summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/plain/impatient/math.tex
blob: 31d7f1aa157f314773880a4ac8393e8d797ca84d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
% This is part of the book TeX for the Impatient.
% Copyright (C) 2003 Paul W. Abrahams, Kathryn A. Hargreaves, Karl Berry.
% See file fdl.tex for copying conditions.

\input macros
\chapter {Commands \linebreak for composing \linebreak math formulas}

\bix^^{math}
\chapterdef{math}

This section covers commands for constructing math formulas.
For an explanation of the conventions used in this section,
see \headcit{Descriptions of the commands}{cmddesc}.

\begindescriptions
%==========================================================================
\section {Simple parts of formulas}

%==========================================================================
\subsection {Greek letters}

\begindesc
\bix^^{Greek letters}
\dothreecolumns 40
\easy\ctsdisplay alpha {}
\ctsdisplay beta {}
\ctsdisplay chi {}
\ctsdisplay delta {}
\ctsdisplay Delta {}
\ctsdisplay epsilon {}
\ctsdisplay varepsilon {}
\ctsdisplay eta {}
\ctsdisplay gamma {}
\ctsdisplay Gamma {}
\ctsdisplay iota {}
\ctsdisplay kappa {}
\ctsdisplay lambda {}
\ctsdisplay Lambda {}
\ctsdisplay mu {}
\ctsdisplay nu {}
\ctsdisplay omega {}
\ctsdisplay Omega {}
\ctsdisplay phi {}
\ctsdisplay varphi {}
\ctsdisplay Phi {}
\ctsdisplay pi {}
\ctsdisplay varpi {}
\ctsdisplay Pi {}
\ctsdisplay psi {}
\ctsdisplay Psi {}
\ctsdisplay rho {}
\ctsdisplay varrho {}
\ctsdisplay sigma {}
\ctsdisplay varsigma {}
\ctsdisplay Sigma {}
\ctsdisplay tau {}
\ctsdisplay theta {}
\ctsdisplay vartheta {}
\ctsdisplay Theta {}
\ctsdisplay upsilon {}
\ctsdisplay Upsilon {}
\ctsdisplay xi {}
\ctsdisplay Xi {}
\ctsdisplay zeta {}
\egroup
\explain
These commands produce Greek letters suitable for mathematics.
You can only use them
within a math formula, so if you need a Greek letter within ordinary
text you must enclose it in dollar signs (|$|).  \TeX\ does not have
commands for Greek letters that look like their roman
counterparts, since you can get them by using those roman
counterparts.  For example, you can get a lowercase
^{omicron} in a formula by writing the letter `o', i.e.,
`|{\rm o}|' or an uppercase ^{beta} (`B') by writing
`|{\rm B}|'.

Don't confuse the following letters:
\ulist \compact
\li |\upsilon| (`$\upsilon$'), |{\rm v}| (`v'), and |\nu| (`$\nu$').
\li |\varsigma| (`$\varsigma$') and |\zeta| (`$\zeta$').
\endulist

You can get slanted capital Greek letters by using the math italic 
(|\mit|) \minref{font}.

\TeX\ treats Greek letters as ordinary symbols when it's figuring how
much space to put around them.

\example
If $\rho$ and $\theta$ are both positive, then $f(\theta)
-{\mit \Gamma}_{\theta} < f(\rho)-{\mit \Gamma}_{\rho}$.
|
\produces
If $\rho$ and $\theta$ are both positive, then
$f(\theta)-{\mit \Gamma}_{\theta} < f(\rho)-{\mit \Gamma}_{\rho}$.
\endexample
\eix^^{Greek letters}
\enddesc

%==========================================================================
\subsection {Miscellaneous ordinary math symbols}

\begindesc
\xrdef{specsyms}
\dothreecolumns 34
\easy\ctsdisplay infty {}
\ctsdisplay Re {}
\ctsdisplay Im {}
\ctsdisplay angle {}
\ctsdisplay triangle {}
\ctsdisplay backslash {}
\ctsdisplay vert {}
\ctsydisplay | @bar {}
\ctsdisplay Vert {}
\ctsdisplay emptyset {}
\ctsdisplay bot {}
\ctsdisplay top {}
\ctsdisplay exists {}
\ctsdisplay forall {}
\ctsdisplay hbar {}
\ctsdisplay ell {}
\ctsdisplay aleph {}
\ctsdisplay imath {}
\ctsdisplay jmath {}
\ctsdisplay nabla {}
\ctsdisplay neg {}
\ctsdisplay lnot {}
\actdisplay ' @prime \ (apostrophe)
\ctsdisplay prime {}
\ctsdisplay partial {}
\ctsdisplay surd {}
\ctsdisplay wp {}
\ctsdisplay flat {}
\ctsdisplay sharp {}
\ctsdisplay natural {}
\ctsdisplay clubsuit {}
\ctsdisplay diamondsuit {}
\ctsdisplay heartsuit {}
\ctsdisplay spadesuit {}
\egroup
\explain
^^{music symbols} ^^{card suits}
These commands produce various symbols.  They are called
``^{ordinary symbol}s'' to distinguish them from other classes of
symbols such as relations. You can only use 
an ordinary symbol
within a math formula, so if you need an ordinary symbol within ordinary text
you must enclose it in dollar signs (|$|).

