines array
% \gbc{_cumlen}, path \gbc{_g}, and initializes \gbc{_d0},
% \gbc{_t0} and \gbc{_ct}.
%
% \gbc{pos} is one of the dashpattern arrays, so it consists of numerics
% interpreted as lengths of dashes (odd index) and spaces (even index). In
% the first case \gbc{_d0} and \gbc{_t0} will already be pointing to
% the beginning of the dash and we get to the end of the dash by adding
% the length of a dash (\gbc{pos[_j]}) to \gbc{_d0} (getting
% \gbc{_d1}) and calling \gbc{gettime} (getting \gbc{_t1}). We draw
% the subpath between thos points. Unless \gbc{pos[_j] = 0}, in which case
% a dot is placed.
%
% For even \gbc{j} (a space) we are at \gbc{_d1} and \gbc{_t1} and
% we increment them to get \gbc{_d0} and \gbc{_t0} for the next
% iteration.
%    \begin{macrocode}
def dashit (suffix pos) (suffix pic) =
  for _k = 1 upto pos:
    if odd _k : % draw a dash of length pos[_k]
      if pos[_k] = 0 : % point required
        _d1 := _d0; _t1 := _t0;
        picdot (pic, dashingdot, pnt [_t0] (_g));
      else:
        _d1 := _d0 + pos[_k];
        _t1 := gettime (_cumlen, _ct) (_d1);
        shpath (pic, drawpen) (subpath (_t0, _t1) of _g);
      fi
    else: % find the start of the next dash:
      _d0 := _d1 + pos[_k];
      _t0 := gettime(_cumlen, _ct) (_d0);
    fi
  endfor
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{dashpat}
% This is a utility to convert a text list of lengths to the three dash
% pattern arrays required by \gbc{gendashed}. We first simply copy the
% list to array \gbc{pat.rep}. If the number is odd we add a 0-length
% item (a nonspacing space). Unless the number is 1, which we use as a
% signal that a curve should be solid and not dashed at all.
%
% \gbc{pat.start} is the same as \gbc{pat.rep} except the first dash is
% reduced by the factor \gbc{dash_start}. \gbc{pat.finish} is just the
% first dash of \gbc{pat.rep} reduced by the factor \gbc{dash_finish}.
%    \begin{macrocode}
def dashpat (suffix pat) (text t) =
  pat.rep := 0;
  for _itm = t:
    pat.rep[incr pat.rep] := _itm;
  endfor;
  if odd (pat.rep) and (pat.rep > 1):
    pat.rep[incr pat.rep] := 0;
  fi
  pat.start := 1;
  pat.start[1] := pat.rep[1]*dash_start;
  for _idx = 2 upto pat.rep :
    pat.start[incr pat.start] := pat.rep[_idx];
  endfor
  pat.finish := 1;
  pat.finish[1] := pat.rep[1]*dash_finish;
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{dashed}
% \DescribeRoutine{DASHED}
% The old \gbc{dashed} is now implemented by making a dashpattern from the
% two arguments and calling gendashed. When \MP{} support was added, I
% thought it best not to overwrite the \MP{} primitive \gbc{dashed} and
% the command was named \gbc{DASHED}, but then later it seemed better to
% keep \MF/\MP{} compatibility so \gbc{dashed} was used. Now for backward
% compatibility we maintain both. In \MP, we save the primitive
% \mfc{dashed} as \gbc{dashed_}.
%
% \gbc{dashed} takes parameters which are the length and the space (device
% coordinates) and a path (graph coordinates). It returns the path.
%    \begin{macrocode}
vardef DASHED (expr dlen, dgap) expr f =
  save dashes; dashpat (dashes) (dlen, dgap);
  gendashed (dashes) f
enddef;

%<MP>let dashed_ = dashed;
def dashed = DASHED enddef;

%    \end{macrocode}
%
% \DescribeRoutine{doplot}
% \gbc{doplot} places symbols at positions along a path determined by
% \gbc{dgap} (space between symbols), they are scaled by \gbc{sc} and the
% actual symbol is \gbc{spath}. Currently this may be one of three things:
% \begin{enumerate}
%  \item A path, giving the shape of the dot, which should be defined in
%     units so that the desired size is obtained under scaling by
%     \gbc{sc}. Normally this means one unit across.
%  \item A picture. This is used unscaled, it being presumed that it has
%     been prepared by a user to the correct size.
%  \item (\MP{} only) a string.
% \end{enumerate}
% All these are converted to a picture by the \gbc{makesymbol} command and
% it is assigned to \gbc{plot_pic}, which \gbc{gendashed} has been
% trained to use when dots are needed.
%
% After this \gbc{gendashed} is called with a pattern where the dashes are
% 0 length, signalling that dots are used. \gbc{dotted} is implemented by
% calling \gbc{doplot} with \gbc{dotpath} the symbol.
%    \begin{macrocode}
vardef doplot (expr spath, sc, dgap) expr f =
  save dots; dashpat (dots) (0, dgap);
  save plot_pic; picture plot_pic;
  plot_pic := makesymbol (spath, sc);
  gendashed (dots) f
enddef;

path dotpath; dotpath := fullcircle;
vardef dotted (expr dsize, dgap) expr f =
  doplot (dotpath, dsize, dgap) f
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{plotnodes}
% This is a useful little utility to draw the points on top of the
% curve through them. It differs from \gbc{plotsymbol} (defined later) in
% that it takes a path parameter (rather than a list of points) and
% returns that path (so it works with \mfpic{} as a prefix macro). It
% also uses \gbc{drawcolor}. Otherwise it calls the same code.
%    \begin{macrocode}
vardef plotnodes (expr symbol, size) expr f =
  save _pln; pair _pln[];
  _pln := 0;
  for _a = 0 upto (length f) if cycle f : - 1 fi :
    _pln[incr _pln] := pnt[_a] (f);
  endfor
  dosymbols (drawcolor, symbol, size) (_pln);
  f
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{centerit}
% This accepts a picture and returns the same picture centered. This
% is close to impossible in \MF, so we only do it in \MP. Actually, we
% no longer use it, because in the one case where we did
% (\gbc{makesymbol}), it seemed to restrict the user's choices too much.
%    \begin{macrocode}
%<*MP>
vardef centerit (expr pic) =
   pic shifted -(0.5[urcorner pic, llcorner pic]);
enddef;

%</MP>
%    \end{macrocode}
%
% \DescribeRoutine{makesymbol}
% This utility: takes \emph{any} expression and scale and returns a picture.
% If the expression \gbc{spath} is a cycle it returns the interior, for
% other paths it draws the path, in either case scaled by \gbc{sc}. If
% already a picture, it returns it. In \MP, if it is a string, it returns
% a picture containing that string drawn in the \mfc{defaultfont}. In any
% other case, the default dot is returned.
%    \begin{macrocode}
vardef makesymbol (expr spath, sc) =
  if path spath        : setdot (spath, sc)
  elseif picture spath :
%<MF>    save v; picture v; v:= spath; mono (v); v
%<*MP>
  spath
  elseif string spath  :
    spath infont defaultfont scaled defaultscale
%</MP>
  else:
    GBmsg "Undefined symbol for plotting, using dotpath instead.";
    setdot (dotpath, sc)
  fi
enddef;

%    \end{macrocode}
%
% These are some symbols to be used by \gbc{doplot} and \gbc{plotsymbol}.
% They are paths. The ones named with ``\gbc{Solid}'' are closed paths.
% Since these two drawing commands feed the path to \gbc{setdot}, they end
% up filled if they are cyclic, merely drawn if not.
%
% All are intended to have roughly the area (when area makes sense) of a
% circle with diameter 1.
%    \begin{macrocode}
path Triangle, Square, Circle, Diamond, Star, Plus, Cross,
    Asterisk, SolidTriangle, SolidSquare, SolidCircle,
    SolidDiamond, SolidStar;

Triangle := (for n = 0 upto 2:
  (up rotated 120n)-- endfor up) scaled .78;
SolidTriangle := Triangle & cycle;

Square := (for n = 0 upto 3:
  dir (90n + 45)-- endfor dir 45) scaled .63;
SolidSquare := Square & cycle;

Circle := halfcircle & halfcircle rotated 180;
SolidCircle := Circle & cycle;

Diamond := (Square rotated 45) xscaled (1/1.2) yscaled 1.2;
SolidDiamond := Diamond & cycle;

Plus := (origin for n = 0 upto 3:
    --(up rotated 90n)--origin endfor) scaled .65;
Cross := Plus rotated 45;
Asterisk := (origin for n = 0 upto 5:
    --(up rotated 60n)--origin endfor) scaled .6;

%    \end{macrocode}
%
% We do some computations to find the vertices of a standard 5-pointed
% star (pentagram). The first equation says the indented vertex at the
% ``left shoulder'' is on the line from the top of the ``head'' to the
% ``left foot'', and the second says it is on the line from the ``left
% hand'' to the ``right hand''. That point determined, we get the rest by
% rotaing 72 degrees.
%    \begin{macrocode}
pair zz;
zz = (whatever)[up, up rotated 144];
zz = (whatever)[up rotated 72, up rotated -72];
Star := (for n = 0 upto 4:
    (up rotated 72n)--(zz rotated 72n)-- endfor up) scaled .84;
SolidStar := Star & cycle;
save zz;

%    \end{macrocode}
%
% In \mfpic, the \cs{plotdata} command draws several curves with one
% command. The curves are drawn with changeable methods of rendering.
% There are three schemes. The first draws the curves with different dash
% patterns. Another scheme is to plot the curves with different symbols.
% Still another is to use different colors (\MP{} only).
%
% We implement the changing of patterns (symbols, colors) by defining
% arrays of such things and changing the index into the array. For
% example, when the user has selected dashes, the first curve is
% \gbc{gendashed} with the pattern \gbc{dashtype0}, the next with
% \gbc{dashtype1}, etc.
%
% \DescribeRoutine{defaultdashes}
% These are the usual dash patterns. Their setting is done by a macro
% so the user may easily restore them. The spaces are apparently larger
% than the dashes, but taking the thickness of the pen into account
% (\mfc{.5bp}) the dashes will appear about \mfc{.5bp} larger than stated
% and the spaces about \mfc{.5bp} smaller.
%    \begin{macrocode}
numeric dashtype;
forsuffixes s = start, rep, finish :
  numeric dashtype[].s, dashtype[].s[];
endfor
def defaultdashes =
  dashpat (dashtype0) (0);                           % solid
  dashpat (dashtype1) (3bp, 4bp);                    % dashed
  dashpat (dashtype2) (0, 4bp);                      % dotted
  dashpat (dashtype3) (0, 4bp, 3bp, 4bp);          % dot-dash
  dashpat (dashtype4) (0, 4bp, 3bp, 4bp, 0, 4bp);% dot-dash-dot
  dashpat (dashtype5) (0, 4bp, 3bp, 4bp, 3bp, 4bp);% dot-dash-dash
  dashtype := 6;
enddef;
defaultdashes;

%    \end{macrocode}
%
% \DescribeRoutine{isdashpat}
% Checks, for the given variable \gbc{pat}, if the three arrays that
% make up a dash pattern are know arrays. It does not check if they are
% numeric arrays, but one hardly thinks they could all three exist
% accidentally if they hadn't been created by \gbc{dashpat}.
%
% \DescribeRoutine{setdatadashes}
% We have this method for users to select their own dash patterns. The
% \gbc{setdatadashes} command requires a list of suffixes previously
% defined by the \gbc{dashpat} command.
%
% \DescribeRoutine{getdashpat}
% And finally, we remove the mod-ing operation from \TeX, where it is
% cumbersome, to \MF, where it is trivial, with this command.
%    \begin{macrocode}
vardef isdashpat suffix pat =
  (knownarray pat.start)  and
  (knownarray pat.finish) and
  (knownarray pat.rep)
enddef;

def setdatadashes (text lst) =
  save dashtype; dashtype := 0;
  forsuffixes _itm = lst :
    if isdashpat _itm :
      forsuffixes _s = start, rep, finish :
        copyarray (_itm._s, dashtype[dashtype]._s);
      endfor
      dashtype := dashtype + 1;
    else: GBmsg "Improper dash pattern in setdatadashes.";
    fi
  endfor
  if dashtype = 0 :
    SetdataWarn "dashes";
    defaultdashes;
  fi
enddef;
def getdashpat expr n = dashtype[n mod dashtype] enddef;

def SetdataWarn expr s =
  GBmsg "Command setdata"& s &"() failed; using defaults."
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{setdatasymbols}
% This can be used to define the sequence of point plotting styles for
% \mfpic's \cs{plotdata} command. We could use it to set the default
% symbols, but I worry about the difficulty chasing down bugs if
% \gbc{defaultpoints} calls \gbc{setdatasymbols} which can again call
% \gbc{defaultpoints}.
%
% \DescribeRoutine{getsymbol}
% This is similar to \gbc{getdashpat}. In fact we could write a
% single macro to do both, but I think we get a more readable \mfpic{}
% output file if we have separate commands.
%    \begin{macrocode}
def setdatasymbols (text lst) =
  save pointtype; path pointtype[]; pointtype := 0;
  for _itm = lst :
    if (known _itm) and (path _itm):
      pointtype[pointtype] := _itm;
      pointtype := pointtype + 1;
    else:
      GBmsg "Improper path in setdatasymbols().";
    fi
  endfor
  if pointtype = 0:
    SetdataWarn "symbols";
    defaultsymbols;
  fi
enddef;
def getsymbol expr n := pointtype[n mod pointtype] enddef;

