1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
|
%D \module
%D [ file=mp-grap.mpiv,
%D version=2012.10.16, % 2008.09.08 and earlier,
%D title=\CONTEXT\ \METAPOST\ graphics,
%D subtitle=graph packagesupport,
%D author=Hans Hagen \& Alan Braslau,
%D date=\currentdate,
%D copyright={PRAGMA ADE \& \CONTEXT\ Development Team}]
%C
%C This module is part of the \CONTEXT\ macro||package and is
%C therefore copyrighted by \PRAGMA. See licen-en.pdf for
%C details.
if known context_grap : endinput ; fi ;
boolean context_grap ; context_grap := true ;
% Below is a modified graph.mp
if epsilon/4 = 0 : % numbersystem="scaled" : (not reliable...)
errmessage "The graph macros require the double precision number system." ;
endinput ;
fi
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% $Id : graph.mp,v 1.2 2004/09/19 21 :47 :10 karl Exp $
% Public domain.
% Macros for drawing graphs
% begingraph(width,height) begin a new graph
% setcoords(xtype,ytype) sets up a new coordinate system (log,-linear..)
% setrange(lo,hi) set coord ranges (numeric and string args OK)
% gdraw <file or path> [with...] draw a line in current coord system
% gfill <file or path> [with...] fill a region using current coord system
% gdrawarrow .., gdrawdblarrow.. like gdraw, but with 1 or 2 arrowheads
% augment<path name>(loc) append given coordinates to a polygonal path
% glabel<suffix>(pic,loc) place label pic near graph coords or time loc
% gdotlabel<suffix>(pic,loc) same with dot
% OUT loc value for labels relative to whole graph
% gdata(file,s,text) read coords from file ; evaluate t w/ tokens s[]
% auto.<x or y> default x or y tick locations (for interation)
% itick.<bot|top|..>(fmt,u) draw inward tick from given side at u w/ format
% otick.<bot|top|..>(fmt,u) draw outward tick at coord u ; label format fmt
% grid.<bot|top|..>(fmt,u) draw grid line at u with given side labeled
% autogrid([itick|.. bot|..],..) iterate over auto.x, auto.y, drawing tick/grids
% frame.[bot|top..] draw frame (or one side of the frame)
% graph_frame_needed := false ; after begingraph, not to draw a frame at all
% graph_background := color ; fill color for frame, if defined
% endgraph end of graph--the result is a picture
% option `plot <picture>' draws picture at each path knot, turns off pen
% Gtemplate.<tickcmd> template paths for tick marks and grid lines
% graph_margin_fraction.low,
% graph_margin_fraction.high fractions determining margins when no setrange
% Glmarks[], Gumarks, Gemarks loop text strings used by auto.<x or y>
% Gmarks, Gminlog numeric parameters used by auto.<x or y>
% Autoform is the format string used by autogrid
% Autoform_X, Autoform_Y if defined, are used instead
% Other than the above-documented user interface, all externally visible names
% are of the form X_.<suffix>, Y_.<suffix>, or Z_.<suffix>, or they start
% with `graph_'
% Depends on :
input string.mp
% Private version of a few marith macros, fixed for double math...
newinternal mlogten ; mlogten := mlog(10) ;
newinternal doubleinfinity ; doubleinfinity := 2**1024 ;
% Note that we get arithmetic overflows if we set to -doubleinfinity below.
% Safely convert a number to mlog form, trapping zero.
vardef graph_mlog primary x =
if unknown x: whatever elseif x=0: -.5doubleinfinity else: mlog(abs x) fi
enddef ;
vardef graph_exp primary x =
if unknown x: whatever else: mexp(x) fi
enddef ;
% and add the following for utility/completeness
% (replacing the definitions in mp-tool.mpiv).
vardef logten primary x =
if unknown x: whatever elseif x=0: -.5doubleinfinity else: mlog(abs x)/mlog(10) fi
enddef ;
vardef ln primary x =
if unknown x: whatever elseif x=0: -.5doubleinfinity else: mlog(abs x)/256 fi
enddef ;
vardef exp primary x =
if unknown x: whatever else: (mexp 256)**x fi
enddef ;
vardef powten primary x =
if unknown x: whatever else: 10**x fi
enddef ;
% Convert x from mlog form into a pair whose xpart gives a mantissa and whose
% ypart gives a power of ten.
vardef graph_Meform(expr x) =
if x<=-doubleinfinity : origin
else :
save e, m ; e=floor(x/mlogten)-3; m := mexp(x-e*mlogten) ;
if abs m<1000 : m := m*10 ; e := e-1 ; elseif abs m>=10000 : m := m/10 ; e := e+1 ; fi
(m, e)
fi
enddef ;
% Modified from above.
vardef graph_Feform(expr x) =
interim warningcheck :=0 ;
if x=0 : origin
else :
save e, m ; e=floor(if x<0 : -mlog(-x) else : mlog(x) fi/mlogten)-3; m := x/(10**e) ;
if abs m<1000 : m := m*10 ; e := e-1 ; elseif abs m>=10000 : m := m/10 ; e := e+1 ; fi
(m, e)
fi
enddef ;
vardef graph_error(expr x,s) =
interim showstopping :=0 ;
show x ; errmessage s;
enddef ;
%%%%%%%%%%%%%%%%%%%%%%%% Data structures, begingraph %%%%%%%%%%%%%%%%%%%%%%%%
vardef Z_@# = (X_@#,Y_@#) enddef ; % used in place of plain.mp's z convention
def graph_suffix(suffix $) = % convert from x or y to X_ or Y_
if str$="x" : X_ else : Y_ fi
enddef ;
% New :
save graph_background ; color graph_background ; % if defined, fill the frame.
save graph_close_file ; boolean graph_close_file ; graph_close_file = false ;
def begingraph(expr w, h) =
begingroup
save X_, Y_ ;
X_.graph_coordinate_type =
Y_.graph_coordinate_type = linear ; % coordinate system for each axis
Z_.graph_dimensions = (w,h) ; % dimensions of graph not counting axes etc.