The commands |\imath| and |\jmath| are useful when you need to put an
accent on top of an `$i$' or a `$j$'.

An apostrophe (|'|) is a short way of writing a superscript |\prime|.  (The
|\prime| command by itself generates a big ugly prime.)

The |\!|| and ^|\Vert| commands are synonymous, as
are the ^|\neg| and ^|\lnot| commands.
\margin{explanation of {\tt\\vert} added}
The |\vert| command produces the same result as `|!||'.
\indexchar |

The symbols produced by |\backslash|, |\vert|, and |\Vert|
are \minref{delimiter}s.  These symbols can be produced in larger sizes
by using ^|\bigm| et al.\ (\xref \bigm).  

\example
The Knave of $\heartsuit$s, he stole some tarts.
|
\produces
The Knave of $\heartsuit$s, he stole some tarts.
\nextexample
If $\hat\imath < \hat\jmath$ then $i' \leq j^\prime$.
|
\produces
If $\hat\imath < \hat\jmath$ then $i' \leq j^\prime$.
\nextexample
$${{x-a}\over{x+a}}\biggm\backslash{{y-b}\over{y+b}}$$
|
\dproduces
$${{x-a}\over{x+a}}\biggm\backslash{{y-b}\over{y+b}}$$
\endexample
\enddesc

%==========================================================================
\subsection {Binary operations}

\begindesc
\bix^^{operations}
\xrdef{binops}
\dothreecolumns 34
\easy\ctsdisplay vee {}
\ctsdisplay wedge {}
\ctsdisplay amalg {}
\ctsdisplay cap {}
\ctsdisplay cup {}
\ctsdisplay uplus {}
\ctsdisplay sqcap {}
\ctsdisplay sqcup {}
\ctsdisplay dagger {}
\ctsdisplay ddagger {}
\ctsdisplay land {}
\ctsdisplay lor {}
\ctsdisplay cdot {}
\ctsdisplay diamond {}
\ctsdisplay bullet {}
\ctsdisplay circ {}
\ctsdisplay bigcirc {}
\ctsdisplay odot {}
\ctsdisplay ominus {}
\ctsdisplay oplus {}
\ctsdisplay oslash {}
\ctsdisplay otimes {}
\ctsdisplay pm {}
\ctsdisplay mp {}
\ctsdisplay triangleleft {}
\ctsdisplay triangleright {}
\ctsdisplay bigtriangledown {}
\ctsdisplay bigtriangleup {}
\ctsdisplay ast {}
\ctsdisplay star {}
\ctsdisplay times {}
\ctsdisplay div {}
\ctsdisplay setminus {}
\ctsdisplay wr {}
\egroup
\explain
These commands produce the symbols for various binary operations.
Binary operations are one of \TeX's \minref{class}es of math symbols.
\TeX\ puts different amounts of space around different classes of math
symbols.  When \TeX\ needs to break a line of text within a math
formula, \minrefs{line break} it will consider placing the break
after a binary operation---but only if
the operation is at the outermost level of
the formula, i.e., not enclosed in~a~group.

In addition to these commands, \TeX\ also treats `|+|' and `|-|'
as binary operations. It considers `|/|' to be an ordinary symbol,
despite the fact that mathematically it is a binary operation,
because it looks better with less space around it.

\example
$$z = x \div y \quad \hbox{if and only if} \quad
z \times y = x \;\hbox{and}\; y \neq 0$$
|
\dproduces
$$z = x \div y \quad \hbox{if and only if} \quad
z \times y = x \;\hbox{and}\; y \neq 0$$
\endexample
\enddesc

\begindesc
\ctspecial * \ctsxrdef{@star}
\explain
The |\*| command indicates a discretionary multiplication symbol
($\times$), which is a binary operation.  This multiplication symbol
behaves like a discretionary hyphen when it appears in a formula within
text\minrefs{text math}.  That is, \TeX\ will typeset the |\times|
symbol \emph{only} if the formula needs to be broken at that point.
There's no point in using |\*| in a displayed formula \minrefs{display
math} since \TeX\ never breaks displayed formulas on its own.