%    \end{macrocode}
%
% \DescribeRoutine{defaultsymbols}
% We store the default definitions in a macro so the user can restore
% them easily.
%    \begin{macrocode}
numeric pointtype; path pointtype[];
def defaultsymbols =
  pointtype0 := Circle;
  pointtype1 := Cross;
  pointtype2 := SolidDiamond;
  pointtype3 := Square;
  pointtype4 := Plus;
  pointtype5 := Triangle;
  pointtype6 := SolidCircle;
  pointtype7 := Star;
  pointtype8 := SolidTriangle;
  pointtype := 9;
enddef;
defaultsymbols;

%    \end{macrocode}
%
% \DescribeRoutine{setdatacolors}
% \DescribeRoutine{getcolor}
% Finally, for \MP, we do a similar pair of commands for setting and
% getting the colors for the \cs{plotdata} command. The default colors
% were tested on screen and on an inkjet printer. The adjustments away
% from pure colors is based on a compromise between those experiments.
%
% \DescribeRoutine{defaultcolors}
% We store the default definitions in a macro so the user can restore
% them easily.
%    \begin{macrocode}
%<*MP>
def setdatacolors (text lst) =
  save colortype; color colortype[]; colortype := 0;
  for _itm = lst :
    if (known _itm) and (color _itm) :
      colortype[colortype] := _itm;
      colortype := colortype + 1;
    else:  GBmsg "Improper color in setdatacolors().";
    fi
  endfor
  if colortype = 0 :
    SetdataWarm "colors";
    defaultcolors;
  fi
enddef;
def getcolor expr n = colortype[n mod colortype] enddef;

numeric colortype; color colortype[];
def defaultcolors =
  colortype0 := black;
  colortype1 := red;
  colortype2 := 0.80blue + .2white;  % blue
  colortype3 := 0.66yellow + .34red; % orange
  colortype4 := 0.80green;           % green
  colortype5 := 0.85magenta;         % magenta
  colortype6 := 0.85cyan;            % cyan
  colortype7 := 0.85yellow;          % yellow
  colortype := 8;
enddef;
defaultcolors;

%</MP>
%    \end{macrocode}
%
% Points are filled or unfilled circles. They are implemented with
% \gbc{plotsymbol}, but the code differs in that filled or unfilled
% circles are determined by a parameter rather than the type of curve.
% In addition, for unfilled circles, it clears the pixels inside the circle.
%
% \DescribeRoutine{bpoint}
% \gbc{bpoint} is basicly a shorthand for a scaled circle shifted to a
% point. The scale and the point are in device coordinates. We don't use
% it anywhere in grafbase anymore.
%    \begin{macrocode}
vardef bpoint (expr ptwd, b) =
  fullcircle scaled ptwd shifted b
enddef;
%    \end{macrocode}
%
% \DescribeRoutine{pointd}
% This draws disks with diameter \gbc{ptwd}, filled or unfilled based on
% the boolean \gbc{filled}, at the graph coordinate coordinates in the
% list \gbc{t}. In case \gbc{filled} is true, \gbc{pointd} calls
% \gbc{plotsymbol (SolidCircle)} otherwise we make \gbc{clearsymbols} true
% (so that the area where each point is drawn will be cleared before
% drawing it) and call \gbc{plotsymbol(Circle)}.
%    \begin{macrocode}
def pointd (expr ptwd, filled) (text t) =
  if filled :
    plotsymbol (SolidCircle, ptwd) (t);
  else :
    begingroup;
      save clearsymbols; boolean clearsymbols; clearsymbols := true;
      plotsymbol (Circle, ptwd) (t);
    endgroup
  fi
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{plotsymbol}
% \DescribeRoutine{colorplotsymbol}
% These place a symbol centered at each of the graph
% coordinate points in the list. The symbol placed is the first parameter,
% which would normally be a path, but can be a picture or, in \MP, a
% string. Like the \gbc{doplot} command, it calls \gbc{makesymbol}.
% If \gbc{spath} is of type path, and is cyclic, it is drawn filled. This
% is because we call \gbc{makesymbol} on it, and that subjects it to
% \gbc{setdot}, which has that behavior. For other types of symbols, we
% simply convert them to pictures with \gbc{makesymbol} and then place
% them. Unlike \gbc{pointd} above, the interior of the path is not
% erased by default. However, in the special case where the symbol is an
% open path, if its first point is equal to its last point, and
% \gbc{clearsymbols} is true, then the interior of the path obtained by
% \gbc{\& cycle} is cleared before the path itself is drawn.
%
% \DescribeRoutine{dosymbols}
% \DescribeRoutine{addsymbols}
% We copy the text list to an array and call \gbc{dosymbols} so that
% \gbc{plotnodes} can share the code. Also, since \gbc{dosymbols} uses
% identical code twice (once to clear, once to draw), we put that code
% in \gbc{addsymbols}
%    \begin{macrocode}
boolean clearsymbols; clearsymbols := false;
vardef clearable (expr pth) =
  false
  if path pth :
  if (not cycle pth) and (length pth > 0):
  if ( pnt0 (pth) = pnt[length pth] (pth) ) :
    or true
  fi fi fi
enddef;

def plotsymbol = colorplotsymbol (pointcolor) enddef;
vardef colorplotsymbol (expr clr, spath, sc) (text t) =
  save _cpls;
  textpairs (_cpls) (t);
  dosymbols (clr, spath, sc) (_cpls);
enddef;

vardef dosymbols (expr clr, spath, sc) (suffix arr) =
  save one_symbol, _pls; picture one_symbol, _pls;
  if clearsymbols and  clearable (spath):
    addsymbols (background, spath&cycle, sc) (arr);
  fi
  addsymbols (clr, spath, sc) (arr);
enddef;

def addsymbols (expr clr, spath, sc) (suffix arr) =
  one_symbol := makesymbol (spath, sc);
  _pls := nullpicture;
  for _idx = 1 upto arr:
    picdot (_pls, one_symbol, zconv(arr[_idx]));
  endfor
  DoClip (_pls);
%<MF>  mono (_pls);
  coloraddto (clr) (active_plane) (_pls);
enddef;

%    \end{macrocode}
%
%
% \section{Modification of paths}\label{modification}
%
% \subsection{Closing a path}\label{closing}
%
% In \MF{} one can close a path by any legal path connection between the
% last point and the keyword \mfc{cycle}. Connecting the last point to the
% first point is not enough. \Grafbase{} commands provide a few different
% ways.  All the closure commands have a version with a tension parameter
% when that makes sense. These version make the connection with the
% supplied tension. The ones where it doesn't make sense are \gbc{lclosed},
% \gbc{cbclosed} and \gbc{qbclosed}. The first always uses a straight line
% and the other two require explicit controls.
%
% \DescribeRoutine{lclosed}
% This closes with a line segment.
%    \begin{macrocode}
vardef lclosed expr f = f  if not cycle f : --cycle fi enddef;

%    \end{macrocode}
% \DescribeRoutine{sclosed}
% \DescribeRoutine{sclosedt}
% This closes the path in the manner that \gbc{mksmooth} creates a path.
% This will change the first and last segment of the original path. In
% particular, if there are fewer than three segments, the whole path is
% different.
%    \begin{macrocode}
numeric default_tension;
default_tension := 1;

def sclosed  = sclosedt (default_tension) enddef;
vardef sclosedt (expr t) expr f =
  if cycle f :  f
  else:  save n; n := length f;
    if n = 0     : f&cycle
    elseif n = 1 : f..tension t..cycle
    else         :
      (pnt0 (f)) { (pnt1(f)) - (pnt[n] (f)) }..tension t
         ..(subpath (1, n-1) of f)..tension t
         ..(pnt[n](f)) { pnt0(f) - pnt[n-1](f) }
         ..tension t..cycle
    fi
  fi
enddef;

%    \end{macrocode}
% \DescribeRoutine{bclosed}
% This closes with the basic default \MF{} Bezi\'er. It is a smooth
% closure, but it does not have the same direction at the endpoints
% that \gbc{mksmooth (true)} would have produced.
%    \begin{macrocode}
def bclosed = bclosedt (default_tension) enddef;
vardef bclosedt (expr t) expr f =
  f  if not cycle f : ..tension t..cycle fi
enddef;

%    \end{macrocode}
% \DescribeRoutine{uclosed}
% This is now just a renaming of \gbc{bclosed}. It turns out (contrary
% to my earlier belief) that just adding \mfc{..cycle} does \emph{not}
% change the original curve. \gbc{sclosed} will do that because it
% takes the curve apart and redoes its end segments.
%    \begin{macrocode}
def uclosed  = bclosed enddef;

%    \end{macrocode}
% \DescribeRoutine{bsplinecontrols}
% This utility is for use in \gbc{cbclosed}. It converts Bezier segment
% key points of a path \gbc{f}, to cubic B-spline control points stored
% in an array \gbc{b}. The data needed are the first point and first two
% control points of \gbc{f}. The B-spline points needed are \gbc{b1} and
% \gbc{b4}. The extra two points \gbc{b2} and \gbc{b3} divide the line
% from \gbc{b1} to \gbc{b4} into thirds and will be turned into Bezier
% control points of a new path segment.
%    \begin{macrocode}
def bsplinecontrols (suffix b) expr f =
  b  := 4;
  b1 := 2[pre 1(f), post0(f)];
  b2 := 2[post0(f), pnt 0(f)];
  b3 := 2[b1, b2];
  b4 := 2[b2, b3];
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{cbclosed}
% This closes a path with a cubic B-spline. If the path \gbc{f} had been
% produced by \gbc{opencbs}, then \gbc{q1} and \gbc{q4} would have been the
% last two points in the argument list, and \gbc{p4} and \gbc{p1} would
% have been the first two. We just use them and mimic the effect of
% \gbc{closedcbs}.
%    \begin{macrocode}
vardef cbclosed expr f =
  if cycle f : f
  elseif (length f)=0 : f&cycle
  else:
    save p, q; pair p[], q[];
    bsplinecontrols (p) f;         % defines p1 to p4
    bsplinecontrols (q) reverse f; % defines q1 to q4
    f..controls q2 and q3..opencbs (q1,q4,p4,p1)
     ..controls p3 and p2..cycle
  fi
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{qbclosed}
% It seems wrong to be able to close with a cubic B-spline but not a
% quadratic B-spline. Therefore I will add such a possibility. We
% calculate B-spline controls \gbc{p[n]} that will agree with those of
% \gbc{f}, if \gbc{f} had been created as a quadratic B-spline. Note
% that \gbc{cbclosed} required three \MF{} links to close the curve;
% \gbc{qbclosed} only requires two.
%    \begin{macrocode}
vardef qbclosed expr f =
  if cycle f : f
  else: save n; n := length f;
    if n = 0 : f&cycle
    else:
      save p; pair p[]; p := 4;
      p1 := (3/2)[pnt[n](f), pre[n](f)];
      p2 := 2[p1, pnt[n](f)];
      p4 := (3/2)[pnt 0 (f), post0 (f)];
      p3 := 2[p4, pnt 0 (f)];
      f & mkqbs (p) & cycle
    fi
  fi
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{makesector}
% This makes sense only if the path being modified is an arc. It closes
% the arc by connecting its ends to the center of the circle, as
% computed by \gbc{pathcenter}.
%    \begin{macrocode}
vardef makesector expr p =
  (pathcenter p)--p--cycle
enddef;

