blob: eb46bfac51e1e42bb696090dd521a8bd95a93e9e (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
|
% premiere version 29 novembre 2003
% entierement modifiee le 08/02/2008
% allégée de 3D.pro
% version 1.0 du 5 mars 2008
% manuel.luque27@gmail.com
/tx@map3DDict 100 dict def
tx@map3DDict begin
%%
/CalcCoor{
/Y exch def /X exch def
/Xpoint Y cos X cos mul Rsphere mul def
/Ypoint Y cos X sin mul Rsphere mul def
/Zpoint Y sin Rsphere mul def
} def
/CompteurRegions{%
/regions_visibles [] def
/compteur 0 def
{
/region exch def
/nbr region length def % nombre de points
0 1 nbr 1 sub {
/counter exch def % pour mémoriser le premier point vu
region counter get aload pop
CalcCoor
CalculsPointsAfterTransformations
Test
PS condition {% marque le point
/regions_visibles [regions_visibles aload pop compteur ] def
exit % termine
} if
} for
/compteur compteur 1 add def
} forall
/TableauRegionsVisibles [
0 1 regions_visibles length 1 sub {
/NoRegion exch def
/No regions_visibles NoRegion get def
REGION No get
} for
] def
TableauRegionsVisibles
} def
/CalculsPointsRegion{%
/region1 exch def
region1 0 get aload pop
CalcCoor
newpath
CalculsPointsAfterTransformations
CalcCoordinates
Test
PS condition { moveto }{ 2 mul exch 2 mul exch moveto} ifelse
%
0 1 region1 length 1 sub {
/NoPoint exch def
region1 NoPoint get aload pop
CalcCoor
CalculsPointsAfterTransformations
CalcCoordinates
Test
PS condition { lineto }{ 2 mul exch 2 mul exch lineto} ifelse
} for
} def
/MatriceTransformation{%
/Sin1 THETA sin def
/Sin2 PHI sin def
/Cos1 THETA cos def
/Cos2 PHI cos def
/Cos1Sin2 Cos1 Sin2 mul def
/Sin1Sin2 Sin1 Sin2 mul def
/Cos1Cos2 Cos1 Cos2 mul def
/Sin1Cos2 Sin1 Cos2 mul def
/XpointVue Dobs Cos1Cos2 mul def
/YpointVue Dobs Sin1Cos2 mul def
/ZpointVue Dobs Sin2 mul def
/M11 RotZ cos RotY cos mul def
/M12 RotZ cos RotY sin mul RotX sin mul
RotZ sin RotX cos mul sub def
/M13 RotZ cos RotY sin mul RotX cos mul
RotZ sin RotX sin mul add def
/M21 RotZ sin RotY cos mul def
/M22 RotZ sin RotY sin RotX sin mul mul
RotZ cos RotX cos mul add def
/M23 RotZ sin RotY sin mul RotX cos mul
RotZ cos RotX sin mul sub def
/M31 RotY sin neg def
/M32 RotX sin RotY cos mul def
/M33 RotX cos RotY cos mul def
} def
% RotZ -> RotX -> RotY
/MatriceTransformationZXY{%
/Sin1 THETA sin def
/Sin2 PHI sin def
/Cos1 THETA cos def
/Cos2 PHI cos def
/Cos1Sin2 Cos1 Sin2 mul def
/Sin1Sin2 Sin1 Sin2 mul def
/Cos1Cos2 Cos1 Cos2 mul def
/Sin1Cos2 Sin1 Cos2 mul def
/XpointVue Dobs Cos1Cos2 mul def
/YpointVue Dobs Sin1Cos2 mul def
/ZpointVue Dobs Sin2 mul def
/M11 RotZ cos RotY cos mul RotZ sin RotX sin mul RotY sin mul sub def
/M12 RotZ sin RotY cos mul RotZ cos RotX sin mul RotY sin mul add def
/M13 RotX cos RotY sin mul def
/M21 RotZ sin RotX cos mul neg def
/M22 RotZ cos RotX cos mul def
/M23 RotX sin neg def
/M31 RotZ cos neg RotY sin mul RotZ sin RotX sin mul RotY cos mul sub def
/M32 RotZ sin neg RotY sin mul RotZ cos RotX sin mul RotY cos mul add def
/M33 RotX cos RotY cos mul def
} def
%
/CalcCoordinates{%
formulesTroisD
Xi xunit Yi yunit
}
def
% pour la 3D conventionnelle
/formulesTroisD{%
/xObservateur Xabscisse Sin1 mul neg Yordonnee Cos1 mul add def
/yObservateur Xabscisse Cos1Sin2 mul neg Yordonnee Sin1Sin2 mul sub Zcote Cos2 mul add def