\example
Let $c = a\*b$. In the case that $c=0$ or $c=1$, let
$\Delta$ be $(\hbox{the smallest $q$})\*(\hbox{the
largest $q$})$ in the set of approximate $\tau$-values.
|
\produces
Let $c = a\*b$. In the case that $c=0$ or $c=1$, let
$\Delta$ be $(\hbox{the smallest $q$})\*(\hbox{the
largest $q$})$ in the set of approximate $\tau$-values.

\eix^^{operations}
\endexample
\enddesc

%==========================================================================
\subsection {Relations}

\begindesc
\xrdef {relations}
\bix^^{relations}
\dothreecolumns 39
\easy\ctsdisplay asymp {}
\ctsdisplay cong {}
\ctsdisplay dashv {}
\ctsdisplay vdash {}
\ctsdisplay perp {}
\ctsdisplay mid {}
\ctsdisplay parallel {}
\ctsdisplay doteq {}
\ctsdisplay equiv {}
\ctsdisplay ge {}
\ctsdisplay geq {}
\ctsdisplay le {}
\ctsdisplay leq {}
\ctsdisplay gg {}
\ctsdisplay ll {}
\ctsdisplay models {}
\ctsdisplay ne {}
\ctsdisplay neq {}
\ctsdisplay notin {}
\ctsdisplay in {}
\ctsdisplay ni {}
\ctsdisplay owns {}
\ctsdisplay prec {}
\ctsdisplay preceq {}
\ctsdisplay succ {}
\ctsdisplay succeq {}
\ctsdisplay bowtie {}
\ctsdisplay propto {}
\ctsdisplay approx {}
\ctsdisplay sim {}
\ctsdisplay simeq {}
\ctsdisplay frown {}
\ctsdisplay smile {}
\ctsdisplay subset {}
\ctsdisplay subseteq {}
\ctsdisplay supset {}
\ctsdisplay supseteq {}
\ctsdisplay sqsubseteq {}
\ctsdisplay sqsupseteq {}
\egroup
\explain
These commands produce the symbols for various relations.
Relations are one of \TeX's \minref{class}es of math symbols.
\TeX\ puts different amounts of space
around different \minref{class}es of math symbols.
When \TeX\ needs to break a line of text
within a math formula, \minrefs{line break} it will consider
placing the break after a relation---but only if
the relation is at the outermost level of the formula,
i.e., not enclosed in a group.

In addition to the commands listed here, \TeX\ treats  `^|=|' and the
``arrow'' commands (\xref{arrows}) as relations.

Certain relations have more than one command that you can use
to produce them:
\ulist \compact
\li `$\ge$' (|\ge| and |\geq|).
\li `$\le$' (|\le| and |\leq|).
\li `$\ne$' (|\ne|, |\neq|, and |\not=|).
\li `$\ni$' (|\ni| and |\owns|).
\endulist

\xrdef{\not}
You can produce negated relations by prefixing them with |\not|, as follows:

\nobreak
\threecolumns 21
\basicdisplay {$\not\asymp$}{\\not\\asymp}\ctsidxref{asymp}
\basicdisplay {$\not\cong$}{\\not\\cong}\ctsidxref{cong}
\basicdisplay {$\not\equiv$}{\\not\\equiv}\ctsidxref{equiv}
\basicdisplay {$\not=$}{\\not=}\ttidxref{=}
\basicdisplay {$\not\ge$}{\\not\\ge}\ctsidxref{ge}
\basicdisplay {$\not\geq$}{\\not\\geq}\ctsidxref{geq}
\basicdisplay {$\not\le$}{\\not\\le}\ctsidxref{le}
\basicdisplay {$\not\leq$}{\\not\\leq}\ctsidxref{leq}
\basicdisplay {$\not\prec$}{\\not\\prec}\ctsidxref{prec}
\basicdisplay {$\not\preceq$}{\\not\\preceq}\ctsidxref{preceq}
\basicdisplay {$\not\succ$}{\\not\\succ}\ctsidxref{succ}
\basicdisplay {$\not\succeq$}{\\not\\succeq}\ctsidxref{succeq}
\basicdisplay {$\not\approx$}{\\not\\approx}\ctsidxref{approx}
\basicdisplay {$\not\sim$}{\\not\\sim}\ctsidxref{sim}
\basicdisplay {$\not\simeq$}{\\not\\simeq}\ctsidxref{simeq}
\basicdisplay {$\not\subset$}{\\not\\subset}\ctsidxref{subset}
\basicdisplay {$\not\subseteq$}{\\not\\subseteq}\ctsidxref{subseteq}
\basicdisplay {$\not\supset$}{\\not\\supset}\ctsidxref{supset}
\basicdisplay {$\not\supseteq$}{\\not\\supseteq}\ctsidxref{supseteq}
\basicdisplay {$\not\sqsubseteq$}{\\not\\sqsubseteq}%
   \ctsidxref{sqsubseteq}
\basicdisplay {$\not\sqsupseteq$}{\\not\\sqsupseteq}%
   \ctsidxref{sqsupseteq}
\egroup