%    \end{macrocode}
% \subsection{Trimming a path}\label{trimming}
%
% \DescribeRoutine{cutoffbefore}
% \DescribeRoutine{cutoffafter}
% This is a useful utility operation present in \file{plain.mp} but
% missing from \file{plain.mf}. We write a different version for our
% purposes; it has the syntax of most of our path modification
% commands. Plus, the first loop tries to avoid a bug (or perhaps
% inaccuracy) in \mfc{intersectiontimes} which can return an intersection
% time in a later segment of \gbc{f} than the first intersection point.
% If I can learn the actual method used to find intersection times, I'll
% put in some \mfc{solve} code to get the first \gbc{t} rather than the
% minimal `shuffled binary' of the pair \gbc{w}.
%    \begin{macrocode}
%<MF>path cuttings;
vardef cutoffbefore (expr b) expr f =
  save w, t, u, n; n:= length f;
  pair w;
  for k = 1 upto n :
    w := (subpath (0,k) of f) intersectiontimes b;
    exitif w > left;
  endfor
  if debug :
    GBdebug;
      >> "Intersectiontimes:";
      show w;
    GBenddebug;
  fi
  t := xpart w;
  if t < 0:
    cuttings := pnt0 (f);
    f
  else:
    cuttings := subpath (0,t) of f;
    subpath (t, n) of f
  fi
enddef;

vardef cutoffafter (expr b) expr f =
  save g; path g;
  g := cutoffbefore (b) reverse f;
  cuttings := reverse cuttings;
  reverse g
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{trimmedpath}
% This takes two lengths and a path and trims off the ends of the path
% that lie within the given lengths of the endpoints. The lengths are in
% device coordinates, the path in graph coordinates.
%    \begin{macrocode}
vardef trimmedpath (expr btrim, etrim) expr f =
  save g, h; path g, h;
  g := invvconv (fullcircle scaled 2btrim) shifted pnt0(f);
  h := invvconv (fullcircle scaled 2etrim) shifted pnt[length f] (f);
  cutoffafter (h) cutoffbefore (g) f
enddef;

%    \end{macrocode}
%
% \subsection{Appending an arrowhead}
%
%
% \DescribeRoutine{predirection}
% \DescribeRoutine{postdirection}
% \DescribeRoutine{__dir}
% First, some better \mfc{direction} commands. They makes use of the fact
% (easily proved) that a cubic B\'ezier $z\sb0(1 - t)^3 + 3z\sb1(1-t)^2t +
% z\sb2(1-t)t^2 + z\sb3t^3$ has a direction at $z\sb0$ equal to the first
% one of $z\sb{j} -z\sb0$ that is nonzero.
%
% \gbc{__dir} gets the direction at point 0 for an arbitrary path.
% \gbc{postdirection} reduces to this case using \mfc{subpath}. If the
% postdirection is 0, that means the path is trivial from that point to
% the end so we are effectively at an endpoint (noncyclic path) and we use
% the incoming direction. \gbc{predirection} just runs
% \gbc{postdirection} on the reversed path.
%    \begin{macrocode}
vardef predirection@# (expr p) =
  - postdirection[length p - @#] (reverse p)
enddef;

vardef postdirection@# (expr p) =
  save _n; _n := length (p);
  save v; pair v; v := __dir (subpath (@#, @# + _n) of p);
  if v = origin :
    v := - __dir (subpath (@#, @# - _n) of p);
  fi
  v
enddef;

vardef __dir (expr p) =
  save v, w; pair v, w; w := pnt0 (p);
  v := origin;
  for n = 1 upto length (p) :
    v := post[n-1] (p) - w;
    if v = origin :
      v := pre[n] (p) - w;
      if v = origin :
        v := pnt[n] (p) - w;
      fi
    fi
    exitif v <> origin;
  endfor
  v
enddef;

%    \end{macrocode}
%
% Arrowheads can be just two straight lines at an angle placed on the end
% of a curve, or it can be a filled triangle. \grafbase{} permits both,
% but it also allows the two lines (or the corresponding sides of the
% triangle) to be gracefully concave and tangent to the path at the
% endpoint of the path. The parameters controlling the shape of the arrowhead
% are the two numerics \gbc{hdwdr}, the ratio of the length to width of the
% arrowhead, and \gbc{hdten}, the tension in the two angled curves. By
% default, one side of an arrowhead is just the \MF{} path
% \mfc{a..b\marg{\meta{tangent}}}, where \mfc{a} is the base of the
% arrowhead (calculated from \gbc{hdwdr}) and \gbc{b} is the end of the
% path and \meta{tangent} is the direction of the curve at that
% point. The curve can be straightened by increasing \gbc{hdten}, the
% head widened by increasing \gbc{hdwdr}
%
% The arrowhead is drawn by drawing two of the curves described above. If
% \gbc{hfilled} is \mfc{true}, the two base points (\gbc{a} above) are
% connected and the three sided region filled.
%    \begin{macrocode}
newinternal hdwdr, hdten;
interim hdwdr := 1; interim hdten := 1;
boolean hfilled; hfilled := false;

%    \end{macrocode}
%
% \DescribeRoutine{headshape}
% The following little utility adjusts the above parameters, call it
% with two pure numbers \gbc{wr} and \gbc{tens} for the \gbc{hdwdr} and
% \gbc{hdten}, and a boolean \gbc{fil} for \gbc{hfilled}.
%    \begin{macrocode}
def headshape (expr wr, tens, fil) =
 interim hdwdr := wr; interim hdten := tens;
 save hfilled; boolean hfilled; hfilled := fil;
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{ahead}
% \DescribeRoutine{colorhead}
% This command draws an arrowhead. \gbc{front} and \gbc{back} are in
% device coordinates. They are the point of the arrowhead (\gbc{front})
% and the point such that \gbc{front - back} points in the direction of
% the arrow. We use the ratio \gbc{hwr} to compute the other two
% corners. So \gbc{side} is the vector from \gbc{back} to one of the
% corners \gbc{p1}, and the other corner is on the other side. \gbc{f}
% is the path of the arrowhead.
%
% If \gbc{filled} is true we close the curve and fill it, otherwise we
% draw it. \gbc{clr} is the color used to draw or fill it.
%
% For backward compatibility we define \gbc{head}. In \MF{} \gbc{head}
% didn't have a color parameter, while in \MP{} it has always had one,
% in retrospect, this was not a good idea, and we should have followed
% the pattern of other macros. However, \gbc{head} was never a user-level
% macro and I didn't think it mattered.
%    \begin{macrocode}
%<MF>def head = ahead (headcolor) enddef;
%<MP>def head = ahead enddef;

vardef ahead (expr clr, front, back, hwr, tens, filled) =
  if front <> back :
    save side; pair side;
    side := (hwr/2) * ((front-back) rotated 90);
    save f; path f;
    f := (back + side)..tension tens..
         {front-back}front{back-front}..tension tens..
         (back - side)
      if filled : --cycle; colorsafefill (clr) f fi;
    colorsafedraw (clr) f;
  fi
enddef;

%    \end{macrocode}
%
% It is a fact of life that, unless the path to which the head is added is
% a straight line, the above described arrowhead looks ``off''. But I know
% of no automatic way of making it look good. Therefore \grafbase{} and
% \mfpic{} have provided a means to micro-adjust the head. (Actually, I
% think the best looking arrowhead for small heads and paths of modest
% curvature is obtained by taking a secant for the direction of the head
% head rather than a tangent.)
%
% \DescribeRoutine{headpath}
% \DescribeRoutine{colorheadpath}
% This takes a path expression \gbc{f} in graph coordinates, puts an
% arrowhead on it and returns \gbc{f}. The arrowhead is placed according
% to the first four parameters. \gbc{hlen} is the length of the head in
% device coordinates, the width being determined by \gbc{hdwdr}, and
% and \gbc{hrot} is a rotation adjustment. \gbc{hback} is a distance (in
% device coordinates) by which it is set back from the point of placement.
% It is set back in the direction determined after the rotation.
%
% If the length of the head is 0, we just skip everything and return
% \gbc{f}.
%
% \gbc{headpath} calls \gbc{colorheadpath} with the color set to
% \gbc{headcolor}.
%    \begin{macrocode}
def headpath = colorheadpath (headcolor) enddef;
vardef colorheadpath (expr clr, hlen, hrot, hback) expr f =
  if hlen <> 0 :
    save g; path g; g := zconv (f);
    save P; pair P[];
    P2 := pnt[length g] (g);
    P1 := predirection[length g] (g);
    if P1 <> (0, 0) :
      P3 := (unitvector P1) rotated hrot;
      P4 := P2 - (hback * P3);
      P5 := P4 - (hlen  * P3);
      ahead (clr, P4, P5, hdwdr, hdten, hfilled);
    fi
  fi
  f
enddef;

%    \end{macrocode}
%
% \section{Axes, Axis Tic Marks, and Grids}
%
% \DescribeRoutine{arrowdraw}
% This is used elsewhere only to draw axes. It returns nothing. This
% doesn't follow the usual pattern of drawing something and returning the
% same path. This makes the old \cs{axes}, \cs{xaxis} and \cs{yaxis}
% commands in \mfpic{} impossible to dash or dot. The newer axis drawing
% commands permit this and so use other code.
%
% We simply call \gbc{headpath} with default values, but add \gbc{drawn}
% to make sure the path is drawn, and precede it with \gbc{store} so
% \MF{} won't complain of an isolated expression. The new axis commands
% just call \gbc{headpath}, and the \mfpic{} code makes sure it is drawn,
% but it can also be \gbc{dashed}, \gbc{dotted}, and \gbc{doplot}\,ed.
%
% The order is important if axis and head are different colors. This
% order puts the head on top of the shaft.
%    \begin{macrocode}
def arrowdraw (expr hlen) (expr f) =
  store (curpath) headpath (hlen, 0, 0) drawn f;
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{xaxis}
% \DescribeRoutine{yaxis}
% \DescribeRoutine{axes}
% These draw the obvious things: the corresponding axis or axes through
% the point (0, 0) in graph coordinates. The only parameter is the length
% of the arrowhead in device coordinates. \gbc{axes} draws both axes with
% the same length of head.
%    \begin{macrocode}
def xaxis (expr hlen) = arrowdraw (hlen) ((xneg, 0)--(xpos, 0)); enddef;
def yaxis (expr hlen) = arrowdraw (hlen) ((0, yneg)--(0, ypos)); enddef;
def axes (expr hlen) = xaxis (hlen);  yaxis (hlen); enddef;

%    \end{macrocode}
%
% For axes at the borders of the graph coordinates, we allow for them to
% be shifted inwards. The amount of the shift is given by \gbc{laxis} for
% the left side axis, \gbc{baxis} for the bottom axis, etc. They are in
% graph coordinates.
%
% \DescribeRoutine{axisline.x}
% \DescribeRoutine{axisline.y}
% \DescribeRoutine{axisline.l}
% \DescribeRoutine{axisline.b}
% \DescribeRoutine{axisline.r}
% \DescribeRoutine{axisline.t}
% The commands \gbc{axisline.l}, etc., return the straight line along the
% corresponding edge shifted the appropriate amount. These are vardefs
% rather than variables so they can be affected by changing shift values.
%
% \DescribeRoutine{axis}
% Finally, the commands \gbc{axis.x}, etc. examine their suffix and
% apply \gbc{headpath} to the corresponding axis line. With a recent
% change in \mfpic{} code, it no longer gets used, as we now simply apply
% \cs{arrow} to the appropriate \gbc{axisline}. The change was made for
% consistency: so that the head would be drawn on top of the shaft.
%    \begin{macrocode}
laxis := baxis := raxis := taxis := 0;

vardef axisline.x = (xneg + laxis, 0)--(xpos - raxis, 0) enddef;
vardef axisline.y = (0, yneg + baxis)--(0, ypos - taxis) enddef;
vardef axisline.l = axisline.y shifted (xneg + laxis, 0) enddef;
vardef axisline.b = axisline.x shifted (0, yneg + baxis) enddef;
vardef axisline.r = axisline.y shifted (xpos - raxis, 0) enddef;
vardef axisline.t = axisline.x shifted (0, ypos - taxis) enddef;
vardef axis@# (expr len) =
  headpath (len, 0, 0) axisline@#
enddef;

%    \end{macrocode}
%
% Tick marks can be on the inside or outside of a border axis,
% above or below any horizontal axes, left or right of any vertical axis
% or centered on any axis. The following numerics are merely used to
% convert the names to numeric code that the drawing routine will examine.
%
% However, it is no accident that \gbc{onbottom = onright} and that
% \gbc{centered} is halfway between \gbc{onright} and \gbc{onleft}. The
% code uses the numeric values to compute a shift, and one can supply an
% expression like \gbc{.33ontop+.67onbottom]} and then 1/3 of each mark
% will be above (and 2/3 will be below) the axis.
%
% The negative value of \gbc{inside} and \gbc{outside} is a flag that they
% are to be treated differently. The others have the property that the
% direction is the direction of the axis rotated a certain way (e.g.,
% $90$ degrees from \mfc{up} points \mfc{left}, $-90$ points \mfc{right}).
% But \gbc{inside} is right of the left axis and left of the right axis.
%    \begin{macrocode}
numeric inside, outside, centered, onleft, onright, ontop, onbottom;
inside   := -2;
outside  := -1;
onright  :=  1;
onleft   :=  2;
centered := .5[onright, onleft];
onbottom := onright;
ontop    := onleft;
%    \end{macrocode}
%
% We interact with \mfpic{} by allowing the user to change the value of
% \gbc{ltick}, for example, with a command like \
% \cs{setaxismarks l}\marg{outside}. Here we set the defaults.
%    \begin{macrocode}
ltick := rtick := ttick := btick := inside;
xtick := ytick := centered;

