blob: d463d158ff16a7d1ca8d6bcdb545e57e6a9be1cf (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
% $Id: pst-tools.pro 622 2012-01-01 15:36:14Z herbert $
%
%% PostScript tools prologue for pstricks.tex.
%% Version 0.02, 2012/01/01
%%
%% This program can be redistributed and/or modified under the terms
%% of the LaTeX Project Public License Distributed from CTAN archives
%% in directory macros/latex/base/lppl.txt.
%
%
/Pi2 1.57079632679489661925640 def
/factorial { % n on stack, returns n!
dup 0 eq { 1 }{
dup 1 gt { dup 1 sub factorial mul } if }
ifelse } def
%
/MoverN { % m n on stack, returns the binomial coefficient m over n
2 dict begin
/n exch def /m exch def
n 0 eq { 1 }{
m n eq { 1 }{
m factorial n factorial m n sub factorial mul div } ifelse } ifelse
end
} def
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% subroutines for complex numbers, given as an array [a b]
% which is a+bi = Real+i Imag
%
/cxadd { % [a1 b1] [a2 b2] = [a1+a2 b1+b2]
dup 0 get % [a1 b1] [a2 b2] a2
3 -1 roll % [a2 b2] a2 [a1 b1]
dup 0 get % [a2 b2] a2 [a1 b1] a1
3 -1 roll % [a2 b2] [a1 b1] a1 a2
add % [a2 b2] [a1 b1] a1+a2
3 1 roll % a1+a2 [a2 b2] [a1 b1]
1 get % a1+a2 [a2 b2] b1
exch 1 get % a1+a2 b1 b2
add 2 array astore
} def
%
/cxneg { % [a b]
dup 1 get % [a b] b
exch 0 get % b a
neg exch neg % -a -b
2 array astore
} def
%
/cxsub { cxneg cxadd } def % same as negative addition
%
% [a1 b1][a2 b2] = [a1a2-b1b2 a1b2+b1a2] = [a3 b3]
/cxmul { % [a1 b1] [a2 b2]
dup 0 get % [a1 b1] [a2 b2] a2
exch 1 get % [a1 b1] a2 b2
3 -1 roll % a2 b2 [a1 b1]
dup 0 get % a2 b2 [a1 b1] a1
exch 1 get % a2 b2 a1 b1
dup % a2 b2 a1 b1 b1
5 -1 roll dup % b2 a1 b1 b1 a2 a2
3 1 roll mul % b2 a1 b1 a2 b1a2
5 -2 roll dup % b1 a2 b1a2 b2 a1 a1
3 -1 roll dup % b1 a2 b1a2 a1 a1 b2 b2
3 1 roll mul % b1 a2 b1a2 a1 b2 a1b2
4 -1 roll add % b1 a2 a1 b2 b3
4 2 roll mul % b1 b2 b3 a1a2
4 2 roll mul sub % b3 a3
exch 2 array astore
} def
%
% [a b]^2 = [a^2-b^2 2ab] = [a2 b2]
/cxsqr { % [a b] square root
dup 0 get exch 1 get % a b
dup dup mul % a b b^2
3 -1 roll % b b^2 a
dup dup mul % b b^2 a a^2
3 -1 roll sub % b a a2
3 1 roll mul 2 mul % a2 b2
2 array astore
} def
%
/cxsqrt { % [a b]
% dup cxnorm sqrt /r exch def
% cxarg 2 div RadtoDeg dup cos r mul exch sin r mul cxmake2
cxlog % log[a b]
2 cxrdiv % log[a b]/2
aload pop exch % b a
2.781 exch exp % b exp(a)
exch cxconv exch % [Re +iIm] exp(a)
cxrmul %
} def
%
/cxarg { % [a b]
aload pop % a b
exch atan % arctan b/a
DegtoRad % arg(z)=atan(b/a)
} def
%
% log[a b] = [a^2-b^2 2ab] = [a2 b2]
/cxlog { % [a b]
dup % [a b][a b]
cxnorm % [a b] |z|
log % [a b] log|z|
exch % log|z|[a b]
cxarg % log|z| Theta
cxmake2 % [log|z| Theta]
} def
%
% square of magnitude of complex number
/cxnorm2 { % [a b]
dup 0 get exch 1 get % a b
dup mul % a b^2
exch dup mul add % a^2+b^2
} def
%
/cxnorm { % [a b]
cxnorm2 sqrt
} def
%
/cxconj { % conjugent complex
dup 0 get exch 1 get % a b
neg 2 array astore % [a -b]
} def
%
/cxre { 0 get } def % real value
/cxim { 1 get } def % imag value
%
% 1/[a b] = ([a -b]/(a^2+b^2)
/cxrecip { % [a b]
dup cxnorm2 exch % n2 [a b]
dup 0 get exch 1 get % n2 a b
3 -1 roll % a b n2
dup % a b n2 n2
4 -1 roll exch div % b n2 a/n2
3 1 roll div % a/n2 b/n2
neg 2 array astore
} def
%
/cxmake1 { 0 2 array astore } def % make a complex number, real given
/cxmake2 { 2 array astore } def % dito, both given
%
/cxdiv { cxrecip cxmul } def
%
% multiplikation by a real number
/cxrmul { % [a b] r
exch aload pop % r a b
3 -1 roll dup % a b r r
3 1 roll mul % a r b*r
3 1 roll mul % b*r a*r
exch 2 array astore % [a*r b*r]
} def
%
% division by a real number
/cxrdiv { % [a b] r
1 exch div % [a b] 1/r
cxrmul
} def
%
% exp(i theta) = cos(theta)+i sin(theta) polar<->cartesian
/cxconv { % theta
RadtoDeg dup sin exch cos cxmake2
} def
%%%%% ### bubblesort ###
%% syntax : array bubblesort --> array2 trie par ordre croissant
%% code de Bill Casselman
%% http://www.math.ubc.ca/people/faculty/cass/graphics/text/www/
/bubblesort { % on stack must be an array [ ... ]
4 dict begin
/a exch def
/n a length 1 sub def
n 0 gt {
% at this point only the n+1 items in the bottom of a remain to
% the sorted largest item in that blocks is to be moved up into
% position n
n {
0 1 n 1 sub {
/i exch def
a i get a i 1 add get gt {
% if a[i] > a[i+1] swap a[i] and a[i+1]
a i 1 add
a i get
a i a i 1 add get
% set new a[i] = old a[i+1]
put
% set new a[i+1] = old a[i]
put
} if
} for
/n n 1 sub def
} repeat
} if
a % return the sorted array
end
} def
%
/concatstringarray{ % [(a) (b) ... (z)] --> (ab...z) 20100422
0 1 index { length add } forall
string
0 3 2 roll
{ 3 copy putinterval length add }forall
pop
} bind def
%
/dot2comma {% on stack a string (...)
2 dict begin
/Output exch def
0 1 Output length 1 sub {
/Index exch def
Output Index get 46 eq { Output Index 44 put } if
} for
Output
end
} def
%
%-----------------------------------------------------------------------------%
% END pst-tools.pro
|