%also, Z_.low, Z_.high user-specified coordinate ranges in units used in graph_current_graph
save graph_finished_graph ;
picture graph_finished_graph ; % the finished part of the graph
graph_finished_graph = nullpicture ;
save graph_current_graph ;
picture graph_current_graph ; % what has been drawn in current coords
graph_current_graph = nullpicture ;
save graph_current_bb ;
picture graph_current_bb ; % picture whose bbox is graph_current_graph's w/ linewidths 0
graph_current_bb = nullpicture ;
save graph_last_drawn ;
picture graph_last_drawn ; % result of last gdraw or gfill
graph_last_drawn = nullpicture ;
save graph_plot_picture ;
picture graph_plot_picture ; % a picture from the `plot' option known when plot allowed
save graph_label ;
picture graph_label[] ; % labels to place around the whole graph when it is done
save graph_autogrid_needed ;
boolean graph_autogrid_needed ; % whether autogrid is needed
graph_autogrid_needed = true ;
save graph_frame_needed ;
boolean graph_frame_needed ; % whether frame needs to be drawn
graph_frame_needed = true ;
save graph_number_of_arrowheads ; % number of arrowheads for next gdraw
graph_number_of_arrowheads = 0 ;
if known graph_background : % new feature!
fill origin--(w,0)--(w,h)--(0,h)--cycle withcolor graph_background ;
fi
enddef ;
% Additional variables not explained above :
% graph_modified_lower, graph_modified_higher pairs giving bounds used in auto<x or y>
% graph_exponent, graph_comma variables and macros used in auto<x or y>
% graph_modified_bias
% an offset to graph_modified_lower and graph_modified_higher to ease computing exponents
% Some additional variables function as constants. Most can be modified by the
% user to alter the behavior of these macros.
% Not very modifiable : log, linear,
% graph_frame_pair_a, graph_frame_pair_b, graph_margin_pair
% Modifiable : Gtemplate.suffix, Glmarks[], Gumarks, Gemarks, Gmarks,
% Gminlog, Autoform
newinternal log, linear ; % coordinate system codes
log :=1 ; linear :=2;
% note that mp-tool.mpiv defines log as log10.
%%%%%%%%%%%%%%%%%%%%%% Coordinates : setcoords, setrange %%%%%%%%%%%%%%%%%%%%%%
% Graph-related usr input is `user graph coordinates' as specified by arguments
% to setcoords.
% `Internal graph coordinates' are used for graph_current_graph, graph_current_bb, Z_.low, Z_.high.
% Their meaning depends on the appropriate component of Z_.graph_coordinate_type :
% log means internal graph coords = mlog(user graph coords)
% -log means internal graph coords = -mlog(user graph coords)
% linear means internal graph coords = (user graph coords)
% -linear means internal graph coords = -(user graph coords)
vardef graph_set_default_bounds = % Set default Z_.low, Z_.high
forsuffixes $=low,high :
(if known X_$ : whatever else : X_$ fi, if known Y_$ : whatever else : Y_$ fi)
= graph_margin_fraction$[llcorner graph_current_bb,urcorner graph_current_bb] +
graph_margin_pair$ ;
endfor
enddef ;
pair graph_margin_pair.low, graph_margin_pair.high ;
graph_margin_pair.high = -graph_margin_pair.low = (.00002,.00002) ;
% Set $, $$, $$$ so that shifting by $ then transforming by $$ and then $$$
% maps the essential bounding box of graph_current_graph into (0,0)..Z_.graph_dimensions. The
% `essential bounding box' is either what Z_.low and Z_.high imply or the
% result of ignoring pen widths in graph_current_graph.
vardef graph_remap(suffix $,$$,$$$) =
save p_ ;
graph_set_default_bounds ;
pair p_, $ ; $=-Z_.low;
p_ = (max(X_.high-X_.low,.9), max(Y_.high-Y_.low,.9)) ;
transform $$, $$$ ;
forsuffixes #=$$,$$$ : xpart#=ypart#=xypart#=yxpart#=0 ; endfor
(Z_.high+$) transformed $$ = p_ ;
p_ transformed $$$ = Z_.graph_dimensions ;
enddef ;
graph_margin_fraction.low=-.07 ; % bbox fraction for default range start
graph_margin_fraction.high=1.07 ; % bbox fraction for default range stop
def graph_with_pen_and_color(expr q) =
withpen penpart q withcolor
if colormodel q=1 :
false
elseif colormodel q=3 :
(greypart q)
elseif colormodel q=5 :
(redpart q, greenpart q, bluepart q)
elseif colormodel q=7 :
(cyanpart q, magentapart q, yellowpart q, blackpart q)
fi
enddef ;
% Add picture component q to picture @# and change part p to tp, where p is
% something from q that needs coordinate transformation. The type of p is pair
% or path.
% Pair o is the value of p that makes tp (0,0). This implements the trick
% whereby using 1 instead of 0 for th the width or height or the setbounds path
% for a label picture suppresses shifting in x or y.
%vardef graph_picture_conversion@#(expr q, o)(text tp) =
% save p ;
% if stroked q :
% path p ; p=pathpart q;
% addto @# doublepath tp graph_with_pen_and_color(q) dashed dashpart q ;
% elseif filled q :
% path p ; p=pathpart q;
% addto @# contour tp graph_with_pen_and_color(q) ;
% else :
% interim truecorners :=0 ;
% pair p ; p=llcorner q;
% if urcorner q<>p : p :=p+graph_coordinate_multiplication(o-p,urcorner q-p) ; fi
% addto @# also q shifted ((tp)-llcorner q) ;
% fi
%enddef ;
% TH : new version from code found at sarovar tracker. This makes
% grdaw clip the result to the window defined with setrange
vardef graph_picture_conversion@#(expr q, o)(text tp) =
save p, tp_geclipt ;
picture tp_geclipt ; tp_geclipt :=nullpicture;
if stroked q :
path p ; p=pathpart q;
%%% --- SDV added
addto tp_geclipt doublepath tp graph_with_pen_and_color(q) dashed dashpart q ;
clip tp_geclipt to origin--(xpart Z_.graph_dimensions,0)--Z_.graph_dimensions--(0, ypart Z_.graph_dimensions)--cycle ;
addto @# also tp_geclipt ;
%%%
%%% --- SDV deleted
%%addto @# doublepath tp graph_with_pen_and_color(q) dashed dashpart q ;
%%%
elseif filled q :
path p ; p=pathpart q;
addto @# contour tp graph_with_pen_and_color(q) ;
else :
interim truecorners :=0 ;
pair p ; p=llcorner q;
if urcorner q<>p : p :=p+graph_coordinate_multiplication(o-p,urcorner q-p) ; fi
addto @# also q shifted ((tp)-llcorner q) ;
fi
enddef ;
def graph_coordinate_multiplication(expr a,b) = (xpart a*xpart b, ypart a*ypart b) enddef ;
vardef graph_clear_bounds@# = numeric @#.low, @#.high ; enddef;
% Finalize anything drawn in the present coordinate system and set up a new
% system as requested
vardef setcoords(expr tx, ty) =
interim warningcheck :=0 ;
if length graph_current_graph>0 :
save s, S, T ;
graph_remap(s, S, T) ;
for q within graph_current_graph :
graph_picture_conversion.graph_finished_graph(q,-s,p shifted s transformed S transformed T) ;
endfor
graph_current_graph := graph_current_bb := nullpicture ;
fi
graph_clear_bounds.X_ ; graph_clear_bounds.Y_;
X_.graph_coordinate_type := tx ; Y_.graph_coordinate_type := ty;
enddef ;
% Set Z_.low and Z_.high to correspond to given range of user graph
% coordinates. The text argument should be a sequence of pairs and/or strings
% with 4 components in all.