%    \end{macrocode}
%
% \DescribeRoutine{axismarks}
% This utility macro draws the tick marks on an arbitrary axis. The
% different commands \gbc{xmarks}, etc., call this command with particular
% values of these parameters.
% \begin{itemize}
% \item \gbc{inang} is the direction one must rotate the axis to point
%     inside. This is always $\pm90$ degrees. The x-axis  and y-axis are
%     treated just like bottom and left axis in this respect.
% \item \gbc{tp}    is the tick position (e.g., \gbc{inside} or
%     \gbc{ontop}).
% \item \gbc{loc}   is the location of the 0-point of the axis (graph
%     coordinates).
% \item \gbc{pdir}  is the positive direction on the axis (right or up).
% \item \gbc{len}   is the length of a tick mark, supplied as an argument
%     to the individual axis mark commands.
% \item \gbc{t}     is the list of positions, also supplied.
% \end{itemize}
%    \begin{macrocode}
vardef axismarks (expr inang, tp, loc, pdir) (expr len) (text t) =
 save _tp, _U, _P, _tic, _ticang;
 pair _U, _P, _tic[];
%    \end{macrocode}
% For \gbc{onleft}, \gbc{onright}, \gbc{ontop} or \gbc{onbottom}, which
% are positive, don't examine \gbc{inang} but for \gbc{inside/outside}
% use it to determine what inside means. \gbc{_ticang} will be the angle
% to rotate \gbc{pdir} to set the direction of the tic mark.
%
% Then we shift the numeric value of \gbc{tp} by one, so \gbc{centered}
% corresponds to $.5$ and the rest to either $0$ or $1$.
%    \begin{macrocode}
 _ticang := if tp<0 : inang else: 90 fi;
 _tp := abs(tp) - 1;
%    \end{macrocode}
% Except, we go through the following shenanigans so that the marks are
% always perpendicular to the axis, even if a coordinate transform will
% slant the axis. After this \gbc{_U} should point in direction of inside,
% onleft or ontop.
%    \begin{macrocode}
 _U := unitvector (vconv (pdir)) rotated _ticang;
%    \end{macrocode}
% Next, we use \gbc{_tp} to calculate the ends of the mark. For example,
% if \gbc{tp = inside}, then \gbc{_tp = 1}. Since \gbc{_U} points toward
% inside, \gbc{_tic2} will be \gbc{len} toward the inside and \gbc{_tic1 =
% (0, 0)}.
%    \begin{macrocode}
 _tic1 := (_tp - 1) * len * _U; % start of mark
 _tic2 := _tp * len * _U;       % end of mark
%    \end{macrocode}
% Finally, convert each numeric position to a point on the axis, a
% multiple of \gbc{pdir} from the 0 point of the axis, and than draw the
% tic.
%    \begin{macrocode}
 for _a = t:
   safedraw ((_tic1--_tic2) shifted zconv (loc + _a*pdir));
 endfor
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{xmarks}
% \DescribeRoutine{ymarks}
% \DescribeRoutine{lmarks}
% \DescribeRoutine{bmarks}
% \DescribeRoutine{rmarks}
% \DescribeRoutine{tmarks}
% And now the specialized command for each axis. Inside and outside
% really make no sense for the x- and y-axis, but since a bottom axis is
% usually used for x and a left axis for y, we give \gbc{xmarks} the same
% first parameter as \gbc{bmarks} and \gbc{ymarks} the same as \gbc{lmarks}.
%    \begin{macrocode}
def xmarks =  axismarks ( 90, xtick, (0, 0), right) enddef;
def ymarks =  axismarks (-90, ytick, (0, 0), up)    enddef;
def lmarks =  axismarks (-90, ltick, (xneg + laxis, 0), up)    enddef;
def bmarks =  axismarks ( 90, btick, (0, yneg + baxis), right) enddef;
def rmarks =  axismarks ( 90, rtick, (xpos - raxis, 0), up)    enddef;
def tmarks =  axismarks (-90, ttick, (0, ypos - taxis), right) enddef;

%    \end{macrocode}
%
% \DescribeRoutine{vgrid}
% \DescribeRoutine{grid}
% This is mainly for the purpose of visualising coordinates. \gbc{vgrid}
% draws a dot of size \gbc{dsize} at every point whose coordinates
% are are \gbc{(n*xspace, m*yspace)}, \gbc{n} and \gbc{m} being integers.
% \gbc{dsize} is in device coordinates, the spacings are in graph
% coordinates. \gbc{grid} is for backward compatibility, calling vgrid
% with a default \gbc{dsize} of \mfc{.5bp}.
%
%    \begin{macrocode}
path griddotpath; griddotpath := fullcircle;
def grid = vgrid (0.5bp) enddef;
vardef vgrid (expr dsize, xspace, yspace) =
  save gdot, gridpic; picture gdot, gridpic;
  gdot := setdot (griddotpath, dsize);
  gridpic := nullpicture;
  for n = ceiling(xneg/xspace) upto floor(xpos/xspace):
  for m = ceiling(yneg/yspace) upto floor(ypos/yspace):
      picdot (gridpic, gdot, zconv((n*xspace, m*yspace)));
  endfor
  endfor
%<MF>  mono (gridpic);
  coloraddto (pointcolor) (active_plane) (gridpic);
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{hgridlines}
% \DescribeRoutine{vgridlines}
% \DescribeRoutine{gridlines}
% This is more what I think of when I hear ``grid'', but the name was already
% taken. \gbc{gridlines} draws horizontal and vertical lines through the
% same points where \gbc{grid} would draw a dot. To draw only horizontal
% or only vertical lines use \gbc{hgridlines} or \gbc{vgridlines}.
%    \begin{macrocode}
def hgridlines (expr ysp) =
  for n = ceiling((yneg + baxis)/ysp) upto floor((ypos - taxis)/ysp) :
    safedraw zconv((xneg + laxis, n*ysp)--(xpos - raxis, n*ysp));
  endfor
enddef;
def vgridlines (expr xsp) =
  for n = ceiling((xneg + laxis)/xsp) upto floor((xpos - raxis)/xsp) :
    safedraw zconv((n*xsp, yneg + baxis)--(n*xsp, ypos - taxis));
  endfor
enddef;
def gridlines (expr xsp, ysp) =
  vgridlines (xsp); hgridlines (ysp);
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{plrpatch}
% \DescribeRoutine{patcharcs}
% \DescribeRoutine{patchrays}
% Polar grids can be drawn two ways. \gbc{patcharcs} draws the arcs
% \gbc{tstart}${}\le \theta \le{}$\gbc{tstop} with $r = {}$\gbc{rstart},
% stepping by \gbc{rstep} until \gbc{rstop}. \gbc{patchrays} draws the lines
% \gbc{rstart}${}\le r \le{}$\gbc{rstop} with $\theta = {}$\gbc{tstart}
% stepping by \gbc{tstep} until \gbc{tstop}. \gbc{plrpatch} then calls
%
% They are utilities that draw on a picture variable \gbc{X}, and then a
% calling command like \gbc{plrpatch} adds them to \gbc{active_plane}.
% \gbc{plrpatch} used to be called by \gbc{polarpatch}, but now it is
% not called at all.
%    \begin{macrocode}
vardef plrpatch (expr rstart, rstop, rstep, tstart, tstop, tstep) =
  save v; picture v; v := nullpicture;
  patcharcs (v) (rstart, rstop, rstep, tstart, tstop);
  coloraddto (drawcolor) (active_plane, v);
  v := nullpicture;
  patchrays (v) (tstart, tstop, tstep, rstart, rstop);
  coloraddto (drawcolor) (active_plane, v);
enddef;
def patcharcs (suffix X) (expr rstart, rstop, rstep, tstart, tstop) =
  for rad = (if rstart=0: rstep else: rstart fi) step rstep until rstop:
    orto (X, picpath zconv (arcplr ((0, 0), tstart, tstop, rad)) );
  endfor
enddef;
def patchrays (suffix X) (expr tstart, tstop, tstep, rstart, rstop) =
  for _ang = tstart step tstep until tstop:
    orto (X) (picpath zconv ((rstart*dir _ang)--(rstop*dir _ang)));
  endfor
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{polargrid}
% \DescribeRoutine{polargridpoints}
% \DescribeRoutine{gridarcs}
% \DescribeRoutine{gridrays}
% These are analogous to \gbc{gridlines} and \gbc{grid}. They first draw a
% grid large enough to cover the whole graph, then clip it to the. graph
% boundaries. The arcs have radii that are multiples of \gbc{rstep} and
% radial lines have angles that are multiples of \gbc{tstep}. The command
% \gbc{polargridpoints} draws dots at the points where the lines and arcs
% in \gbc{poloargrid} would intersect. The `step' parameters are in graph
% coordinates. \gbc{beginpolargrid} computes the bounds for the patch and
% declares the picture variable \gbc{gridpic}, while \gbc{endpolargrid}
% clips the resulting picture and adds it to \gbc{active_plane}.
%
% The \gbc{rmin}, etc., returned are modified to fit the grid established
% by the step sizes. A ray could happen to be one of the graph's sides, so
% we use \mfc{ceiling} and \mfc{floor} which doesn't change integer
% values. However, the arc with radius \gbc{rmin} or \gbc{rmax} could
% touch the graph rectangle in at most 4 points, so we use \mfc{floor (1
% + x)} and \mfc{ceiling(x - 1)} to start and stop before the edge of the
% graph.
%    \begin{macrocode}
def polargrid (expr rstep, tstep) =
  gridarcs (rstep); gridrays (tstep);
enddef;

def polargridpoints (expr dsize, rstep, tstep) =
  beginpolargrid;
    save gdot; picture gdot; gdot := setdot (griddotpath, dsize);
    if rmin = 0:
      picdot (gridpic, gdot, zconv(origin));
      rmin := rstep;
    fi
    for n = ceiling (rmin/rstep) upto floor (rmax/rstep) :
    for m = ceiling (tmin/tstep) upto floor (tmax/tstep) :
      picdot ( gridpic, gdot, zconv ( polar((n*rstep, m*tstep)) ) );
    endfor
    endfor
  endpolargrid (pointcolor, .5dsize);
enddef;

def gridarcs (expr rstep) =
  beginpolargrid;
    if rmin = 0 :  % add "circle" of radius 0
      picdot (gridpic, setdot(griddotpath, penwd), zconv(origin));
    fi
    rmin := rstep * floor(rmin/rstep + 1);
    rmax := rstep*ceiling(rmax/rstep - 1);
    patcharcs (gridpic) (rmin, rmax, rstep, tmin, tmax);
  endpolargrid (drawcolor, .5penwd);
enddef;

def gridrays (expr tstep) =
  beginpolargrid;
    tmin := tstep*ceiling(tmin/tstep);
    tmax := tstep * floor(tmax/tstep);
    patchrays (gridpic) (tmin, tmax, tstep, rmin, rmax);
  endpolargrid (drawcolor, .5penwd);
enddef;

%    \end{macrocode}
% \DescribeRoutine{beginpolargrid}
% This computes the bounds (on $r$ and $\theta$) of the smallest polar
% coordinate patch that covers the graph rectangle. It leaving the values
% in \gbc{rmin}, \gbc{rmax}, \gbc{tmin} and \gbc{tmax}. It is only for use
% in \gbc{polargrid}, \gbc{gridarcs} and \gbc{gridrays}.
%    \begin{macrocode}
def beginpolargrid =
  begingroup;
    save p, r, t, rmax, rmin, tmax, tmin;
    pair p[];
    % Four corners:
    p0 := (xneg, yneg); p1 := (xneg, ypos);
    p2 := (xpos, ypos); p3 := (xpos, yneg);
%    \end{macrocode}
% This loop finds the radial coordinate of each corner of the graph and
% finds the maximum while doing so.
%    \begin{macrocode}
    r0 := abs(p0); rmax := r0;
    for j = 1 upto 3 :
      r[j] := abs(p[j]);
      if rmax < r[j] : rmax := r[j]; fi
    endfor
%    \end{macrocode}
% When the origin is inside the graph rectangle we need the full range
% of $r$ and $\theta$. When the origin is one of the corners, the angles
% can just be read off. Otherwise, to find the range of $\theta$ we
% rotate one corner to have angle zero (so now we are guaranteed all
% angles are between $-180$ and $180$) and get the largest and smallest of
% the angles to all the corners.
%    \begin{macrocode}
    rmin := 0;
    if (xneg < 0) and (xpos > 0) and (yneg < 0) and (ypos > 0) :
      tmin := 0; tmax := 360;
    elseif (p0 = (0,0)) : tmin :=    0; tmax :=  90;
    elseif (p1 = (0,0)) : tmin :=  -90; tmax :=   0;
    elseif (p2 = (0,0)) : tmin := -180; tmax := -90;
    elseif (p3 = (0,0)) : tmin :=   90; tmax := 180;
    else :
      tmax := tmin := t0 := angle p0;
      for j = 1 upto 3:
        t := t0 + angle (p[j] rotated -t0);
        if tmax < t : tmax := t; fi
        if tmin > t : tmin := t; fi
      endfor
%    \end{macrocode}
% The minimum value of $r$ can be one of 9 possibilities: if the four
% sides of the graph are extended infinitely far in both directions, the
% origin can be in any one of the 9 regions formed. We've already disposed
% of the inside of the graph. This code considers the remaining regions in
% the following order: (1)~above or below, (2)~left or right, and (3)~one
% of the four corner regions.
%    \begin{macrocode}
      if (xneg < 0) and (xpos > 0) :        % (1)
        rmin := emin(abs(yneg), abs(ypos));
      elseif (yneg < 0) and (ypos > 0) :    % (2)
        rmin := emin(abs(xneg), abs(xpos));
      else :                                % (3)
        rmin := min(r0, r1, r2, r3);
      fi
    fi
    save gridpic; picture gridpic; gridpic := nullpicture;
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{endpolargrid}
% The \gbc{clr} is \gbc{drawcolor} for line grids, \gbc{pointcolor} for
% dot grids. The size is half the width of the grid's lines or half the
% width of the grid's dots. The purpose is to make sure dots and lines on
% the graph's edge aren't cut off. For dots I should probably put this
% decision in the code that draws them on \gbc{gridpic}.
%    \begin{macrocode}

