1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
|
% Hans Hagen / October 2000
%
% This file is mostly a copy from the file format.mp, that
% comes with MetaPost and is written by John Hobby. This file
% is meant to be compatible, but has a few more features,
% controlled by the variables:
%
% fmt_initialize when false, initialization is skipped
% fmt_precision the default accuracy (default=3)
% fmt_separator the pattern separator (default=%)
% fmt_zerocheck activate extra sci notation zero check
%
% instead of a picture, one can format a number in a for TeX
% acceptable input string
boolean mant_font ; mant_font := true ; % signals graph not to load form
if known context_form : endinput ; fi ;
boolean context_form ; context_form := true ;
if unknown fmt_metapost : boolean fmt_metapost ; fmt_metapost := true ; fi ; % == use old method
if unknown fmt_precision : numeric fmt_precision ; fmt_precision := 3 ; fi ;
if unknown fmt_initialize : boolean fmt_initialize ; fmt_initialize := true ; fi ;
if unknown fmt_separator : string fmt_separator ; fmt_separator := "%" ; fi ;
if unknown fmt_zerocheck : boolean fmt_zerocheck ; fmt_zerocheck := false ; fi ;
% As said, all clever code is from John, the more stupid
% extensions are mine. The following string variables are
% responsible for the TeX formatting.
% TeX specs when using TeX instead of pseudo TeX.
string sFebraise_ ; sFebraise_ := "{" ;
string sFeeraise_ ; sFeeraise_ := "}" ;
string sFebmath_ ; sFebmath_ := "$" ;
string sFeemath_ ; sFeemath_ := "$" ;
string sFmneg_ ; sFmneg_ := "-" ;
string sFemarker_ ; sFemarker_ := "{\times}10^" ;
string sFeneg_ ; sFeneg_ := "-" ;
string sFe_plus ; sFe_plus := "" ; % "+"
def sFe_base = Fline_up_("1", sFemarker_) enddef ;
% Macros for generating typeset pictures of computed numbers
%
% format(f,x) typeset generalized number x using format string f
% Mformat(f,x) like format, but x is in Mlog form (see marith.mp)
% init_numbers(s,m,x,sn,e) choose typeset style given sample sign, mantissa,...
% roundd(x,d) round numeric x to d places right of decimal point
% Fe_base what precedes the exponent for typeset powers of 10
% Fe_plus plus sign if any for typesetting positive exponents
% Ten_to[] powers of ten for indices 0,1,2,3,4
%
% New are:
%
% formatstr(f,x) TeX string representing x using format f
% Mformatstr(f,x) like Mformatstr, but x is in Mlog form
% Other than the above-documented user interface, all
% externally visible names start with F and end with _.
% Allow big numbers in token lists
begingroup interim warningcheck := 0 ;
%%% Load auxiliary macros.
input string ;
input marith ;
%%% Choosing the Layout %%%
picture Fmneg_, Femarker_, Feneg_, Fe_base, Fe_plus ;
string Fmfont_, Fefont_ ;
numeric Fmscale_, Fescale_, Feraise_ ;
% Argument
%
% s is a leading minus sign
% m is a 1-digit mantissa
% x is whatever follows the mantissa
% sn is a leading minus for the exponent, and
% e is a 1-digit exponent.
%
% Numbers in scientific notation are constructed by placing
% these pieces side-by-side; decimal numbers use only m
% and/or s. To get exponents with leading plus signs, assign
% to Fe_plus after calling init_numbers. To do something
% special with a unit mantissa followed by x, assign to
% Fe_base after calling init_numbers.