vardef setrange(text t) =
interim warningcheck :=0 ;
save r_ ; r_=0;
string r_[]s ;
for x_=
for p_=t : if pair p_ : xpart p_, ypart fi p_, endfor :
r_[incr r_] if string x_ : s fi = x_ ;
if r_>2 :
graph_set_bounds if r_=3 : X_ else : Y_ fi (r_[r_-2] if unknown r_[r_-2] : s fi, x_) ;
fi
exitif r_=4 ;
endfor
enddef ;
% @# is X_ or Y_ ; l and h are numeric or string
vardef graph_set_bounds@#(expr l, h) =
graph_clear_bounds@# ;
if @#graph_coordinate_type>0 :
@#low = if unknown l :
whatever
else :
if abs @#graph_coordinate_type=log : graph_mlog fi if string l : scantokens fi l
fi ;
@#high = if unknown h :
whatever
else :
if abs @#graph_coordinate_type=log : graph_mlog fi if string h : scantokens fi h
fi ;
else :
-@#high = if unknown l :
whatever
else :
if abs @#graph_coordinate_type=log : graph_mlog fi if string l : scantokens fi l
fi ;
-@#low = if unknown h :
whatever
else :
if abs @#graph_coordinate_type=log : graph_mlog fi if string h : scantokens fi h
fi ;
fi
enddef ;
%%%%%%%%%%%%%%%%%%%%%%%%% Converting path coordinates %%%%%%%%%%%%%%%%%%%%%%%%%
% Find the result of scanning path p and using macros tx and ty to adjust the
% x and y parts of each coordinate pair. Boolean parameter c tells whether to
% force the result to be polygonal.
vardef graph_scan_path(expr p, c)(suffix tx, ty) =
if (str tx="") and (str ty="") : p
else :
save r_ ; path r_;
r_ := graph_pair_adjust(point 0 of p, tx, ty)
if path p :
for t=1 upto length p :
if c : --
else : ..controls graph_pair_adjust(postcontrol(t-1) of p, tx, ty)
and graph_pair_adjust(precontrol t of p, tx, ty) ..
fi
graph_pair_adjust(point t of p, tx, ty)
endfor
if cycle p : &cycle fi
fi ;
if pair p : point 0 of fi r_
fi
enddef ;
vardef graph_pair_adjust(expr p)(suffix tx, ty) = (tx xpart p, ty ypart p) enddef ;
% Convert path p from user graph coords to internal graph coords.
vardef graph_convert_user_path_to_internal primary p =
interim warningcheck :=0 ;
graph_scan_path(p,
(abs X_.graph_coordinate_type<>linear) or (abs Y_.graph_coordinate_type<>linear),
if abs X_.graph_coordinate_type=log : graph_mlog fi,
if abs Y_.graph_coordinate_type=log : graph_mlog fi)
transformed (identity
if X_.graph_coordinate_type<0 : xscaled -1 fi
if Y_.graph_coordinate_type<0 : yscaled -1 fi)
enddef ;
% Convert label location t_ from user graph coords to internal graph coords.
% The label location should be a pair, or two numbers/strings. If t_ is empty
% or a single item of non-pair type, just return t_. Unknown coordinates
% produce unknown components in the result.
vardef graph_label_convert_user_to_internal(text t_) =
save n_ ; n_=0;
interim warningcheck :=0 ;
if 0 for x_=t_ : +1 if pair x_ : +1 fi endfor <= 1 :
t_
else :
n_0 = n_1 = 0 ;
point 0 of graph_convert_user_path_to_internal (
for x_=
for y_=t_ : if pair y_ : xpart y_, ypart fi y_, endfor
0, 0 :
if known x_ : if string x_ : scantokens fi x_
else : hide(n_[n_] :=whatever) 0
fi
exitif incr n_=2 ;
,endfor) + (n_0,n_1)
fi
enddef ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Reading data files %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Read a line from file f, extract whitespace-separated tokens ignoring any
% initial "%", and return true if at least one token is found. The tokens
% are stored in @#1, @#2, .. with "" in the last @#[] entry.
vardef graph_read_line@#(expr f) =
save n_, s_ ; string s_;
s_ = readfrom f ;
string @#[] ;
if s_<>EOF :
@#0 := s_ ;
@#1 := loptok s_ ;
n_ = if @#1="%" : 0 else : 1 fi ;
forever :
@#[incr n_] := loptok s_ ;
exitif @#[n_]="" ;
endfor
@#1<>""
else : false
fi
enddef ;
% Execute c for each line of data read from file f, and stop at the first
% line with no data. Commands c can use line number i and tokens $1, $2, ...
def gdata(expr f)(suffix $)(text c) =
boolean flag ;
for i=1 upto infinity :
exitunless graph_read_line$(f) ;
c
endfor
if graph_close_file :
closefrom f ;
fi
enddef ;
% Read a path from file f. The path is terminated by blank line or EOF.
vardef graph_readpath(expr f) =
interim warningcheck :=0 ;
save s ;
gdata(f, s, if i>1 :--fi
if s2="" : ( i, scantokens s1)
else : (scantokens s1, scantokens s2) fi
)
enddef ;
% Append coordinates t to polygonal path @#. The coordinates can be numerics,
% strings, or a single pair.
vardef augment@#(text t) =
interim warningcheck := 0 ;
if not path begingroup @# endgroup :
Gerr(begingroup @# endgroup, "Cannot augment--not a path") ;
else :
def graph_comma= hide(def graph_comma=,enddef) enddef ;
if known @# : @# :=@#-- else : @#= fi
(for p=t :
graph_comma if string p : scantokens fi p
endfor) ;
fi
enddef ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Drawing and filling %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Unknown pair components are set to 0 because glabel and gdotlabel understand
% unknown coordinates as `0 in absolute units'.
vardef graph_unknown_pair_bbox(expr p) =
if known p : addto graph_current_bb doublepath p ;
else :
save x,y ;
z = llcorner graph_current_bb ;
if unknown xpart p : xpart p= else : x := fi 0 ;
if unknown ypart p : ypart p= else : y := fi 0 ;
addto graph_current_bb doublepath (p+z) ;
fi
graph_current_bb := image(fill llcorner graph_current_bb..urcorner graph_current_bb--cycle) ;
enddef ;
% Initiate a gdraw or gfill command. This must be done before scanning the
% argument, because that could invoke the `if known graph_plot_picture' test in a following
% plot option .
def graph_addto =
graph_last_drawn := graph_plot_picture := nullpicture ; addto graph_last_drawn
enddef;
% Handle the part of a Gdraw command that uses path or data file p.
def graph_draw expr p =
if string p : graph_convert_user_path_to_internal graph_readpath(p)
elseif path p or pair p : graph_convert_user_path_to_internal p
else : graph_error(p,"gdraw argument should be a data file or a path")
origin
fi
withpen currentpen graph_withlist _op_
enddef ;
% Handle the part of a Gdraw command that uses path or data file p.
def graph_fill expr p =
if string p : graph_convert_user_path_to_internal graph_readpath(p) --cycle
elseif cycle p : graph_convert_user_path_to_internal p
else : graph_error(p,"gfill argument should be a data file or a cyclic path")
origin..cycle
fi graph_withlist _op_
enddef ;
def gdraw = graph_addto doublepath graph_draw enddef ;
def gfill = graph_addto contour graph_fill enddef ;
% This is used in graph_draw and graph_fill to allow postprocessing graph_last_drawn
def graph_withlist text t_ = t_ ; graph_post_draw; enddef;
% Set graph_plot_picture so the postprocessing step will plot picture p at each path knot.