/zObservateur Xabscisse neg Cos1Cos2 mul Yordonnee Sin1Cos2 mul sub Zcote Sin2 mul sub Dobs add def
/Xi DScreen xObservateur mul zObservateur div def
/Yi DScreen yObservateur mul zObservateur div def
}
def
%
/CalculsPointsAfterTransformations{%
/Xabscisse M11 Xpoint mul M12 Ypoint mul add M13 Zpoint mul add def
/Yordonnee M21 Xpoint mul M22 Ypoint mul add M23 Zpoint mul add def
/Zcote M31 Xpoint mul M32 Ypoint mul add M33 Zpoint mul add def
}
def
%
/Test { % test de visibilité d'un point
% rayon vers point de vue
/RXvue XpointVue Xabscisse sub def
/RYvue YpointVue Yordonnee sub def
/RZvue ZpointVue Zcote sub def
% test de visibilité
/PS RXvue Xabscisse mul % produit scalaire
RYvue Yordonnee mul add
RZvue Zcote mul add
def
} def
%
/MaillageSphere {
gsave
maillagewidth
maillagecolor
0.25 setlinewidth
0 increment 360 increment sub {%
/theta exch def
-90 increment 90 increment sub {%
/phi exch def
% newpath
/Xpoint Rsphere theta cos mul phi cos mul def
/Ypoint Rsphere theta sin mul phi cos mul def
/Zpoint Rsphere phi sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
moveto
% Centre de la facette
/Xpoint Rsphere theta increment 2 div add cos mul phi increment 2 div add cos mul def
/Ypoint Rsphere theta increment 2 div add sin mul phi increment 2 div add cos mul def
/Zpoint Rsphere phi increment 2 div add sin mul def
CalculsPointsAfterTransformations
/xCentreFacette Xabscisse def
/yCentreFacette Yordonnee def
/zCentreFacette Zcote def
% normale à la facette
/nXfacette xCentreFacette def
/nYfacette yCentreFacette def
/nZfacette zCentreFacette def
% rayon vers point de vue
/RXvue XpointVue xCentreFacette sub def
/RYvue YpointVue yCentreFacette sub def
/RZvue ZpointVue zCentreFacette sub def
% test de visibilité
/PSfacette RXvue nXfacette mul
RYvue nYfacette mul add
RZvue nZfacette mul add
def
PSfacette condition {
theta 1 theta increment add {%
/theta1 exch def
/Xpoint Rsphere theta1 cos mul phi cos mul def
/Ypoint Rsphere theta1 sin mul phi cos mul def
/Zpoint Rsphere phi sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
phi 1 phi increment add {
/phi1 exch def
/Xpoint Rsphere theta increment add cos mul phi1 cos mul def
/Ypoint Rsphere theta increment add sin mul phi1 cos mul def
/Zpoint Rsphere phi1 sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
theta increment add -1 theta {%
/theta1 exch def
/Xpoint Rsphere theta1 cos mul phi increment add cos mul def
/Ypoint Rsphere theta1 sin mul phi increment add cos mul def
/Zpoint Rsphere phi increment add sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
phi increment add -1 phi {
/phi1 exch def
/Xpoint Rsphere theta cos mul phi1 cos mul def
/Ypoint Rsphere theta sin mul phi1 cos mul def
/Zpoint Rsphere phi1 sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
} if
} for
} for
stroke
} def
%
/DrawCitys {
/CITY exch def
/Rayon exch def
/nbr CITY length def % nombre de villes
0 1 nbr 1 sub {
/compteur exch def
CITY compteur get aload pop
/X exch def /Y exch def
/Xpoint {%
Y cos X cos mul Rsphere mul
} def
/Ypoint {%
Y cos X sin mul Rsphere mul
} def
/Zpoint { Y sin Rsphere mul } def
CalculsPointsAfterTransformations
CalcCoordinates
Test
PS condition %
{1 0 0 setrgbcolor newpath Rayon 0 360 arc closepath fill}{pop pop}