vardef init_numbers(expr s, m, x, sn, e) =
Fmneg_ := s ;
for p within m :
Fmfont_ := fontpart p ;
Fmscale_ := xxpart p ;
exitif true ;
endfor
Femarker_ := x ;
Feneg_ := sn ;
for p within e :
Fefont_ := fontpart p ;
Fescale_ := xxpart p ;
Feraise_ := ypart llcorner p ;
exitif true ;
endfor
if fmt_metapost :
Fe_base := Fline_up_("1" infont Fmfont_ scaled Fmscale_, Femarker_) ;
% else :
% sFe_base := Fline_up_("1", sFemarker_) ;
fi ;
Fe_plus := nullpicture ;
enddef ;
%%% Low-Level Typesetting %%%
vardef Fmant_(expr x) = %%% adapted by HH %%%
if fmt_metapost :
(decimal abs x infont Fmfont_ scaled Fmscale_)
else :
(decimal abs x)
fi
enddef ;
vardef Fexp_(expr x) = %%% adapted by HH %%%
if fmt_metapost :
(decimal x infont Fefont_ scaled Fescale_ shifted (0,Feraise_))
else :
(decimal x)
fi
enddef ;
vardef Fline_up_(text t_) = %%% adapted by HH %%%
if fmt_metapost :
save p_, c_ ;
picture p_ ; p_ = nullpicture ;
pair c_ ; c_ = (0,0) ;
for q_ = t_ :
addto p_ also q_ if string q_ : infont defaultfont scaled defaultscale fi
shifted c_ ;
c_ := (xpart lrcorner p_, 0) ;
endfor
p_
else :
"" for q_ = t_ : & q_ endfor
fi
enddef ;
vardef Fdec_o_(expr x) = %%% adapted by HH %%%
if x<0 :
Fline_up_(if fmt_metapost : Fmneg_ else : sFmneg_ fi, Fmant_(x))
else :
Fmant_(x)
fi
enddef ;
vardef Fsci_o_(expr x, e) = %%% adapted by HH %%%
if fmt_metapost :
Fline_up_
(if x < 0 : Fmneg_,fi
if abs x = 1 : Fe_base else : Fmant_(x), Femarker_ fi,
if e < 0 : Feneg_ else : Fe_plus fi,
Fexp_(abs e))
else :
Fline_up_
(if x < 0 : sFmneg_, fi
if abs x = 1 : sFe_base else : Fmant_(x), sFemarker_ fi,
sFebraise_,
if e < 0 : sFeneg_ else : sFe_plus fi,
Fexp_(abs e),
sFeeraise_)
fi
enddef ;
% Assume prologues=1 implies troff mode. TeX users who want
% prologues on should use some other positive value. The mpx
% file mechanism requires separate input files here.
%
% if fmt_initialize : %%% adapted by HH
% if prologues = 1 : input troffnum else : input texnum fi
% fi ;
%
% wrong assumption, so we need:
if fmt_initialize :
input texnum ;
fi ;
%%% Scaling and Rounding %%%
% Find a pair p where x = xpart p*10**ypart p and either p =
% (0,0) or xpart p is between 1000 and 9999.99999. This is
% the `exponent form' of x.
vardef Feform_(expr x) =
interim warningcheck := 0 ;
if string x :
Meform(Mlog_str x)
else :
save b, e ;
b = x ; e = 0 ;
if abs b >= 10000 :
(b/10, 1)
elseif b = 0 :
origin
else :
forever :
exitif abs b >= 1000 ;
b := b*10 ; e := e-1 ;
endfor
(b, e)
fi
fi
enddef ;
% The marith.mp macros include a similar macro Meform that
% converts from `Mlog form' to exponent form. In case
% rounding has made the xpart of an exponent form number too
% large, fix it.
vardef Feadj_(expr x, y) =
if abs x >= 10000 : (x/10, y+1) else : (x,y) fi
enddef ;
% Round x to d places right of the decimal point. When d<0,
% round to the nearest multiple of 10 to the -d.
vardef roundd(expr x, d) =
if abs d > 4 :
if d > 0 : x else : 0 fi
elseif d > 0 :
save i ; i = floor x ;
i + round(Ten_to[d]*(x-i))/Ten_to[d]
else :
round(x/Ten_to[-d])*Ten_to[-d]
fi
enddef ;
Ten_to0 = 1 ;
Ten_to1 = 10 ;
Ten_to2 = 100 ;
Ten_to3 = 1000 ;
Ten_to4 = 10000 ;
% Round an exponent form number p to k significant figures.
primarydef p Fprec_ k =
Feadj_(roundd(xpart p,k-4), ypart p)
enddef ;
% Round an exponent form number p to k digits right of the
% decimal point.