% Also select nullpen to suppress stroking.
def plot expr p =
if known graph_plot_picture :
withpen nullpen
hide (graph_plot_picture :=image(
if bounded p : for q within p : graph_addto_currentpicture q endfor % Save memory
else : graph_addto_currentpicture p
fi graph_setbounds origin..cycle))
fi
enddef ;
% This hides a semicolon that could prematurely end graph_withlist's text argument
def graph_addto_currentpicture primary p = addto currentpicture also p ; enddef;
def graph_setbounds = setbounds currentpicture to enddef ;
def gdrawarrow = graph_number_of_arrowheads :=1 ; gdraw enddef;
def gdrawdblarrow = graph_number_of_arrowheads :=2 ; gdraw enddef;
% Post-process the filled or stroked picture graph_last_drawn as follows : (1) update
% the bounding box information ; (2) transfer it to graph_current_graph unless the pen has
% been set to nullpen to disable stroking ; (3) plot graph_plot_picture at each knot.
vardef graph_post_draw =
save p ;
path p ; p=pathpart graph_last_drawn;
graph_unknown_pair_bbox(p) ;
if filled graph_last_drawn or not graph_is_null(penpart graph_last_drawn) :
addto graph_current_graph also graph_last_drawn ;
fi
if length graph_plot_picture>0 :
for i=0 upto length p if cycle p : -1 fi :
addto graph_current_graph also graph_plot_picture shifted point i of p ;
endfor
picture graph_plot_picture ;
fi
if graph_number_of_arrowheads>0 :
graph_draw_arrowhead(p, graph_with_pen_and_color(graph_last_drawn)) ;
if graph_number_of_arrowheads>1 :
graph_draw_arrowhead(reverse p, graph_with_pen_and_color(graph_last_drawn)) ;
fi
graph_number_of_arrowheads :=0 ;
fi
enddef ;
vardef graph_is_null(expr p) = (urcorner p=origin) and (llcorner p=origin) enddef ;
vardef graph_draw_arrowhead(expr p)(text w) = % Draw arrowhead for path p, with list w
addto graph_current_graph also
image(filldraw arrowhead(
graph_arrowhead_extent(precontrol infinity of p, point infinity of p)) w ;
graph_setbounds point infinity of p..cycle) ;
enddef ;
vardef graph_arrowhead_extent(expr p, q) =
if p<>q : (q - 100pt*unitvector(q-p)) -- fi
q
enddef ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Drawing labels %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Argument c is a drawing command that needs an additional argument p that gives
% a location in internal graph coords. Draw in graph_current_graph enclosed in a setbounds
% path. Unknown components of p cause the setbounds path to have width or height 1 instead of 0.
% Then graph_unknown_pair_bbox sets these components to 0 and graph_picture_conversion
% suppresses subsequent repositioning.
def graph_draw_label(expr p)(suffix $)(text c) =
save sdim_ ; pair sdim_;
sdim_ := (if unknown xpart p : 1+ fi 0, if unknown ypart p : 1+ fi 0) ;
graph_unknown_pair_bbox(p) ;
addto graph_current_graph also
image(c(p) ; graph_setbounds p--p+sdim_--cycle) _op_
enddef ;
% Stash the result drawing command c in the graph_label table using with list w and
% an index based on angle laboff$.
vardef graph_stash_label(suffix $)(text c) text w =
graph_label[1.5+angle laboff$ /90] = image(c(origin) w) ;
enddef ;
def graph_label_location primary p =
if pair p : graph_draw_label(p)
elseif numeric p : graph_draw_label(point p of pathpart graph_last_drawn)
else : graph_stash_label
fi
enddef ;
% Place label p at user graph coords t using with list w. (t is a time, a pair
% or 2 numerics or strings).
vardef glabel@#(expr p)(text t) text w =
graph_label_location graph_label_convert_user_to_internal(t) (@#,label@#(p)) w ; enddef;
% Place label p at user graph coords t using with list w and draw a dot there.
% (t is a time, a pair, or 2 numerics or strings).
vardef gdotlabel@#(expr p)(text t) text w =
graph_label_location graph_label_convert_user_to_internal(t) (@#,dotlabel@#(p)) w ; enddef;
def OUT = enddef ; % location text for outside labels
%%%%%%%%%%%%%%%%%%%%%%%%%% Grid lines, ticks, etc. %%%%%%%%%%%%%%%%%%%%%%%%%%
% Grid lines and tick marks are transformed versions of the templates below.
% In the template paths, (0,0) is on the edge of the frame and inward is to
% the right.
path Gtemplate.itick, Gtemplate.otick, Gtemplate.grid ;
Gtemplate.itick = origin--(7bp,0) ;
Gtemplate.otick = (-7bp,0)--origin ;
Gtemplate.grid = origin--(1,0) ;
vardef itick@#(expr f,u) text w = graph_tick_label(@#,@,false,f,u,w) ; enddef;
vardef otick@#(expr f,u) text w = graph_tick_label(@#,@,false,f,u,w) ; enddef;
vardef grid@#(expr f,u) text w = graph_tick_label(@#,@,true,f,u,w) ; enddef;
% Produce a tick or grid mark for label suffix $, Gtemplate suffix $$,
% coordinate value u, and with list w. Boolean c tells whether Gtemplate$$
% needs scaling by X_.graph_dimensions or Y_.graph_dimensions,
% and f gives a format string or a label picture.
def graph_tick_label(suffix $,$$)(expr c, f, u)(text w) =
graph_draw_label(graph_label_convert_user_to_internal(graph_generate_label_position($,u)),,draw graph_gridline_picture$($$,c,f,u,w) shifted)
enddef ;
% Generate label positioning arguments appropriate for label suffix $ and
% coordinate u.
def graph_generate_label_position(suffix $)(expr u) =
if xpart laboff.$=0 : u,whatever else : whatever,u fi
enddef ;
% Generate a picture of a grid line labeled with coordinate value u, picture
% or format string f, and with list w. Suffix @# is bot, top, lft, or rt,
% suffix $ identifies entries in the Gtemplate table, and boolean c tells
% whether to scale Gtemplate$.