def endpolargrid (expr clr, size)=
    clipto (gridpic) rect ( zconv((xneg, yneg)) - size*(1,1),
                            zconv((xpos, ypos)) + size*(1,1) );
    coloraddto (clr) (active_plane) (gridpic);
  endgroup
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{polarpatch}
% Finally, this just does \gbc{plrpatch}, but also draws the ending
% boundaries, in case they are not an integer number of steps from the
% start.
%    \begin{macrocode}
vardef polarpatch (expr rstart, rstop, rstep, tstart, tstop, tstep) =
  plrpatch (rstart, rstop, rstep, tstart, tstop, tstep);
  safedraw zconv ( arcplr ((0, 0), tstart, tstop, rstop) );
  safedraw zconv ( ((rstart, 0)--(rstop, 0)) rotated tstop );
enddef;

%    \end{macrocode}
%
% \section{Path construction}
%
% \DescribeRoutine{rect}
% Most of the macros that only define paths are coordinate independent.
% The simplest is \gbc{rect}. It accepts two pair expressions and produces
% the upright rectangle with those points at opposite corners. It might be
% noted that if the corners really are lower left and upper right, then
% the path is anticlockwise, If they are on the other diagonal, the
% path is clockwise. The path is a cycle (closed).
%
% \DescribeRoutine{triangle}
% Produces a closed path joining three points with straight lines; first
% named point \gbc{A} is \mfc{point 0 of triangle (A, B, C)}, etc.
%    \begin{macrocode}
vardef rect (expr ll, ur) =
  ll--(xpart ur, ypart ll)--ur--(xpart ll, ypart ur)--cycle
enddef;
vardef triangle (expr A, B, C) = A--B--C--cycle enddef;

%    \end{macrocode}
%
% \DescribeRoutine{regularpolygon}
% The first argument is the number of sides, the second is an array name
% to hold the list of vertices. The third argument contains two
% equations, preferably the location of two of the vertices, or the
% location of the center and one vertex. That plus the equations in the
% \mfc{for}-loop give \gbc{n+1} equations to determine the \gbc{n}
% vertices and the center. Note that the vertices are numbered
% anticlockwise.
%    \begin{macrocode}
vardef regularpolygon (expr n) (suffix Bob) (text eqns) =
  pair Bob[]; Bob := emax(round (abs (n)), 2);
  eqns;
  for _uncle = 1 upto Bob - 1 :
    (Bob1 - Bob0) rotated (360*_uncle/Bob) = Bob[_uncle+1] - Bob0;
  endfor
  mkpoly (true) (Bob)
enddef;

%    \end{macrocode}
%
% The following set of commands accept any path as argument, but it is
% intended that it be a triangle. Even then, they work correctly only if
% it is a cycle.
%
% \DescribeRoutine{altitudept}
% \DescribeRoutine{altitude}
% These first two produce the perpendicular from \gbc{point n of t}
% to the (extension of) the opposite side (i.e., the altitude). The
% first one determines where the altitude meets the opposite side, and the
% second just connects the two points
%    \begin{macrocode}
vardef altitudept expr n of t =
  save A, B, C, zz; pair A, B, C, zz;
  A := pnt[n]     (t);
  B := pnt[n + 1] (t); % wraps around a cyclic path
  C := pnt[n + 2] (t);
  zz = whatever[B,C];
  zz = A + whatever*((C-B) rotated 90);
  zz
enddef;

vardef altitude expr n of t =
  (pnt[n](t))--(altitudept n of t)
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{medianpt}
% \DescribeRoutine{median}
% These two produce the line from \gbc{point n of t} to the midpoint of
% the opposite side.
%    \begin{macrocode}
vardef medianpt expr n of t =
  0.5[pnt[n + 1] (t), pnt[n + 2] (t)]
enddef;

vardef median expr n of t =
  (pnt[n](t))--(medianpt n of t)
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{anglebisectorpt}
% \DescribeRoutine{anglebisector}
% These two produce the line from \gbc{point n of t} to the opposite side
% that bisects the angle there.
%    \begin{macrocode}
vardef anglebisectorpt expr n of t =
  save A, B, C; pair A, B, C;
  A := pnt[n    ] (t);
  B := pnt[n + 1] (t);
  C := pnt[n + 2] (t);
  save zz; pair zz;
  zz = whatever[B,C];
  zz = A + whatever*((B-A) rotated (.5*cornerangle (A,B,C)));
  zz
enddef;

vardef anglebisector expr n of t =
  (pnt[n](t))--(anglebisectorpt n of t)
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{cornerangle}
% This calculates the angle at the corner of a triangle. Specifically,
% the angle (between $-180$ and $180$) required to rotate the vector
% \gbc{B-A} into \gbc{C-A}. For degenerate triangles the seemingly
% arbitrary values 0, 60 and 90 are designed to match the assumptions used
% in the \gbc{arc*} commands. But also to guarantee that the three
% \gbc{cornerangle}\,s add up to $\pm180$. \gbc{cornerangle (A,B,C)} gives
% the angle at \gbc{A}, positive if \gbc{A--B--C--cycle} is
% anticlockwise.
%    \begin{macrocode}
vardef cornerangle (expr A, B, C) =
  if (A = B) and (B = C)    : 60
  elseif (B = C)            :  0
  elseif (A = B) or (A = C) : 90
  else:  angle ((C - A) rotated (-angle (B - A)))
  fi
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{mkpath}
% This accepts the name of an array of pairs and produces a path
% that connects them. The first two parameters are booleans. If
% \gbc{smooth} is \mfc{true} a smooth path is produced, otherwise a
% polyline. If \gbc{cyclic} is \mfc{true} the path is closed. The work is
% actually done by \gbc{mksmooth} or \gbc{mkpoly}.
%    \begin{macrocode}
vardef mkpath (expr smooth, tens, cyclic) (suffix pts) =
  if smooth :  mksmooth (tens, cyclic, pts)
  else      :  mkpoly (cyclic, pts)
  fi
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{mkpoly}
% This produces the path of line segments connecting \gbc{pts1},
% \gbc{pts2}, etc., closing it up if the boolean \gbc{cyclic} is true.
%    \begin{macrocode}
vardef mkpoly (expr cyclic) (suffix pts) =
  for _i = 1 upto pts-1:  pts[_i]-- endfor
  pts[pts] if cyclic : -- cycle fi
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{polyline}
% This is the \mfpic{} interface. Instead of an array name, it accepts a
% list of pair expressions, forms an array from them and calls
% \gbc{mkpoly}.
%    \begin{macrocode}
vardef polyline (expr cyclic) (text t) =
  save _pl; textpairs (_pl) (t);  mkpoly (cyclic, _pl)
enddef;

%    \end{macrocode}
%
% We added an optional parameter for the tension of smooth curves to
% \mfpic. It used to be implemented this way: functions that implement a
% tension parameter set \gbc{cur_tension} and called \gbc{mksmooth}, which
% uses that tension in its formation of a path. Since \gbc{mksmooth} was
% only ever used in this way, I decided to change its syntax to include a
% tension parameter. Only the functions \gbc{tcurve} and \gbc{mkpath}
% actually call \gbc{mksmooth} directly, other path building commands with
% tension parameters call \gbc{mkfcn}, which calls \gbc{mkpath}.
%
% \DescribeRoutine{mksmooth}
% This takes a tension value, a boolean, and the name of an array of
% points, draws the curve connecting them and closes it up if the boolean
% is true. It draws the curve forcing it to have the same direction at a
% point as the line segment connecting the preceding and following points.
% This is normally best if the curve direction changes relatively modestly
% from point to point. For example, if the polyline would be convex, then
% this smooth version would be pretty close to being convex. If the convex
% polygon has several consecutive sides that are in the same direction,
% all but the first and last of these segments in the smooth version would
% be straight. We should experiment with ``\mfc{tension atleast}'' here
% to see what difference it makes.
%    \begin{macrocode}
vardef mksmooth (expr tens, cyclic) (suffix pts) =
  pts1
  if pts = 1 :
    if cyclic : &cycle fi
  else:
    if cyclic :
      {pts[2]-pts[pts]}
    fi
    for _i = 2 upto pts-1:
      ..tension tens..pts[_i]{pts[_i+1]-pts[_i-1]}
    endfor
    ..tension tens..pts[pts]
    if cyclic :
      {pts[1]-pts[pts-1]}..tension tens..cycle
    fi
  fi
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{curve}
% \DescribeRoutine{tcurve}
% The old \cs{curve} command in \mfpic{} permitted no tension parameter
% and wrote a \grafbase{} \gbc{curve} command. For backward compatibility
% we keep that name, but simply call the \gbc{tcurve} command with the
% default value for tension. \gbc{tcurve} converts a list of pairs to an
% array, then calls \gbc{mksmooth} on the array.
%    \begin{macrocode}
def curve = tcurve (default_tension) enddef;
vardef tcurve  (expr tens, cyclic) (text t) =
  save _tc;  textpairs (_tc) (t);  mksmooth (tens, cyclic, _tc)
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{mkbezier}
% \DescribeRoutine{bezier}
% \DescribeRoutine{tbezier}
% It seemed odd that we had no way for an \MF-savvy user to easily get
% the standard \mfc{p..q..r} kind of path. For such a simple one
% \cs{mfobj} with the explicit path expression would work, but when one
% has to add a tension to it, it is nice to have an abbreviation. That's
% what these are for.
%    \begin{macrocode}
vardef mkbezier (expr tens, cyclic) (suffix pts) =
  for _i = 1 upto pts-1 : pts[_i]..tension tens.. endfor
    pts[pts] if cyclic : ..tension tens..cycle fi
enddef;

def bezier = tbezier (default_tension) enddef;
vardef tbezier (expr tens, cyclic) (text t) =
  save _tsb;  textpairs (_tsb) (t);  mkbezier (tens, cyclic) (_tsb)
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{qbezier}
% \DescribeRoutine{mkqbezier}
% It also semed we ought to allow \mfpic{} users to easily reproduce the
% effect of a sequence of \LaTeX's  \cs{qbezier} commands. That's what
% these are for.
%
% These commands and the various splines don't use tension as they have
% their control points explicitly given, not computed from the tension
% value by \MF. The \gbc{qbezier} command does not produce a smooth path
% unless the controls are explicitely chosen for that. The spline commands
% will almost always produce a smooth path.
%
% \gbc{mkqbezier} requires an even number of points for a cyclic path,
% an oddnumber for a noncyclic path. If \gbc{pts} has the wrong parity,
% the last point in the list is repeated. This makes the last segment
% either trivial or a straight line. We increment \gbc{_mqb} instead of
% \gbc{pts} so a user's suffix doesn't unexpectedly change.
%    \begin{macrocode}
vardef mkqbezier (expr cyclic) (suffix pts) =
  save _mqb;  _mqb := pts;
  if (cyclic and odd pts) or not (cyclic or odd pts):
    pts[incr _mqb] := pts[pts];
  fi
  if cyclic : pts[incr _mqb] := pts1; fi
  pts1
  for _i = 2 step 2 until _mqb - 1 :
    ..controls  1/3[pts[_i],pts[_i-1]] and 1/3[pts[_i], pts[_i+1]]
    ..pts[_i+1]
  endfor
  if cyclic : &cycle fi
enddef;

vardef qbezier (expr cyclic) (text t) =
  save _qbz;  textpairs (_qbz) (t);  mkqbezier (cyclic) (_qbz)
enddef;