ifelse
} for
} def
/oceans_seas_hatched {
-90 circlesep 90 {
/latitude_parallel exch def
Parallel
circlecolor
circlewidth
stroke
} for
} def
/meridien {
% liste des points vus
/TabPointsVusNeg[
-180 1 0{ % for
/phi exch def
/Xpoint Rsphere longitude_meridien cos mul phi cos mul def
/Ypoint Rsphere longitude_meridien sin mul phi cos mul def
/Zpoint Rsphere phi sin mul def
CalculsPointsAfterTransformations
Test
PS condition { phi } if
} for
] def
%
/TabPointsVusPos[
0 1 180{ % for
/phi exch def
/Xpoint Rsphere longitude_meridien cos mul phi cos mul def
/Ypoint Rsphere longitude_meridien sin mul phi cos mul def
/Zpoint Rsphere phi sin mul def
CalculsPointsAfterTransformations
Test
PS condition { phi } if
} for
] def
% plus grand et plus petit
/phi_minNeg 0 def
/phi_maxNeg -180 def
0 1 TabPointsVusNeg length 1 sub { % for
/iPoint exch def
/phi TabPointsVusNeg iPoint get def
phi phi_minNeg le {/phi_minNeg phi def} if
} for
0 1 TabPointsVusNeg length 1 sub { % for
/iPoint exch def
/phi TabPointsVusNeg iPoint get def
phi phi_maxNeg ge {/phi_maxNeg phi def} if
} for
/phi_minPos 180 def
/phi_maxPos 0 def
0 1 TabPointsVusPos length 1 sub { % for
/iPoint exch def
/phi TabPointsVusPos iPoint get def
phi phi_minPos le {/phi_minPos phi def} if
} for
0 1 TabPointsVusPos length 1 sub { % for
/iPoint exch def
/phi TabPointsVusPos iPoint get def
phi phi_maxPos ge {/phi_maxPos phi def} if
} for
/Xpoint Rsphere longitude_meridien cos mul phi_minNeg cos mul def
/Ypoint Rsphere longitude_meridien sin mul phi_minNeg cos mul def
/Zpoint Rsphere phi_minNeg sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
moveto
phi_minNeg 1 phi_maxNeg{
/phi exch def
/Xpoint Rsphere longitude_meridien cos mul phi cos mul def
/Ypoint Rsphere longitude_meridien sin mul phi cos mul def
/Zpoint Rsphere phi sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
meridiencolor
meridienwidth
stroke
/Xpoint Rsphere longitude_meridien cos mul phi_minPos cos mul def
/Ypoint Rsphere longitude_meridien sin mul phi_minPos cos mul def
/Zpoint Rsphere phi_minPos sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
moveto
phi_minPos 1 phi_maxPos{
/phi exch def
/Xpoint Rsphere longitude_meridien cos mul phi cos mul def
/Ypoint Rsphere longitude_meridien sin mul phi cos mul def
/Zpoint Rsphere phi sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
meridiencolor
meridienwidth
stroke
}
def
%% macros de Jean-Paul Vignault
%% dans solides.pro
%% produit vectoriel de deux vecteurs 3d
/vectprod3d { %% x1 y1 z1 x2 y2 z2
6 dict begin
/zp exch def
/yp exch def
/xp exch def
/z exch def
/y exch def
/x exch def
y zp mul z yp mul sub
z xp mul x zp mul sub
x yp mul y xp mul sub
end
} def
% coordonnées sphériques -> coordonnées cartésiennes
/rtp2xyz {
6 dict begin
/phi exch def
/theta exch def
/r exch def
/x phi cos theta cos mul r mul def
/y phi cos theta sin mul r mul def
/z phi sin r mul def
x y z
end
} def
%% norme d'un vecteur 3d
/norme3d { %% x y z
3 dict begin
/z exch def
/y exch def
/x exch def
x dup mul y dup mul add z dup mul add sqrt
end
} def
%% duplique le vecteur 3d
/dupp3d { %% x y z
3 copy
} def
/dupv3d {dupp3d} def
%%%%% ### mulv3d ###
%% (scalaire)*(vecteur 3d) Attention : dans l autre sens !