vardef graph_gridline_picture@#(suffix $)(expr c, f, u)(text w) =
if unknown u : graph_error(u,"Label coordinate should be known") ; nullpicture
else :
save p ; path p;
interim warningcheck :=0 ;
graph_autogrid_needed :=false ;
p = Gtemplate$ zscaled -laboff@#
if c : Gxyscale fi
shifted (((.5 + laboff@# dotprod (.5,.5)) * laboff@#) Gxyscale) ;
image(draw p w ;
label@#(if string f : format(f,u) else : f fi, point 0 of p))
fi
enddef ;
def Gxyscale = xscaled X_.graph_dimensions yscaled Y_.graph_dimensions enddef ;
% Draw the frame or the part corresponding to label suffix @# using with list w.
vardef frame@# text w =
graph_frame_needed :=false ;
picture p_ ;
p_ = image(draw
if str@#<>"" : subpath round(angle laboff@#*graph_frame_pair_a+graph_frame_pair_b) of fi
unitsquare Gxyscale w) ;
graph_draw_label((whatever,whatever),,draw p_ shifted) ;
enddef ;
pair graph_frame_pair_a ; graph_frame_pair_a=(1,1)/90; % unitsquare subpath is linear in label angle
pair graph_frame_pair_b ; graph_frame_pair_b=(.75,2.25);
%%%%%%%%%%%%%%%%%%%%%%%%%% Automatic grid selection %%%%%%%%%%%%%%%%%%%%%%%%%%
string Glmarks[] ; % marking options per decade for logarithmic scales
string Gumarks ; % mark spacing options per decade for linear scales
string Gemarks ; % exponent spacing options for logarithmic scales
newinternal Gmarks, Gminlog ;
Gmarks := 4 ; % minimum number marks generated by auto.x or auto.y
Gminlog := mlog 3 ; % revert to uniform marks when largest/smallest < this
def Gfor(text t) = for i=t endfor enddef ; % to shorten the mark templates below
Glmarks[1]="1,2,5" ;
Glmarks[2]="1,1.5,2,3,4,5,7" ;
Glmarks[3]="1Gfor(6upto10 :,i/5)Gfor(5upto10 :,i/2)Gfor(6upto9 :,i)" ;
Glmarks[4]="1Gfor(11upto20 :,i/10)Gfor(11upto25 :,i/5)Gfor(11upto19 :,i/2)" ;
Glmarks[5]="1Gfor(21upto40 :,i/20)Gfor(21upto50 :,i/10)Gfor(26upto49 :,i/5)" ;
Gumarks="10,5,2" ; % start with 10 and go down; a final `,1' is appended
Gemarks="20,10,5,2,1" ;
% Determine the X_ or Y_ bounds on the range to be covered by automatic grid
% marks. Suffix @# is X_ or Y_. The result is log or linear to specify the
% type of grid spacing to use. Bounds are returned in variables local to
% begingraph..endgraph : pairs graph_modified_lower and graph_modified_higher
% are upper and lower bounds in
% `modified exponential form'. In modified exponential form, (x,y) means
% (x/1000)*10^y, where 1000<=abs x<10000.
vardef graph_bounds@# =
interim warningcheck :=0 ;
save l, h ;
graph_set_default_bounds ;
if @#graph_coordinate_type>0 : (l,h) else : -(h,l) fi = (@#low, @#high) ;
if abs @#graph_coordinate_type=log :
graph_modified_lower := graph_Meform(l)+graph_modified_bias ;
graph_modified_higher := graph_Meform(h)+graph_modified_bias ;
if h-l >= Gminlog : log else : linear fi
else :
graph_modified_lower := graph_Feform(l)+graph_modified_bias ;
graph_modified_higher := graph_Feform(h)+graph_modified_bias ;
linear
fi
enddef ;
pair graph_modified_bias ; graph_modified_bias=(0,3);
pair graph_modified_lower, graph_modified_higher ;
% Scan Glmarks[k] and evaluate tokens t for each m where l<=m<=h.
def graph_scan_marks(expr k, l, h)(text t) =
for m=scantokens Glmarks[k] :
exitif m>h ;
if m>=l : t fi
endfor
enddef ;
% Scan Gmark[k] and evaluate tokens t for each m and e where m*10^e belongs
% between l and h (inclusive), where both l and h are in modified exponent form.
def graph_scan_mark(expr k, l, h)(text t) =
for e=ypart l upto ypart h :
graph_scan_marks(k, if e>ypart l : 1 else : xpart l/1000 fi,
if e<ypart h : 10 else : xpart h/1000 fi, t)
endfor
enddef ;
% Select a k for which graph_scan_mark(k,...) gives enough marks.
vardef graph_select_mark =
save k ;
k = 0 ;
forever :
exitif unknown Glmarks[k+1] ;
exitif 0 graph_scan_mark(incr k, graph_modified_lower, graph_modified_higher, +1) >= Gmarks ;
endfor
k
enddef ;
% Try to select an exponent spacing from Gemarks. If successful, set @# and
% return true
vardef graph_select_exponent_mark@# =
numeric @# ;
for e=scantokens Gemarks :
@# = e ;
exitif floor(ypart graph_modified_higher/e) -
floor(graph_modified_exponent_ypart(graph_modified_lower)/e) >= Gmarks ;
numeric @# ;
endfor
known @#
enddef ;
vardef graph_modified_exponent_ypart(expr p) = ypart p if xpart p=1000 : -1 fi enddef ;
% Compute the mark spacing d between xpart graph_modified_lower and xpart graph_modified_higher.
vardef graph_tick_mark_spacing =
interim warningcheck :=0 ;
save m, n, d ;
m = Gmarks ;
n = 1 for i=1 upto
(mlog(xpart graph_modified_higher-xpart graph_modified_lower) - mlog m)/mlogten :
*10 endfor ;
if n<=1000 :
for x=scantokens Gumarks :
d = n*x ;
exitif 0 graph_generate_numbers(d,+1)>=m ;
numeric d ;
endfor
fi
if known d : d else : n fi
enddef ;
def graph_generate_numbers(expr d)(text t) =
for m = d*ceiling(xpart graph_modified_lower/d) step d until xpart graph_modified_higher :
t
endfor
enddef ;
% Evaluate tokens t for exponents e in multiples of d in the range determined
% by graph_modified_lower and graph_modified_higher.
def graph_generate_exponents(expr d)(text t) =
for e = d*floor(graph_modified_exponent_ypart(graph_modified_lower)/d+1)
step d until d*floor(ypart graph_modified_higher/d) : t
endfor
enddef ;
% Adjust graph_modified_lower and graph_modified_higher so their exponent parts match
% and they are in true exponent form ((x,y) means x*10^y). Return the new exponent.