%    \end{macrocode}
%
% For quadratic B-splines, a list of pairs representing the control
% points must be given. The nodes of the path  and the cubic Bezi\'er
% controls required to produce a quadratic B-spline are computed.
%
% \DescribeRoutine{mkqbs}
% For simplicity, the list is converted to an array \gbc{_oq} first and
% \gbc{mkqbs} is called. This draws an open spline based on the points in
% an array \gbc{b}.
%    \begin{macrocode}
vardef openqbs (text t) =
  save _oq;  textpairs (_oq) (t);  mkqbs (_oq)
enddef;

vardef closedqbs (text t) =
  save _cq; textpairs (_cq) (t);
  _cq[incr _cq] := _cq1;  _cq[incr _cq] := _cq2;
  mkqbs (_cq) & cycle
enddef;

vardef mkqbs (suffix b) =
  for _i = 1 upto b-2:
    0.5[b[_i], b[_i+1]]
      ..controls 1/6[b[_i+1], b[_i]] and 1/6[b[_i+1], b[_i+2]]..
  endfor
  0.5[b[b-1], b[b]]
enddef;

%    \end{macrocode}
% As for cubic B-splines, I'll have to trust the previous coder, as I
% didn't even know what a cubic B-spline was until I deduced it from his
% code. Earlier versions of \gbc{mkclosedcbs} would define
% \gbc{b[incr b]:=b1} and \gbc{b[incr b]:=b2}. I decided we shouldn't
% change the values of variables associated with the given suffix \gbc{b}
% and so now we use \gbc{mkopencbs} to get most of the way around and then
% fill in the gap with an explicit call to \gbc{opencbs}).
%    \begin{macrocode}
vardef mkopencbs (suffix b) =
  for _i = 1 upto b-3:
    (b[_i]+4b[_i+1]+b[_i+2])/6
      ..controls 1/3[b[_i+1], b[_i+2]] and 2/3[b[_i+1], b[_i+2]]..
  endfor
  (b[b-2]+4b[b-1]+b[b])/6
enddef;
vardef mkclosedcbs (suffix b) =
  mkopencbs (b) & opencbs (b[b-2],b[b-1],b[b], b1, b2, b3) & cycle
enddef;

vardef opencbs (text t) =
  save _oc;  textpairs (_oc) (t);  mkopencbs (_oc)
enddef;
vardef closedcbs (text t) =
  save _clc; textpairs (_clc) (t);  mkclosedcbs (_clc)
enddef;

%    \end{macrocode}
% When calling \gbc{curve} or \gbc{tcurve} there there can be a problem
% with the resulting path: even with high tension one is not guaranteed
% that a sequence of points with increasing x-coordinate will produce a
% path with increasing x-coordinate.  The requirement to guarantee this is
% that the control points of the segment connecting $(x\sb1, y\sb1)$ to the
% next $(x\sb2, y\sb2)$ have their \gbc{xpart} in the interval $x\sb1 < x
% < x\sb2$.
%
% Therefore, if we wish to plot a curve connecting points with increasing
% x-coordinates and believe that the resulting path should be the graph of
% a function, we pretty much have to select the control points ourselves.
% A related problem is to keep the path under control. That is, the
% segment of the curve connecting $(x\sb1, y\sb1)$ to the next $(x\sb2,
% y\sb2)$ should have \gbc{ypart} within an interval not too much larger
% than the interval $y\sb1 < y < y\sb2$.
%
% We accomplish both these tasks at once by making the vector from
% $(x\sb n, y\sb n)$ to its \mfc{postcontrol} have length less than
% $|x\sb{n+1} - x\sb n|$, and the same for the vector from $(x\sb{n+1},
% y\sb{n+1})$ to its \mfc{precontrol}
%
% Another concern is what direction to place the controls. In
% \gbc{mksmooth} we ask the direction at a given point to be the average
% of the straight line directions to adjacent points. For graphing
% functions, we average the slopes instead. An added refinement is that
% this is a weighted average, with the nearer x-coordinate being weighted
% more.
%
% Finally, we permit a tension of sorts by dividing the distance to the
% controls by a parameter \gbc{fcn_tension}.
%
% \DescribeRoutine{fcncontrol}
% This computes the control point for the points on the path. The
% parameters \gbc{X, Y, Z} are three successive points of the path to be
% constructed. If they are given in order, it gives the postcontrol of
% \gbc{Y}. If they are in reverse order, the precontrol is obtained.
% Oddly enough, the addition of the trap for \gbc{dl=0} or \gbc{dr=0}
% made it possible to trivially extend the array (in
% \gbc{functioncurve}) and get better looking results than either method
% used before this.
%
% \DescribeRoutine{mkfcnpath}
% This produces the path, calling \gbc{fcncontrol} to produce the controls.
%
% \DescribeRoutine{functioncurve}
% \DescribeRoutine{fcncurve}
% This is the interface; \gbc{fcncurve} calls \gbc{functioncurve} with the
% default tension, which then  takes a list of points, converts it to an
% array, and calls \gbc{mkfcnpath} to build the path.
%    \begin{macrocode}
vardef fcncontrol (expr ftens, X, Y, Z) =
  save dl, dr, before, after;  pair before, after;
  before := Y - X;  after := Z - Y;
  dl := xpart (before);  dr := xpart (after);
  if (dr = 0) or (dl = 0):
    Y + abs(dr)/ftens * sgn before
  else:
    Y + abs(dr)/ftens * unitvector (before*dr/dl + after*dl/dr)
  fi
enddef;

vardef  mkfcnpath (expr ftens) (suffix q) =
  for _i = 1 upto q - 1:
    q[_i]..controls fcncontrol (ftens) (q[_i-1], q[_i],  q[_i+1])
           and fcncontrol (ftens) (q[_i+2], q[_i+1], q[_i])..
  endfor
  q[q]
enddef;

def fcncurve = functioncurve (emax(1.2default_tension, eps)) enddef;
vardef functioncurve (expr ftens) (text t) =
  save _fc; textpairs (_fc) (t);
  if _fc > 1 :  _fc0 :=  _fc1;  _fc[_fc+1] := _fc[_fc]; fi
  mkfcnpath (ftens)(_fc)
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{turtle}
% \emph{Turtle graphics} was a teaching tool to get youngsters used to the
% concept of programming while also teaching geometry. The students fed an
% Apple II computer a sequence of angles and distances, and a small
% triangle on the screen (the ``turtle'') would turn the indicated amount
% and travel the indicated distance, tracing a polyline on the screen.
%
% The argument of \gbc{turtle} is a list of pairs. The first is the
% starting point, the rest are vector displacements (moves). The
% distance and incremental angles of the original turtle graphics seems
% to have been abandoned at some point in the development of \grafbase.
%    \begin{macrocode}
vardef turtle (text t) =
  save _tu; pair _tu[]; _tu := 0; _tu0 := (0, 0);
  for _a = t: _tu[incr _tu] := _tu[_tu - 1] + _a; endfor
  mkpoly (false, _tu)
enddef;

%    \end{macrocode}
%
%
% \section{Arcs, Circles and Ellipses}
%
% We have multiple commands that generate circular arcs, differing in
% how the arc is specified. All are (in part) based on the following
% \gbc{mkarc}. However, perfectly reasonable arcs can have centers so far
% away that requiring the center among the parameters can cause numeric
% overflow.
%
% I'd like to use some scheme that avoids this. It is possible, given
% three reasonably spaced points on an arc with angle less than 90
% degrees between each, to draw the arc without finding the center.
% However, I am not sure how to reduce any given format to this
% information
%
% Another problem is that of accuracy. If the angle is small, accuracy is
% not usually a problem, but if an angle is close to 360, and the
% endpoints are known, then finding the center (or finding other points on
% the arc without knowing the center) is unstable.
%
% There is really no problem with \gbc{mkarc} itself: if you can express
% both \gbc{center} and \gbc{from} in \MF, then the other values on the
% arc should be no problem.
%
% \DescribeRoutine{mkarc}
% This takes the center, starting and ending point (pair expressions) and
% the angle, and returns the arc defined pretty much the way \file{plain.mf}
% defines \mfc{quartercircle}.
%
% It would be easier to do something like we frequently do with
% \mfc{fullcircle}: make an arc of unit radius, and then rotate, scale
% and shift it into place. However, I would like to accomplish at least
% the following: if an endpoint of the arc is among the parameters, or is
% straightforwardly implied by them, then the corresponding endpoint of
% the path created should test equal to that point. Shifting works OK, but
% scaling and rotating cause roundoff differences.
%
% Note that \gbc{mkarc} has parameters that over-determine the arc. It
% is only called by arc making commands that have calculated these
% parameters. \gbc{mkarc}'s job is to ensure that the arc begins at
% \gbc{from} and ends at \gbc{to} (exactly).
%    \begin{macrocode}
vardef mkarc (expr center, from, to, sweep) =
  save n, d; pair d;
  n := ceiling (abs(sweep)/45);
  d := (from - center) rotated (signof (sweep) 90);
  from{d}
  for j = 1 upto n-1 :
    ..(from rotatedabout (center, j/n*sweep)){d rotated (j/n*sweep)}
  endfor ..to{d rotated sweep}
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{arc}
% The most basic: center of circle, starting point of arc, and angle
% subtended. Another name for \gbc{arc} is \gbc{arccps}, (\gbc{cps} is
% for ``center, point, sweep'').
%    \begin{macrocode}
vardef arc (expr center, from, sweep) =
  if (center = from) or (sweep = 0) :
    from--from
  else:
    save to; pair to;
    to := from rotatedabout (center, sweep);
    mkarc (center, from, to, sweep)
  fi
enddef;
def arccps = arc enddef;

%    \end{macrocode}
%
% \DescribeRoutine{arccenter}
% For arcs greater than 90 degrees we will convert to the above basic
% \gbc{mkarc}. Since two of the methods don't provide the center among the
% parameters, we use the utility \gbc{arccenter} to locate that center,
% given two points and the angle. This can fail (arithmetic overflow) if
% the angle is too small relative to the distance between the points.
% Therefore, we try not to call it for small angles (or angles near
% multiples of 360).
%
% We find the center by solving equations representing two lines which
% must be perpendicular to the circle. Which two lines we use depends on
% the sweep. For accurate solutions we want the angle between the two
% lines to be closer to 90 than to 0. \gbc{ang} is the angle we need to
% rotate the chord \gbc{(to - from)} to be perpendicular to the circle at
% \gbc{from}. \gbc{cd} is a vector in the direction of the chord. When
% \gbc{ang} is close to $\pm90$, we use the lines perpendicular to the circle
% at \gbc{from} and \gbc{to}. Otherwise we use the lines perpendicular
% to the circle at \gbc{from} and perpendicular to the chord at its
% midpoint. The latter is better when \gbc{ang} is between $-30$ and $30$
% degrees.
%    \begin{macrocode}
vardef arccenter (expr from, to, sweep) =
  save ang, c;
  pair c;
  ang := 90 - (sweep mod 360)/2; %  -90 < ang <= 90
  if (abs(ang) = 90) or (from = to) :
    GBmsg "The central point of this arc is undefined. " &
      "Using midpoint of chord instead.";
    0.5[from, to]
  else:
    save cd; pair cd;  cd := to - from;
    c = from + whatever*(cd rotated ang);
    if abs(ang) < 30 :
      c = (0.5)[from, to] + whatever*(cd rotated 90);
    else:
      c = to + whatever*(-cd rotated -ang);
    fi
    c
  fi
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{midarc}
% This finds the midpoint of the arc determined by two points and an
% angle. It work because the angle subtended at \gbc{from} by an arc of
% length \gbc{sweep/2} is \gbc{sweep/4}. We use it for small angles, as
% we can then draw the arc without having to find its center.
%    \begin{macrocode}
vardef midarc (expr from, to, sweep) =
  save m, cd; pair m, cd;
  cd := to - from;
  m = from + whatever*( cd rotated (-sweep/4));
  m = 0.5[from, to] + whatever*(cd rotated 90);
  m
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{arcpps}
% In this form we are given two points and the angle of the arc between
% them. If the points are equal or the sweep makes the arc undefined, we
% return a line segment. If the sweep is less than 90 degrees we use the
% idea from the code of \mfc{quartercircle}, except, when the sweep is
% greater than 45 degrees we let \MF{} find the midpint \gbc{m} of the
% arc. Otherwise, we get the center of the circle and call \gbc{mkarc}.
%    \begin{macrocode}
vardef arcpps (expr from, to, sweep) =
  if ((sweep mod 360) = 0) or (from = to) :
    GBmsg "Undefined arc. A line segment will be used instead.";
    from--to
  elseif abs(sweep) <= 90 :
    save cd; pair cd; cd := to - from;
    if abs(sweep) <= 45 :
      from{cd rotated (-sweep/2)}..to{cd rotated (sweep/2)}
    else:
      from{cd rotated (-sweep/2)}..midarc(from, to, sweep){cd}
        ..to{cd rotated (sweep/2)}
    fi
  else:
    save center; pair center;
    center := arccenter (from, to, sweep);
    mkarc (center, from, to, sweep)
  fi
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{arcplr}
% This one takes the center and polar coordinates of the ends relative to
% the center. We just call \gbc{mkarc} with the obviously computed
% endpoints and sweep.
%    \begin{macrocode}
vardef arcplr (expr center, frtheta, totheta, rad) =
  if rad = 0 :
    center -- center
  else:
    save from, to; pair from, to;
    from := center + rad*dir frtheta;
    to   := center + rad*dir totheta;
    if frtheta = totheta :
      from--to
    else:
      mkarc (center, from, to, totheta - frtheta)
    fi
  fi
enddef;
%    \end{macrocode}
%
% \DescribeRoutine{arcalt}
% This one is the same as above, but with the same argument order as
% \gbc{sector}.
%    \begin{macrocode}
vardef arcalt (expr center, radius, anglefrom, angleto) =
  arcplr (center, anglefrom, angleto, radius)
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{arcppp}
% This last one finds the arc connecting three points in the order given.
% It works by calling \gbc{arcpps} twice, using first the sweep from
% \gbc{first} to \gbc{second}, and then the sweep from \gbc{second} to
% \gbc{third}. Each of these is twice the opposite angle of the triangle
% formed from these points, and calculated by \gbc{cornerangle}.
%    \begin{macrocode}
vardef arcppp (expr first, second, third) =
  arcpps (first, second, 2*cornerangle (third, first, second)) &
  arcpps (second, third, 2*cornerangle (first, second, third))
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{ellipse}
% \DescribeRoutine{circle}
% We get an ellipse by x-scaling and y-scaling a unit circle, rotating it
% and then shifting it into position. All parameters are coordinate
% independent expressions, with obvious meaning (\gbc{center} is a pair, the
% rest numeric). \gbc{circle} is similar, but we only scale and shift.
%    \begin{macrocode}
vardef ellipse (expr center, radx, rady, angle) =
  fullcircle xscaled (2*radx) yscaled (2*rady) rotated angle
    shifted center
enddef;
vardef circle (expr center, rad) =
  fullcircle scaled (2*rad) shifted center
enddef;

