1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
-- Given three colinear points p, q, r, the function checks if
-- point q lies on line segment 'pr'
function onSegment(p,q,r)
if(q.x <= math.max(p.x,r.x) and q.x >= math.min(p.x,r.x) and
q.y <= math.max(p.y,r.y) and q.y>= math.min(p.y,r.y)) then
return true
else
return false
end
end
-- To find orientation of ordered triplet (p, q, r).
-- The function returns following values
-- 0 --> p, q and r are colinear
-- 1 --> Clockwise
-- 2 --> Counterclockwise
function orientation(p,q,r)
val = (q.y-p.y)*(r.x-q.x)-(q.x-p.x)*(r.y-q.y)
if(val == 0) then
return 0
end
if(val > 0) then
return 1
else
return 2
end
end
-- The function that returns true if line segment 'p1q1'
-- and 'p2q2' intersect.
function doIntersect(p1,q1,p2,q2)
-- Find the four orientations needed for general and
-- special cases
o1 = orientation(p1, q1, p2)
o2 = orientation(p1, q1, q2)
o3 = orientation(p2, q2, p1)
o4 = orientation(p2, q2, q1)
-- gerenal case (without limite case)
if(o1 ~= o2 and o3 ~= o4) then
return true
end
-- Special case
-- p1, q1 and p2 are colinear and p2 lies on segment p1q1
if (o1 == 0 and onSegment(p1, p2, q1)) then return true end
-- p1, q1 and p2 are colinear and q2 lies on segment p1q1
if (o2 == 0 and onSegment(p1, q2, q1)) then return true end
-- p2, q2 and p1 are colinear and p1 lies on segment p2q2
if (o3 == 0 and onSegment(p2, p1, q2)) then return true end
-- p2, q2 and q1 are colinear and q1 lies on segment p2q2
if (o4 == 0 and onSegment(p2, q1, q2)) then return true end
return false; -- Doesn't fall in any of the above cases
end
-- Returns true if the point p lies inside the polygon[] with n vertices
function isInside(listPoints,p,h)
-- if the point is to close to a point of the polygon
for i=1,#listPoints do
if(math.sqrt(math.pow(p.x-listPoints[i].x,2) + math.pow(p.y-listPoints[i].y,2))<0.4*h) then
return false
end
end
-- There must be at least 3 vertices in polygon[]
if (#listPoints <= 3) then return false end
-- Create a point for line segment from p to infinite
extreme = {x=1e05,y=p.y};
-- Count intersections of the above line with sides of polygon
count = 0
for i=1,#listPoints do
ip = (i)%(#listPoints)+1
-- Check if the line segment from 'p' to 'extreme' intersects
-- with the line segment from 'polygon[i]' to 'polygon[next]'
if (doIntersect(listPoints[i], listPoints[ip], p, extreme)) then
-- If the point 'p' is colinear with line segment 'i-ip',
-- then check if it lies on segment. If it lies, return true,
-- otherwise false
if (orientation(listPoints[i], p, listPoints[ip]) == 0) then
return onSegment(listPoints[i], p, listPoints[ip])
end
count = count+1
end
end
-- Return true if count is odd, false otherwise
return (count%2 == 1)
end
|