vardef graph_match_exponents =
interim warningcheck := 0 ;
save e ;
e+3 = if graph_modified_lower=graph_modified_bias : ypart graph_modified_higher
elseif graph_modified_higher=graph_modified_bias : ypart graph_modified_lower
else : max(ypart graph_modified_lower, ypart graph_modified_higher) fi ;
forsuffixes $=graph_modified_lower, graph_modified_higher :
$ := (xpart $ for i=ypart $ upto e+2 : /(10) endfor, e) ;
endfor
e
enddef ;
% Assume e is an integer and either m=0 or 1<=abs(m)<10000. Find m*(10^e)
% and represent the result as a string if its absolute value would be at least
% 4096 or less than .1. It is OK to return 0 as a string or a numeric.
vardef graph_factor_and_exponent_to_string(expr m, e) =
if (e>3)or(e<-4) :
decimal m & "e" & decimal e
elseif e>=0 :
if abs m<infinity/Ten_to[e] :
m*Ten_to[e]
else : decimal m & "e" & decimal e
fi
else :
save x ; x=m/Ten_to[-e];
if abs x>=.1 : x else : decimal m & "e" & decimal e fi
fi
enddef ;
def auto suffix $ =
hide(def graph_comma= hide(def graph_comma=,enddef) enddef)
if graph_bounds.graph_suffix($)=log :
if graph_select_exponent_mark.graph_exponent :
graph_generate_exponents(graph_exponent,
graph_comma graph_factor_and_exponent_to_string(1,e))
else :
graph_scan_mark(graph_select_mark, graph_modified_lower, graph_modified_higher,
graph_comma graph_factor_and_exponent_to_string(m,e))
fi
else :
hide(graph_exponent :=graph_match_exponents)
graph_generate_numbers(graph_tick_mark_spacing,
graph_comma graph_factor_and_exponent_to_string(m,graph_exponent))
fi
enddef ;
string Autoform ; Autoform = "%g";
%vardef autogrid(suffix tx, ty) text w =
% graph_autogrid_needed :=false ;
% if str tx<>"" : for x=auto.x : tx(Autoform,x) w ; endfor fi
% if str ty<>"" : for y=auto.y : ty(Autoform,y) w ; endfor fi
%enddef ;
% We redefine autogrid, adding the possibility of differing X and Y
% formats.
% string Autoform_X ; Autoform_X := "@.0e" ;
% string Autoform_Y ; Autoform_Y := "@.0e" ;
vardef autogrid(suffix tx, ty) text w =
graph_autogrid_needed := false ;
if str tx <> "" :
for x=auto.x :
tx (
if string Autoform_X :
if Autoform_X <> "" :
Autoform_X
else :
Autoform
fi
else :
Autoform
fi,
x
) w ;
endfor
fi
if str ty <> "" :
for y=auto.y :
ty (
if string Autoform_Y :
if Autoform_Y <> "" :
Autoform_Y
else :
Autoform
fi
else :
Autoform
fi,
y
) w ;
endfor
fi
enddef ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% endgraph %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
def endgraph =
if graph_autogrid_needed : autogrid(otick.bot, otick.lft) ; fi
if graph_frame_needed : frame ; fi
setcoords(linear,linear) ;
interim truecorners :=1 ;
for b=bbox graph_finished_graph :
setbounds graph_finished_graph to b ;
for i=0 step .5 until 3.5 :
if known graph_label[i] :
addto graph_finished_graph also graph_label[i] shifted point i of b ;
fi
endfor
endfor
graph_finished_graph
endgroup
enddef ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Ten_to0 = 1 ;
Ten_to1 = 10 ;
Ten_to2 = 100 ;
Ten_to3 = 1000 ;
Ten_to4 = 10000 ;
vardef escaped_format(expr s) =
"" for n=1 upto length(s) : &
if ASCII substring (n,n+1) of s = 37 :
"@"
else :
substring (n,n+1) of s
fi
endfor
enddef ;
vardef strfmt(expr f, x) =
"\MPgraphformat{" & escaped_format(f) & "}{" & (if string x : x else : decimal x fi) & "}"
enddef ;
vardef format(expr f, x) = textext(strfmt(f, x)) enddef ;
% A couple of extensions :
% Define a function plotsymbol() returning a picture : 10 different shapes,
% unfilled outline, interior filled with different shades of the background.
% This allows overlapping points on a plot to be more distinguishable.
vardef graph_shapesize = .33BodyFontSize enddef ;
path graph_shape[] ; % (internal) symbol path
graph_shape[0] := (0,0) ; % point
graph_shape[1] := fullcircle ; % circle
graph_shape[2] := (up -- down) scaled .5 ; % vertical bar
for i = 3 upto 9 : % polygons
graph_shape[i] :=
for j = 0 upto i-1 :
(up scaled .5) rotated (360j/i) --
endfor cycle ;
endfor
graph_shape[12] := graph_shape[2] rotated +90 ; % horizontal line
graph_shape[22] := graph_shape[2] rotated +45 ; % backslash
graph_shape[32] := graph_shape[2] rotated -45 ; % slash
graph_shape[13] := graph_shape[3] rotated 180 ; % down triangle
graph_shape[23] := graph_shape[3] rotated -90 ; % right triangle
graph_shape[33] := graph_shape[3] rotated +90 ; % left triangle
graph_shape[14] := graph_shape[4] rotated +45 ; % square
graph_shape[15] := graph_shape[5] rotated 180 ; % down pentagon
graph_shape[16] := graph_shape[6] rotated +90 ; % turned hexagon
graph_shape[17] := graph_shape[7] rotated 180 ;
graph_shape[18] := graph_shape[8] rotated +22.5 ;
numeric l ;
for j = 5 upto 9 :
l := length(graph_shape[j]) ;
pair p[] ;
for i = 0 upto l :
p[i] = whatever [point i of graph_shape[j],
point (i+2 mod l) of graph_shape[j]] ;
p[i] = whatever [point (i+1 mod l) of graph_shape[j],
point (i+l-1 mod l) of graph_shape[j]] ;
endfor
graph_shape[20+j] := for i = 0 upto l : point i of graph_shape[j]--p[i]--endfor cycle ;
endfor
path s ; s := graph_shape[4] ;
path q ; q := s scaled .25 ;
numeric l ; l := length(s) ;
pair p[] ;
graph_shape[24] := for i = 0 upto l-1 :
hide(
p[i] = whatever [point i of s, point (i+1 mod l) of s] ;
p[i] = whatever [point i of q, point (i-1+l mod l) of q] ;
p[i+l] = whatever [point i of s, point (i+1 mod l) of s] ;
p[i+l] = whatever [point i+1 of q, point (i+2 mod l) of q] ;
)
point i of q -- p[i] -- p[i+l] --
endfor cycle ;
graph_shape[34] := graph_shape[24] rotated 45 ;
% usage : gdraw p plot plotsymbol( 1,1) ; % a filled circle