%    \end{macrocode}
% \DescribeRoutine{circlecp}
% \DescribeRoutine{circleppp}
% \DescribeRoutine{circlepps}
% The next three implement different ways of specifying a circle. The
% first produces the circle with a given center passing through a given
% point. The second produces the circle passing through three given
% points. The third produces the circle passing through two given points
% in such a way that the arc from the first to the second has a given
% angle.
%    \begin{macrocode}
vardef circlecp (expr center, point) =
  mkarc (center, point, point, 360) & cycle
enddef;
vardef circleppp (expr one, two, three) =
  save ang; numeric ang[];
  ang0 := cornerangle(three, one, two);
  ang1 := cornerangle(one, two, three);
  ang2 := cornerangle(two, three, one);
  arcpps (one, two, 2ang0) & arcpps (two, three, 2ang1) &
    arcpps (three, one, 2ang2) & cycle
enddef;
vardef circlepps (expr one, two, sweep) =
  save ang, full; numeric ang[], full;
  full := signof (sweep) 360;
  ang1 := sweep mod (full);
  ang2 := full - ang1;
  arcpps (one, two, ang1) & arcpps (two, one, ang2) & cycle
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{pathcenter}
% This finds the center of a circle. For other paths, the point found
% may be meaningless (but it will also obtain the center of an arc or a
% rectangle). It takes three supposedly distinct points on the path and
% finds the intersection of the perpendicular bisectors of two chords.
%    \begin{macrocode}
vardef pathcenter expr p =
  save a, cntr, n; pair cntr, a[];
  n := length p;
  a1 = pnt   0   (p);
  a3 = pnt [n/2] (p);
  if cycle p :
    a2 = pnt [n/4] (p);
    a4 = pnt [3n/4] (p);
  else:
    a2 := a3;
    a4 := pnt[n] (p);
  fi
  cntr = .5[a1, a3] + whatever*((a3 - a1) rotated 90);
  cntr = .5[a2, a4] + whatever*((a4 - a2) rotated 90);
  cntr
enddef;

%    \end{macrocode}
% \DescribeRoutine{circumcircle}
% \DescribeRoutine{incircle}
% \DescribeRoutine{excircle}
% \DescribeRoutine{ninepointcircle}
% These four create the relevant circles from a given triangle. The
% triangle is specified as a path expression, so they produce results for
% any path, but make sense only for a cyclic triangular path.
%    \begin{macrocode}
vardef circumcircle expr t =
  circleppp (pnt0 (t), pnt1 (t), pnt2 (t))
enddef;

vardef incircle expr t =
  save A, B, C; pair A, B, C;
  A := pnt0 (t);
  B := pnt1 (t);
  C := pnt2 (t);
  % Find the tangent points on the sides. E.g., a is the common
  % distance from A to the tangent points on the adjacent sides.
  save a, b, c;
  a + b     = abs (B-A);
      b + c = abs (C-B);
  a     + c = abs (A-C);
  circleppp (A + a*unitvector (B-A),
             B + b*unitvector (C-B),
             C + c*unitvector (A-C))
enddef;

vardef excircle expr n of t =
  save A, B, C; pair A, B, C;
  A := pnt[n]     (t);
  B := pnt[n + 1] (t); % wraps around
  C := pnt[n + 2] (t);
  save a, b, c;
  a - b     = abs (B-A);
      b + c = abs (C-B);
  a     - c = abs (C-A);
  circleppp (A + a*unitvector(B-A),
             B + b*unitvector(C-B),
             C + c*unitvector(C-A))
enddef;

vardef ninepointcircle expr t =
  circleppp (medianpt 0 of t, medianpt 1 of t, medianpt 2 of t)
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{circumcenter}
% \DescribeRoutine{incenter}
% \DescribeRoutine{excenter}
% \DescribeRoutine{ninepointcenter}
% \DescribeRoutine{barycenter}
% These find various centers associated with a triangle. The last one is
% made to work for any path.
%    \begin{macrocode}
vardef circumcenter expr t = pathcenter circumcircle t enddef;
vardef incenter expr t = pathcenter incircle t enddef;
vardef excenter expr n of t = pathcenter excircle n of t enddef;
vardef ninepointcenter expr t = pathcenter ninepointcircle t enddef;

% Make this work for any path.
% Divide as we go,
% decrease chance of overflow.
vardef barycenter expr t =
  save n, m; n := length t; m := n + 1;
  save xxx;
  xxx : = pnt0 (t)/m  for k = 1 upto n-1 :  + pnt[k] (t)/m  endfor;
  if cycle t:  xxx*(1 + 1/n)
  else:  xxx + pnt[n] (t)/m
  fi
enddef;
%    \end{macrocode}
%
% \DescribeRoutine{sector}
% \gbc{sector} produces the closed path consisting of a straight line
% of length \gbc{rad} from \gbc{center} in the direction \gbc{frtheta},
% thence along an arc of the circle centered at \gbc{center} to angle
% \gbc{totheta}, and then along the straight line back to \gbc{center}.
%    \begin{macrocode}
vardef sector (expr center, rad, frtheta, totheta) =
  center -- arcalt (center, rad, frtheta, totheta) -- cycle
enddef;

%    \end{macrocode}
%
%
% \section{Plotting of functions}
%
% In these macros, if the boolean argument \gbc{smooth} is true then the
% path returned will be a B\'ezier, otherwise it will be a polyline. The
% parameter is simply passed to \gbc{mkpath}. If a \gbc{tens} parameter
% exists, then the smooth version will have that value of tension,
% otherwise the value of \gbc{default_tension} is used.
%
% All of these macros call \gbc{mkfcn}.
%
% \DescribeRoutine{mkfcn}
% In this command the text parameter \gbc{pf} should be the name of a
% function of some sort that can take a numeric value in parentheses and
% return a pair expression. The parameters \gbc{bmin}, \gbc{bmax} and
% \gbc{bst} determine a sequence of numeric values starting at \gbc{bmin},
% stepping by \gbc{bst} and ending with \gbc{bmax}. These are fed to
% \gbc{pf} and the resulting pairs stored in an array. Then
% \gbc{mksmooth} is called with the tension \gbc{tens} and the name of the
% array.
%
% For stability, we don't actually step by \gbc{bst}, but round
% \gbc{(bmax-bmin)/bst} and step that many equal steps. We first adjust
% the step size upward so the number of steps doesn't exceed
% \gbc{infinity}. The path is forced to begin at \gbc{pf(bmin)} and
% end at \gbc{pf(bmax)}
%    \begin{macrocode}
vardef mkfcn (expr smooth, tens) (expr bmin, bmax, bst) (text pf) =
  save _p; pair _p[]; _p := 0;
  save _dx, _n, _r; numeric _dx, _n, _r;
  if bmax = bmin :  _n := 1;
  else:
    _r := bmax - bmin;
    _dx := max (abs(bst), nottoosmall*abs(_r), epsilon);
    _n := emax (round(abs(_r)/_dx), 1);
  fi
  for _i = 0 upto _n:  _p[incr _p] := pf(bmin + _i/_n*_r);  endfor
  mkpath (smooth, tens, false, _p)
enddef;
% compatibility:
def tfcn (expr smooth) = mkfcn (smooth, default_tension) enddef; 

%    \end{macrocode}
%
% \DescribeRoutine{parafcn}
% This is like \gbc{mkfcn}, but the text argument is not a pair
% valued function, but rather a text parameter containing code that, when
% copied literally into a vardef, defines a function in which \gbc{t} is
% the argument, and which returns a pair.
%
% Older files are supported with a definition of \gbc{parafcn} that calls
% \gbc{tparafcn} with \gbc{default_tension}. I should have made this easier
% by reversing the smoothness and tension arguments, but for backward
% compatibility I have to leave it thus. Other commands implement \mfpic's
% tension options: \gbc{function} and \gbc{plrfcn}. They also have forms
% that accept a tension argument (\gbc{tfunction} and \gbc{tplrfcn}) and
% call them with the default tension.
%    \begin{macrocode}
def parafcn (expr smooth) = tparafcn (smooth, default_tension) enddef;
vardef tparafcn (expr sm, tn) (expr bmin, bmax, bst) (text pf) =
  save _fp;  vardef _fp (expr t) = pf enddef;
  mkfcn (sm, tn) (bmin, bmax, bst) (_fp)
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{xfcn}
% This first converts its final argument, which should be a numeric
% valued function \gbc{f}, to a pair valued function \gbc{(x, f(x))}, then
% calls \gbc{mkfcn} to return the path that should be the graph of $f(x)$.
%    \begin{macrocode}
vardef xfcn (expr smooth) (expr xmin, xmax, st) (text _fx) =
  save _fp;  vardef _fp (expr _x) = (_x, _fx(_x)) enddef;
  mkfcn (smooth, default_tension) (xmin, xmax, st) (_fp)
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{function}
% This is to \gbc{xfcn} as \gbc{parafcn} is to \gbc{mkfcn}: it
% takes a text argument and copies it into a vardef so as to define a pair
% valued function with a literal \gbc{x} as the argument.
%
% \DescribeRoutine{btwnfcn}
% This is mainly for the sake of simpler \mfpic{} output, implementing
% the \cs{btwnfcn} macro.
%    \begin{macrocode}
def function (expr smooth) = tfunction (smooth, default_tension) enddef;
vardef tfunction (expr smooth, tens) (expr xmin, xmax, st) (text _fx) =
  save _fp;  vardef _fp (expr x) = (x, _fx) enddef;
  mkfcn (smooth, tens) (xmin, xmax, st) (_fp)
enddef;

def btwnfcn (expr sm) = tbtwnfcn (sm, default_tension) enddef;
vardef tbtwnfcn (expr sm, tn)(expr xlo, xhi, st)(text _fx)(text _gx) =
  tfunction (sm, tn) (xlo, xhi, st) (_fx) --
  ( reverse tfunction (sm, tn) (xlo, xhi, st) (_gx) ) -- cycle
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{rfcn}
% This takes the name of a function \gbc{f} which is a numeric
% valued function of a numeric parameter. It interprets it as a polar
% curve $(\theta, f(\theta))$, converts that to a curve in rectangular
% coordinates and calls \gbc{mkfcn} on it.
%    \begin{macrocode}
vardef rfcn (expr smooth) (expr tmin, tmax, st) (text ft) =
  save _fq;  vardef _fq (expr t) = (ft(t)) * (dir t) enddef;
  mkfcn (smooth, default_tension) (tmin, tmax, st) (_fq)
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{plrfcn}
% This is to \gbc{rfcn} as \gbc{parafcn} is to \gbc{mkfcn}: the
% text argument should be code that can be copied literally into a
% \mfc{vardef} creating a numeric function with a literal \gbc{t} as the
% parameter (representing $\theta$).
%    \begin{macrocode}
def plrfcn (expr smooth) = tplrfcn (smooth, default_tension) enddef;
vardef tplrfcn (expr smooth, tens) (expr tmin, tmax, st) (text ft) =
  save _fq;  vardef _fq (expr t) = (ft) * (dir t) enddef;
  mkfcn (smooth, tens) (tmin, tmax, st) (_fq)
enddef;