/mulv3d { %% x y z lambda
4 dict begin
/lambda exch def
/z exch def
/y exch def
/x exch def
x lambda mul
y lambda mul
z lambda mul
end
} def
%%%%% ### defpoint3d ###
%% creation du point A a partir de xA yA yB et du nom /A
/defpoint3d { %% xA yA zA /nom
1 dict begin
/memo exch def
[ 4 1 roll ] cvx memo exch
end def
}def
%%%%% ### scalprod3d ###
%% produit scalaire de deux vecteurs 3d
/scalprod3d { %% x1 y1 z1 x2 y2 z2
6 dict begin
/zp exch def
/yp exch def
/xp exch def
/z exch def
/y exch def
/x exch def
x xp mul y yp mul add z zp mul add
end
} def
%%%%% ### addv3d ###
%% addition de deux vecteurs 3d
/addv3d { %% x1 y1 z1 x2 y2 z2
6 dict begin
/zp exch def
/yp exch def
/xp exch def
/z exch def
/y exch def
/x exch def
x xp add
y yp add
z zp add
end
} def
/arccos {
dup
dup mul neg 1 add sqrt
exch
atan
} def
%% fin des macros de Jean-Paul Vignault
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% ### rotV3d ###
%% rotation autour d'un vecteur u
%% defini par (ux,uy,uz)
%% ici l'axe des pôles de la Terre
%% d'un angle theta
/rotV3d {
15 dict begin
/N2uvw ux dup mul uy dup mul add uz dup mul add def
/N2uv ux dup mul uy dup mul add def
/N2vw uz dup mul uy dup mul add def
/N2uw uz dup mul ux dup mul add def
/z exch def /y exch def /x exch def
/uxvywz ux x mul uy y mul add uz z mul add def
/uxvy ux x mul uy y mul add def
/uxwz ux x mul uz z mul add def
/vywz uy y mul uz z mul add def
/_wyvz uz y mul neg uy z mul add def
/wx_uz uz x mul ux z mul sub def
/_vxuy uy x mul neg ux y mul add def
ux uxvywz mul x N2vw mul ux vywz mul sub theta cos mul add N2uvw sqrt _wyvz mul theta sin mul add N2uvw div
uy uxvywz mul y N2uw mul uy uxwz mul sub theta cos mul add N2uvw sqrt wx_uz mul theta sin mul add N2uvw div
uz uxvywz mul z N2uv mul uz uxvy mul sub theta cos mul add N2uvw sqrt _vxuy mul theta sin mul add N2uvw div
end
} def
/the_night{
50 dict begin
/theta {180 hour 15 mul sub} bind def
% direction des rayons du soleil au solstice d'hiver
u1 u2 u3 /u defpoint3d
% vecteur normal dans le plan meridien
% la latitude
% /phi0 u2 neg u3 atan def
u1 u2 u3 rotV3d
/nZ exch def /nY exch def pop
/phi0 nY neg nZ atan def
% vecteur normal dans le plan equateur
/theta0 u1 neg u2 atan def
theta0 cos theta0 sin 0 /v defpoint3d
% w tels que le trièdre u v w soit direct
u v vectprod3d dupp3d norme3d 1 exch div mulv3d /w defpoint3d
/TabPointsVusNeg[
-180 1 0{ % for
/t exch def
v t cos Rsphere mul mulv3d
w t sin Rsphere mul mulv3d
addv3d
rotV3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
CalculsPointsAfterTransformations
Test
PS 0 ge { t } if
} for
] def
%
/TabPointsVusPos[
0 1 180{ % for
/t exch def
v t cos Rsphere mul mulv3d
w t sin Rsphere mul mulv3d
addv3d
rotV3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
CalculsPointsAfterTransformations
Test
PS 0 ge { t } if
} for
] def
/t_minNeg 0 def
/t_maxNeg -180 def
0 1 TabPointsVusNeg length 1 sub { % for
/iPoint exch def
/t TabPointsVusNeg iPoint get def
t t_minNeg le {/t_minNeg t def} if
} for
0 1 TabPointsVusNeg length 1 sub { % for
/iPoint exch def
/t TabPointsVusNeg iPoint get def
t t_maxNeg ge {/t_maxNeg t def} if
} for
/t_minPos 180 def
/t_maxPos 0 def
0 1 TabPointsVusPos length 1 sub { % for
/iPoint exch def
/t TabPointsVusPos iPoint get def
t t_minPos le {/t_minPos t def} if
} for
0 1 TabPointsVusPos length 1 sub { % for
/iPoint exch def
/t TabPointsVusPos iPoint get def