% usage : gdraw p plot plotsymbol(14,0) ; % a square
% usage : gdraw p plot plotsymbol( 4,.5) ; % a 50% filled diamond
def stars(expr f) = plotsymbol(25,f) enddef ; % a 5-point star
def points(expr f) = plotsymbol( 0,f) enddef ;
def circles(expr f) = plotsymbol( 1,f) enddef ;
def crosses(expr f) = plotsymbol(34,f) enddef ;
def squares(expr f) = plotsymbol(14,f) enddef ;
def diamonds(expr f) = plotsymbol( 4,f) enddef ; % a turned square
def uptriangles(expr f) = plotsymbol( 3,f) enddef ;
def downtriangles(expr f) = plotsymbol(13,f) enddef ;
def lefttriangles(expr f) = plotsymbol(33,f) enddef ;
def righttriangles(expr f) = plotsymbol(23,f) enddef ;
def plotsymbol(expr n, f) text t =
if known graph_shape[n] :
image(
save bg, fg ; color bg, fg ;
bg := if known graph_background : graph_background else : background fi ;
save pic ; picture pic ; pic := image(draw origin _op_ t ;) ;
fg := if color colorpart pic : colorpart pic else : black fi ;
save p ; path p ; p = graph_shape[n] scaled graph_shapesize ;
draw p withcolor bg withpen currentpen scaled 2 ; % halo
if cycle p : fill p withcolor
if color f and known f :
f
elseif numeric f and known f :
f[bg,fg]
else :
bg
fi ;
fi
draw p withpen currentpen _op_ t ;
)
else :
nullpicture
fi
t
enddef ;
% standard resistance color code: rainbow sequence (from /usr/share/X11/rgb.txt)
color resistance_color[] ; string resistance_name[] ;
resistance_color0 = (0,0,0) ; resistance_name0 = "black" ;
resistance_color1 = (165/255,42/255,42/255) ; resistance_name1 = "brown" ;
resistance_color2 = (1,0,0) ; resistance_name2 = "red" ;
resistance_color3 = (1,165/255,0) ; resistance_name3 = "orange" ;
resistance_color4 = (1,1,0) ; resistance_name4 = "yellow" ;
resistance_color5 = (0,1,0) ; resistance_name5 = "green" ;
resistance_color6 = (0,0,1) ; resistance_name6 = "blue" ;
resistance_color7 = (148/255,0,211/255) ; resistance_name7 = "darkviolet" ;
resistance_color8 = (190/255,190/255,190/255) ; resistance_name8 = "gray" ;
resistance_color9 = (1,1,1) ; resistance_name9 = "white" ;
%def rainbow(expr f) =
% ((abs(5f) mod 5) + 2 - floor((abs(5f) mod 5) + 2))
% [resistance_color[ floor((abs(5f) mod 5) + 2)],
% resistance_color[ceiling((abs(5f) mod 5) + 2)]]
%enddef ;
def rainbow(expr f) =
hide(numeric n_ ; n_ = (abs(5f) mod 5) + 2 ;)
(n_-floor(n_))[resistance_color[floor n_],resistance_color[ceiling n_]]
enddef ;
% The following extensions are not specific to graph and could be moved to metafun...
% sort a path. Efficient en memory use, not so efficient in sorting long paths...
vardef sortpath (suffix $) (text t) = % t can be "xpart", "ypart", "length", "angle", ...
if path $ :
if length $ > 0 :
save n, k ; n := length $ ;
for i=0 upto n :
k := i ;
for j=i+1 upto n :
if t (point j of $) < t (point k of $) :
k := j ;
fi
endfor
if k>i :
$ := if i>0 : subpath (0,i-1) of $ -- fi
point k of $ --
subpath (i,k-1) of $
if k<n : -- subpath (k+1,n) of $ fi
;
fi
endfor
fi
fi
enddef ;
% convert a polygon path to a smooth path (useful, e.g. as a guide to the eye)
def smoothpath (suffix $) =
if path $ :
(for i=0 upto length $ :
if i>0 : .. fi
(point i of $)
endfor )
fi
enddef ;
% return a path of a function func(x) with abscissa running from f to t over n intervals
def makefunctionpath (expr f, t, n) (text func) =
(for x=f step ((t-f)/(abs n)) until t :
if x<>f : .. fi
(x, func)
endfor )
enddef ;
% shift a path, point by point
%
% example :
%
% p1 := addtopath(p0,(.1normaldeviate,.1normaldeviate)) ;
vardef addtopath (suffix p) (text t) =
if path p :
(for i=0 upto length p :
if i>0 : -- fi
hide(clearxy ; z = point i of p ;) z shifted t
endfor)
fi
enddef ;
% return a new path of a function func(z) using the same abscissa as an existing path
vardef functionpath (suffix p) (text func) =
(for i=0 upto length p :
if i>0 : .. fi
(hide(x := xpart(point i of p))x,func) %(hide(clearxy ; z = point i of p)x,func)
endfor )
enddef ;
% least-squares "fit" to a polynomial
%
% example :
%
% path p[] ;
% numeric a[] ; a0 := 1 ; a1 := .1 ; a2 := .01 ; a3 := .001 ; a4 := 0.0001 ;
% p0 := makefunctionpath(0,5,10,polynomial_function(a,4,x)) ;
% p1 := addtopath(p0,(0,.001normaldeviate)) ;
% gdraw p0 ;
% gdraw p1 plot plotsymbol(1,.5) ;
%
% numeric b[] ;
% polynomial_fit(p1, b, 4, 1) ;
% gdraw functionpath(p1,polynomial_function(b,4,x)) ;
%
% numeric c[] ;
% linear_fit(p1, c, 1) ;
% gdraw functionpath(p1,linear_function(c,x)) dashed evenly ;
% a polynomial function :
%
% y = a0 + a1 * x + a2 * x^2 + ... + a[n] * x^n
vardef polynomial_function (suffix $) (expr n, x) =
(for j=0 upto n : + $[j]*(x**j) endfor) % no ;
enddef ;
% find the determinant of a (n+1)*(n+1) matrix ; indices run from 0 to n
vardef det (suffix $) (expr n) =
hide(
numeric determinant ; determinant := 1 ;
save jj ; numeric jj ;
for k=0 upto n :
if $[k][k]=0 :
jj := -1 ;
for j=0 upto n :
if $[k][j]<>0 :
jj := j ;
exitif true ;
fi
endfor
if jj<0 :
determinant := 0 ;
exitif true ;
fi
for j=k upto n : % interchange the columns
temp := $[j][jj] ;
$[j][jj] := $[j][k] ;
$[j][k] := temp ;
endfor
determinant = -determinant ;
fi
exitif determinant=0 ;
determinant := determinant * $[k][k] ;
if k<n : % subtract row k from lower rows to get a diagonal matrix
for j=k+1 upto n :
for i=k+1 upto n :
$[j][i] := $[j][i]-$[j][k]*$[k][i]/$[k][k] ;
endfor
endfor
fi
endfor ;
)
determinant % no ;
enddef ;
numeric fit_chi_squared ;
% least-squares fit of a polynomial $ of order n to a path p (unweighted)
%
% reference : P. R. Bevington, "Data Reduction and Error Analysis for the Physical
% Sciences", McGraw-Hill, New York 1969.