%    \end{macrocode}
%
%
% \section{Pie charts and bar charts}
%
% \DescribeRoutine{piechart}
% The \gbc{piechart} command calculates the wedges of a pie from the text
% parameter \gbc{data}. It should be a list of positive numerics, and the
% result will be one wedge for each datum, the area of the wedge being
% proportional to the corresponding datum. The wedge for each datum has
% its point at \gbc{cent} and the wedge for the first datum begins at
% angle \gbc{ang}. Each wedge is clockwise from the preceding one if
% \gbc{sign = -1}, otherwise anticlockwise. The radius of the pie is
% \gbc{rad}.
%
% After the calculations, the wedges (closed sectors) are stored in the
% array \gbc{piewedge[]} with the numeric \gbc{piewedge} holding the number
% of wedges. The center is saved in \gbc{piecenter}, the directions of the
% wedges (the bisecting rays) are stored in \gbc{piedirection[]}, the
% starting angles of the wedges in \gbc{pieangle[]}
%    \begin{macrocode}
vardef piechart (expr sign, ang, cent, rad) (text data) =
  save _sum, _tot;
  numeric piewedge; piewedge := 0;
  numeric pieangle, pieangle[]; pieangle0 := 0;
  for _val = data :
    pieangle[incr piewedge] := pieangle[piewedge - 1] + _val;
  endfor
  _tot := pieangle[piewedge];
  pair piecenter; piecenter := cent;
  path piewedge[];
  numeric piedirection; pair piedirection[];
  pieangle[piewedge + 1] = ang + sign*360;
  for _n = piewedge downto 1 :
    pieangle[_n] := ang + sign*pieangle[_n - 1]/_tot*360;
    piewedge[_n] =
        sector(cent, rad, pieangle[_n], pieangle[_n+1]);
    piedirection[_n] := dir(0.5[ pieangle[_n], pieangle[_n+1] ]);
  endfor
  piedirection := pieangle := piewedge;
enddef;

%    \end{macrocode}
%
% \DescribeRoutine{barchart}
% I was told that there are better ways (than piecharts) to represent
% quantitative data. Perhaps bar charts are better. \gbc{barchart}
% calculates the bars from the text parameter, \gbc{data}. These bars are
% vertical \gbc{vert} is true, otherwise horizontal.
%
% \gbc{start} is the location (on the appropriate axis) of the start of
% the first bar. \gbc{sep} is the separation between bar centers. \gbc{r}
% is the ratio of the width of the bars to their separation.
%
% After the calculations, the array of paths \gbc{chartbar[]} holds the
% rectangles, \gbc{barend[]} holds their rightmost or topmost
% coordinates (which is just the items in \gbc{data} or their y-parts),
% \gbc{barbegin[]} holds their leftmost or bottommost coordinates (either
% 0 or the x-parts of the data), \gbc{barstart[]} holds the appropriate
% coordinate of the leading edge of the bar, and \gbc{barwd = r*sep}.
%
% If the data are pair data, this command uses the x-part as the beginning
% of the bar and the y-part as the end. Thus Gantt diagrams can be
% created. We keep \gbc{barlength} for backward compatibility (formerly
% all data had to be numeric and bars went from 0 to \gbc{barlength[]}).
% \gbc{barlength[]} was made available to help place some label or symbol
% at the end of a bar and existing code might break if we omitted it.
%    \begin{macrocode}
def barchart (expr start, sep, r, vert)(text data) =
  numeric barbegin, barbegin[],
          barend, barend[],
          barlength, barlength[],
          barstart, barstart[],
          chartbar, barwd;
  path chartbar[];
  chartbar := 0; barwd := r*sep;
  for _itm = data :
    barend[incr chartbar] := if pair _itm: ypart _itm else: _itm fi;
    barbegin[chartbar]    := if pair _itm: xpart _itm else:   0  fi;
  endfor
  barbegin := barend := barlength := barstart := chartbar;
  for _n = 1 upto chartbar :
    barstart[_n]  := start + sep*(_n-1);
    barlength[_n] := barend[_n];
    chartbar[_n]  :=  rect ((barbegin[_n], 0), ( barend[_n], barwd) )
          shifted (0, barstart[_n]) if vert: xyswap fi;
  endfor
enddef;

%    \end{macrocode}
%
%^^A Overlays - taken from MFbook, p 295.  (Bruce Leban)
%
% \section{Overlays}
%
% This final code predates me. I've never seen it used and don't know what
% its for. For the \MP{} version I just tried to make sure everything was
% defined in \MP{} or \file{plain.mp} and otherwise left it alone.
%    \begin{macrocode}
picture totalpicture;
boolean totalnull, currentnull;
def clearit =
  currentpicture := totalpicture := nullpicture;
  currentnull := totalnull := true;
enddef;

def keepit =
%<MF>  mono (currentpicture);
  addto totalpicture also currentpicture;
  currentpicture := nullpicture;
  totalnull := currentnull;
  currentnull := true;
enddef;

def addto_currentpicture =
  currentnull := false;
  addto currentpicture
enddef;

def mergeit (text do) =
  if totalnull :
    do currentpicture
  elseif currentnull :
    do totalpicture
  else:
    begingroup
      save _v_; picture _v_;
      _v_ := currentpicture;
%<MF>      mono (_v_);
      addto _v_ also totalpicture;
      do _v_
    endgroup
  fi
enddef;

%    \end{macrocode}
% This apparently redundant definition (\gbc{shipit} = \gbc{shipit_}) is
% so that \mfpic{} can turn shipping off and back on by redefining
% \gbc{shipit} to either \gbc{shipit_} or \mfc{relax}.
%    \begin{macrocode}
def shipit_ =
  mergeit (shipout)
enddef;
def shipit = shipit_ enddef;

%<*MF>
def showit_ =
  mergeit (show_)
enddef;
def show_ suffix v =
  display v inwindow currentwindow
enddef;

%</MF>
%    \end{macrocode}
%
% Here we initialize \gbc{gcode} (which current versions of mfpic do not use)
% for hacked \mfpic{} files that require it. And that's all.
%    \begin{macrocode}
numeric gcode; gcode := 0;

%<MF>%  end grafbase.mf
%<MP>%  end grafbase.mp
%</MF|MP>
%    \end{macrocode}
%
% The following code was borrowed from the the standard \LaTeX{} graphics
% package (\file{dvipsname.def} by David Carlisle and Sebastian Rahtz). In
% fact it was mostly generated automatically by some editor macros that
% replaced \prog{graphics} package code with the \grafbase{} code.
%
%^^A This file may be distributed under the terms of the LaTeX Project Public
%^^A License, as described in \file{lppl.txt} in the base LaTeX
%^^A distribution, either version 1.0 or, at your option, any later version.
%
% Declare all the dvips color names to be color variables:
%    \begin{macrocode}
%<*dvips>
color Apricot, Aquamarine, Bittersweet, Black, Blue, BlueGreen,
BlueViolet, BrickRed, Brown, BurntOrange, CadetBlue, CarnationPink,
Cerulean, CornflowerBlue, Cyan, Dandelion, DarkOrchid, Emerald,
ForestGreen, Fuchsia, Goldenrod, Gray, Green, GreenYellow, JungleGreen,
Lavender, LimeGreen, Magenta, Mahogany, Maroon, Melon, MidnightBlue,
Mulberry, NavyBlue, OliveGreen, Orange, OrangeRed, Orchid, Peach,
Periwinkle, PineGreen, Plum, ProcessBlue, Purple, RawSienna, Red,
RedOrange, RedViolet, Rhodamine, RoyalBlue, RoyalPurple, RubineRed,
Salmon, SeaGreen, Sepia, SkyBlue, SpringGreen, Tan, TealBlue, Thistle,
Turquoise, Violet, VioletRed, White, WildStrawberry, Yellow,
YellowGreen, YellowOrange;

%    \end{macrocode}
% The function \gbc{cmyk} (which converts a CMYK quadruple to \MP's rgb
% triple) is defined in \file{grafbase.mp}, which should be input before
% \file{dvipsnam.mp}:
%    \begin{macrocode}
Apricot        = cmyk(   0, 0.32, 0.52,    0);
Aquamarine     = cmyk(0.82,    0, 0.30,    0);
Bittersweet    = cmyk(   0, 0.75,    1, 0.24);
Black          = cmyk(   0,    0,    0,    1);
Blue           = cmyk(   1,    1,    0,    0);
BlueGreen      = cmyk(0.85,    0, 0.33,    0);
BlueViolet     = cmyk(0.86, 0.91,    0, 0.04);
BrickRed       = cmyk(   0, 0.89, 0.94, 0.28);
Brown          = cmyk(   0, 0.81,    1, 0.60);
BurntOrange    = cmyk(   0, 0.51,    1,    0);
CadetBlue      = cmyk(0.62, 0.57, 0.23,    0);
CarnationPink  = cmyk(   0, 0.63,    0,    0);
Cerulean       = cmyk(0.94, 0.11,    0,    0);
CornflowerBlue = cmyk(0.65, 0.13,    0,    0);
Cyan           = cmyk(   1,    0,    0,    0);
Dandelion      = cmyk(   0, 0.29, 0.84,    0);
DarkOrchid     = cmyk(0.40, 0.80, 0.20,    0);
Emerald        = cmyk(   1,    0, 0.50,    0);
ForestGreen    = cmyk(0.91,    0, 0.88, 0.12);
Fuchsia        = cmyk(0.47, 0.91,    0, 0.08);
Goldenrod      = cmyk(   0, 0.10, 0.84,    0);
Gray           = cmyk(   0,    0,    0, 0.50);
Green          = cmyk(   1,    0,    1,    0);
GreenYellow    = cmyk(0.15,    0, 0.69,    0);
JungleGreen    = cmyk(0.99,    0, 0.52,    0);
Lavender       = cmyk(   0, 0.48,    0,    0);
LimeGreen      = cmyk(0.50,    0,    1,    0);
Magenta        = cmyk(   0,    1,    0,    0);
Mahogany       = cmyk(   0, 0.85, 0.87, 0.35);
Maroon         = cmyk(   0, 0.87, 0.68, 0.32);
Melon          = cmyk(   0, 0.46, 0.50,    0);
MidnightBlue   = cmyk(0.98, 0.13,    0, 0.43);
Mulberry       = cmyk(0.34, 0.90,    0, 0.02);
NavyBlue       = cmyk(0.94, 0.54,    0,    0);
OliveGreen     = cmyk(0.64,    0, 0.95, 0.40);
Orange         = cmyk(   0, 0.61, 0.87,    0);
OrangeRed      = cmyk(   0,    1, 0.50,    0);
Orchid         = cmyk(0.32, 0.64,    0,    0);
Peach          = cmyk(   0, 0.50, 0.70,    0);
Periwinkle     = cmyk(0.57, 0.55,    0,    0);
PineGreen      = cmyk(0.92,    0, 0.59, 0.25);
Plum           = cmyk(0.50,    1,    0,    0);
ProcessBlue    = cmyk(0.96,    0,    0,    0);
Purple         = cmyk(0.45, 0.86,    0,    0);
RawSienna      = cmyk(   0, 0.72,    1, 0.45);
Red            = cmyk(   0,    1,    1,    0);
RedOrange      = cmyk(   0, 0.77, 0.87,    0);
RedViolet      = cmyk(0.07, 0.90,    0, 0.34);
Rhodamine      = cmyk(   0, 0.82,    0,    0);
RoyalBlue      = cmyk(   1, 0.50,    0,    0);
RoyalPurple    = cmyk(0.75, 0.90,    0,    0);
RubineRed      = cmyk(   0,    1, 0.13,    0);
Salmon         = cmyk(   0, 0.53, 0.38,    0);
SeaGreen       = cmyk(0.69,    0, 0.50,    0);
Sepia          = cmyk(   0, 0.83,    1, 0.70);
SkyBlue        = cmyk(0.62,    0, 0.12,    0);
SpringGreen    = cmyk(0.26,    0, 0.76,    0);
Tan            = cmyk(0.14, 0.42, 0.56,    0);
TealBlue       = cmyk(0.86,    0, 0.34, 0.02);
Thistle        = cmyk(0.12, 0.59,    0,    0);
Turquoise      = cmyk(0.85,    0, 0.20,    0);
Violet         = cmyk(0.79, 0.88,    0,    0);
VioletRed      = cmyk(   0, 0.81,    0,    0);
White          = cmyk(   0,    0,    0,    0);
WildStrawberry = cmyk(   0, 0.96, 0.39,    0);
Yellow         = cmyk(   0,    0,    1,    0);
YellowGreen    = cmyk(0.44,    0, 0.74,    0);
YellowOrange   = cmyk(   0, 0.42,    1,    0);

% End of file `dvipsnam.mp'.
%</dvips>
%    \end{macrocode}
% \clearpage
%\Finale