t t_maxPos ge {/t_maxPos t def} if
} for
theta -90 ge theta 90 le and {
v t_minNeg cos Rsphere mul mulv3d
w t_minNeg sin Rsphere mul mulv3d
addv3d
rotV3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
CalculsPointsAfterTransformations
CalcCoordinates
moveto
t_minNeg 1 t_maxPos{
/t exch def
v t cos Rsphere mul mulv3d
w t sin Rsphere mul mulv3d
addv3d
rotV3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
phi0 1 phi0 180 add { /t exch def
RsphereScreen t cos mul
RsphereScreen t sin mul
lineto
} for
}{
v t_minPos cos Rsphere mul mulv3d
w t_minPos sin Rsphere mul mulv3d
addv3d
rotV3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
CalculsPointsAfterTransformations
CalcCoordinates
moveto
t_minPos 1 t_maxPos {
/t exch def
v t cos Rsphere mul mulv3d
w t sin Rsphere mul mulv3d
addv3d
rotV3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
t_minNeg 1 t_maxNeg {
/t exch def
v t cos Rsphere mul mulv3d
w t sin Rsphere mul mulv3d
addv3d
rotV3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
phi0 1 phi0 180 add { /t exch def
RsphereScreen t cos mul
RsphereScreen t sin mul
lineto
} for
} ifelse
closepath
end
}
def
% ondes seismes
/ondes {
50 dict begin
/l exch def % latitude : phi
/L exch def % longitude : theta
/dlmax exch def % intervalle maximal en degrés
/nbr exch def % nombre de cercles
/dl dlmax nbr div def
% le vecteur unitaire normal
% à la sphère au point considéré
L cos l cos mul
L sin l cos mul
l sin
/u defpoint3d
1 1 nbr { /i exch def
/l' l dl i mul add def
/r Rsphere dl i mul cos mul def
/r' Rsphere dl i mul sin mul def
% le centre de l'onde
/x_o r L cos mul l cos mul def
/y_o r L sin mul l cos mul def
/z_o r l sin mul def
% un vecteur unitaire du plan du cercle
% perpendiculaire à n et dans le plan méridien
% donc même longitude
/x_I Rsphere L cos mul l' cos mul def
/y_I Rsphere L sin mul l' cos mul def
/z_I Rsphere l' sin mul def
x_I x_o sub
y_I y_o sub
z_I z_o sub
/uOI defpoint3d
uOI dupp3d norme3d 1 exch div mulv3d
/v defpoint3d
% un vecteur w normal à u et v dans le plan du cercle
u v vectprod3d dupp3d norme3d 1 exch div mulv3d
/w defpoint3d
% on décrit le cercle
v 0 cos r' mul mulv3d
w 0 sin r' mul mulv3d
addv3d x_o y_o z_o addv3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
CalculsPointsAfterTransformations
CalcCoordinates
moveto
0 1 360{%
/t exch def
v t cos r' mul mulv3d
w t sin r' mul mulv3d
addv3d x_o y_o z_o addv3d
/Zpoint exch def /Ypoint exch def /Xpoint exch def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} for
stroke
} for
end
} def
%% nouvelle construction des parallèles
/Parallel {
0 1 360{ % for
/theta exch def
/Xpoint Rsphere theta cos mul latitude_parallel cos mul def
/Ypoint Rsphere theta sin mul latitude_parallel cos mul def
/Zpoint Rsphere latitude_parallel sin mul def
CalculsPointsAfterTransformations
Test
PS condition {
CalcCoordinates
moveto
/theta theta 1 add def
/Xpoint Rsphere theta cos mul latitude_parallel cos mul def
/Ypoint Rsphere theta sin mul latitude_parallel cos mul def
/Zpoint Rsphere latitude_parallel sin mul def
CalculsPointsAfterTransformations
Test
PS condition {
CalcCoordinates
lineto }
{
/theta theta 1 sub def
/Xpoint Rsphere theta cos mul latitude_parallel cos mul def
/Ypoint Rsphere theta sin mul latitude_parallel cos mul def
/Zpoint Rsphere latitude_parallel sin mul def
CalculsPointsAfterTransformations
CalcCoordinates
lineto
} ifelse
} if
} for
} def
end
|