vardef polynomial_fit (suffix p, $) (expr n) (text t) =
if not path p :
Gerr(p, "Cannot fit--not a path") ;
elseif length p < n :
Gerr(p, "Cannot fit--not enough points") ;
else :
fit_chi_squared := 0 ;
% calculate sums of the data
save sumx, sumy ; numeric sumx[], sumy[] ;
save w ; numeric w ;
for i=0 upto 2n :
sumx[i] := 0 ;
endfor
for i=0 upto n :
sumy[i] := 0 ;
endfor
for i=0 upto length p :
clearxy ; z = point i of p ;
w := if length(t) > 0 : t else : 1 fi ; % weight
x1 := w ;
for j=0 upto 2n :
sumx[j] := sumx[j] + x1 ;
x1 := x1 * x ;
endfor
y1 := y * w ;
for j=0 upto n :
sumy[j] := sumy[j] + y1 ;
y1 := y1 * x ;
endfor
fit_chi_squared := fit_chi_squared + y*y*w ;
endfor
% construct matrices and calculate the polynomial coefficients
save m ; numeric m[][] ;
for j=0 upto n :
for k=0 upto n :
m[j][k] := sumx[j+k] ;
endfor
endfor
save delta ; numeric delta ;
delta := det(m,n) ; % this destroys the matrix m[][], which is OK
if delta = 0 :
fit_chi_squared := 0 ;
for j=0 upto n :
$[j] := 0 ;
endfor
else :
for i=0 upto n :
for j=0 upto n :
for k=0 upto n :
m[j][k] := sumx[j+k] ;
endfor
m[j][i] := sumy[j] ;
endfor
$[i] := det(m,n) / delta ; % matrix m[][] gets destroyed...
endfor
for j=0 upto n :
fit_chi_squared := fit_chi_squared - 2sumy[j]*$[j] ;
for k=0 upto n :
fit_chi_squared := fit_chi_squared + $[j]*$[k]*sumx[j+k] ;
endfor
endfor
% normalize by the number of degrees of freedom
fit_chi_squared := fit_chi_squared / (length(p) - n) ; % length(p)+1-(n+1)
fi
fi
enddef ;
% y = a0 + a1 * x
%
% of course a line is just a polynomial of order 1
vardef linear_function (suffix $) (expr x) = polynomial_function($,1,x) enddef ;
vardef linear_fit (suffix p, $) (text t) = polynomial_fit(p, $, 1, t) ; enddef ;
% and a constant is polynomial of order 0
vardef constant_function (suffix $) (expr x) = polynomial_function($,0,x) enddef ;
vardef constant_fit (suffix p, $) (text t) = polynomial_fit(p, $, 0, t) ; enddef ;
% y = a1 * exp(a0*x)
%
% exp and ln defined in metafun
vardef exponential_function (suffix $) (expr x) = $1*exp($0*x) enddef ;
% since we take a log, this only works for positive ordinates
vardef exponential_fit (suffix p, $) (text t) =
save a ; numeric a[] ;
save q ; path q ; % fit to the log of the ordinate
for i=0 upto length p :
if ypart(point i of p)>0 :
augment.q(xpart(point i of p),ln(ypart(point i of p))) ;
fi
endfor
linear_fit(q,a,t) ;
save e ; e := exp(sqrt(fit_chi_squared)) ;
fit_chi_squared := e * e ;
$0 := a1 ;
$1 := exp(a0) ;
enddef ;
% y = a1 * x**a0
vardef power_law_function (suffix $) (expr x) = $1*(x**$0) enddef ;
% since we take logs, this only works for positive abscissae and ordinates
vardef power_law_fit (suffix p, $) (text t) =
save a ; numeric a[] ;
save q ; path q ; % fit to the logs of the abscissae and ordinates
for i=0 upto length p :
if (xpart(point i of p)>0) and (ypart(point i of p)>0) :
augment.q(ln(xpart(point i of p)),ln(ypart(point i of p))) ;
fi
endfor
linear_fit(q,a,t) ;
save e ; e := exp(sqrt(fit_chi_squared)) ;
fit_chi_squared := e * e ;
$0 := a1 ;
$1 := exp(a0) ;
enddef ;
% gaussian : y = a2 * exp(-ln(2)*((x-a0)/a1)^2)
%
% a1 is the hwhm ; sigma := a1/sqrt(2ln(2)) or a1/1.17741
newinternal lntwo ; lntwo := ln(2) ; % brrr, why not inline it
vardef gaussian_function (suffix $) (expr x) =
if $1 = 0 :
if x = $0 : $2 else : 0 fi
else :
$2 * exp(-lntwo*(((x-$0)/$1)**2))
fi
if known $3 :
+ $3
fi
enddef ;
% since we take a log, this only works for positive ordinates
vardef gaussian_fit (suffix p, $) (text t) =
save a ; numeric a[] ;
save q ; path q ; % fit to the log of the ordinate
for i=0 upto length p :
if ypart(point i of p)>0 :
augment.q(xpart(point i of p), ln(ypart(point i of p))) ;
fi
endfor
polynomial_fit(q,a,2,if t > 0 : ln(t) else : 0 fi) ;
save e ; e := exp(sqrt(fit_chi_squared)) ;
fit_chi_squared := e * e ;
$1 := sqrt(-lntwo/a2) ;
$0 := -.5a1/a2 ;
$2 := exp(a0-.25*a1*a1/a2) ;
$3 := 0 ; % polynomial_fit will NOT work with a non-zero background!
enddef ;
% lorentzian: y = a2 / (1 + ((x - a0)/a1)^2)
vardef lorentzian_function (suffix $) (expr x) =
if $1 = 0 :
if x = $0 : $2 else : 0 fi
else :
$2 / (1 + ((x - $0)/$1)**2)
fi
if known $3 :
+ $3
fi
enddef ;
vardef lorentzian_fit (suffix p, $) (text t) =
save a ; numeric a[] ;
save q ; path q ; % fit to the inverse of the ordinate
for i=0 upto length p :
if ypart(point i of p)<>0 :
augment.q(xpart(point i of p), 1/ypart(point i of p)) ;
fi
endfor
polynomial_fit(q,a,2,if t <> 0 : 1/(t) else : 0 fi) ;
fit_chi_squared := 1/fit_chi_squared ;
$0 := -.5a1/a2 ;
$2 := 1/(a0-.25a1*a1/a2) ;
$1 := sqrt((a0-.25a1*a1/a2)/a2) ;
$3 := 0 ; % polynomial_fit will NOT work with a non-zero background!
enddef ;
|