primarydef p Fdigs_ k =
Feadj_(roundd(xpart p,k+ypart p), ypart p)
enddef ;
%%% High-Level Routines %%%
% The following operators convert z from exponent form and
% produce typeset output: Formsci_ generates scientific
% notation; Formdec_ generates decimal notation; and
% Formgen_ generates whatever is likely to be most compact.
vardef Formsci_(expr z) = %%% adapted by HH %%%
if fmt_zerocheck and (z = origin) :
Fsci_o_(0,0)
else :
Fsci_o_(xpart z/1000, ypart z + 3)
fi
enddef ;
vardef Formdec_(expr z) =
if ypart z > 0 :
Formsci_(z)
else :
Fdec_o_
(xpart z if ypart z >= -4 :
/Ten_to[-ypart z]
else :
for i = ypart z upto -5 : /(10) endfor /10000
fi)
fi
enddef ;
vardef Formgen_(expr q) =
clearxy ; (x,y) = q ;
if x = 0 : Formdec_
elseif y >= -6 : Formdec_
else : Formsci_
fi (q)
enddef ;
def Fset_item_(expr s) = %%% adapted by HH %%%
if s <> "" :
if fmt_metapost :
s infont defaultfont scaled defaultscale,
else :
s,
fi
fi
enddef ;
% For each format letter, the table below tells how to
% round and typeset a quantity z in exponent form.
%
% e scientific, p significant figures
% f decimal, p digits right of the point
% g decimal or scientific, p sig. figs.
% G decimal or scientific, p digits
string fmt_[] ;
fmt_[ASCII "e"] = "Formsci_(z Fprec_ p)" ;
fmt_[ASCII "f"] = "Formdec_(z Fdigs_ p)" ;
fmt_[ASCII "g"] = "Formgen_(z Fprec_ p)" ;
fmt_[ASCII "G"] = "Formgen_(z Fdigs_ p)" ;
% The format and Mformat macros take a format string f and
% generate typeset output for a numeric quantity x. String f
% should contain a `%' followed by an optional number and one
% of the format letters defined above. The number should be
% an integer giving the precision (default 3).
vardef isfmtseparator primary c = %%% added by HH %%%
((c <> fmt_separator) and (c <> "%"))
enddef ;
def initialize_form_numbers =
initialize_numbers ; % in context: do_initialize_numbers ;
enddef ;
vardef dofmt_@#(expr f, x) = %%% adapted by HH %%%
initialize_form_numbers ;
if f = "" :
if fmt_metapost : nullpicture else : "" fi
else :
interim warningcheck := 0 ;
save k, l, s, p, z ;
pair z ; z = @#(x) ;
% the next adaption is okay
% k = 1 + cspan(f, fmt_separator <> ) ;
% but best is to support both % and fmt_separator
k = 1 + cspan(f, isfmtseparator) ;
%
l-k = cspan(substring(k,infinity) of f, isdigit) ;
p = if l > k :
scantokens substring(k,l) of f
else :
fmt_precision
fi ;
string s ; s = fmt_[ASCII substring (l,l+1) of f] ;
if unknown s :
if k <= length f :
errmessage("No valid format letter found in "&f) ;
fi
s = if fmt_metapost : "nullpicture" else : "" fi ;
fi
Fline_up_
(Fset_item_(substring (0,k-1) of f)
if not fmt_metapost : sFebmath_, fi
scantokens s,
if not fmt_metapost : sFeemath_, fi
Fset_item_(substring (l+1,infinity) of f)
if fmt_metapost : nullpicture else : "" fi)
fi
hide (fmt_metapost := true)
enddef ;
%%% so far %%%
vardef format (expr f, x) =
fmt_metapost := true ; dofmt_.Feform_(f,x)
enddef ;
vardef Mformat(expr f, x) =
fmt_metapost := true ; dofmt_.Meform (f,x)
enddef ;
vardef formatstr (expr f, x) =
fmt_metapost := false ; dofmt_.Feform_(f,x)
enddef ;
vardef Mformatstr(expr f, x) =
fmt_metapost := false ; dofmt_.Meform (f,x)
enddef ;
% Restore warningcheck to previous value.
endgroup ;
|