\example
We can show that $AB \perp AC$, and that
$\triangle ABF \not\sim \triangle ACF$.
|
\produces
We can show that $AB \perp AC$, and that
$\triangle ABF \not\sim \triangle ACF$.

\eix^^{relations}
\endexample
\enddesc

%==========================================================================
\subsection {Left and right delimiters}

\begindesc
\bix^^{delimiters}
%
\dothreecolumns 12
\easy\ctsdisplay lbrace {}
\ctsydisplay { @lbrace {}
\ctsdisplay rbrace {}
\ctsydisplay } @rbrace {}
\ctsdisplay lbrack {}
\ctsdisplay rbrack {}
\ctsdisplay langle {}
\ctsdisplay rangle {}
\ctsdisplay lceil {}
\ctsdisplay rceil {}
\ctsdisplay lfloor {}
\ctsdisplay rfloor {}
\egroup
\explain
These commands produce left and right \minref{delimiter}s.
Mathematicians use delimiters to indicate the boundaries between parts
of a formula.  Left delimiters are also called ``^{opening}s'', and
right delimiters are also called ``^{closing}s''.  Openings and closings
are two of \TeX's \minref{class}es of math symbols.  \TeX\ puts
different amounts of space around different \minref{class}es of math
symbols. You might expect the space that \TeX\ puts around openings and
closings to be symmetrical, but in fact it isn't.

Some left and right delimiters have more than one command that you can
use to produce them:

\ulist\compact
\li `$\{$' (|\lbrace| and |\{|)
\li `$\}$' (|\rbrace| and |\}|)
\li `$[$' (|\lbrack| and `|[|')
\li `$]$' (|\rbrack| and `|]|')
\endulist
\noindent You can also use the left and right bracket characters
(in either form) outside of math mode.

In addition to these commands, \TeX\ treats `|(|' as a left
delimiter and `|)|' as a right delimiter.

You can have \TeX\
choose the size for a delimiter by using |\left| and |\right| (\xref\left).
Alternatively,
you can get a delimiter of a specific size by using one of the |\big|$x$
commands (see |\big| et al., \xref{\big}).

\example
The set $\{\,x \mid x>0\,\}$ is empty.
|
\produces
The set $\{\,x \mid x>0\,\}$ is empty.

\eix^^{delimiters}
\endexample
\enddesc

%==========================================================================
\subsection {Arrows}

\begindesc
\bix^^{arrows}
\xrdef{arrows}
%
{\symbolspace=24pt \makecolumns 34/2:
\easy%
\ctsdisplay leftarrow {}
\ctsdisplay gets {}
\ctsdisplay Leftarrow {}
\ctsdisplay rightarrow {}
\ctsdisplay to {}
\ctsdisplay Rightarrow {}
\ctsdisplay leftrightarrow {}
\ctsdisplay Leftrightarrow {}
\ctsdisplay longleftarrow {}
\ctsdisplay Longleftarrow {}
\ctsdisplay longrightarrow {}
\ctsdisplay Longrightarrow {}
\ctsdisplay longleftrightarrow {}
\ctsdisplay Longleftrightarrow {}
\basicdisplay {$\Longleftrightarrow$}{\\iff}\pix\ctsidxref{iff}\xrdef{\iff}
\ctsdisplay hookleftarrow {}
\ctsdisplay hookrightarrow {}
\ctsdisplay leftharpoondown {}
\ctsdisplay rightharpoondown {}
\ctsdisplay leftharpoonup {}
\ctsdisplay rightharpoonup {}
\ctsdisplay rightleftharpoons {}
\ctsdisplay mapsto {}
\ctsdisplay longmapsto {}
\ctsdisplay downarrow {}
\ctsdisplay Downarrow {}
\ctsdisplay uparrow {}
\ctsdisplay Uparrow {}
\ctsdisplay updownarrow {}
\ctsdisplay Updownarrow {}
\ctsdisplay nearrow {}
\ctsdisplay searrow {}
\ctsdisplay nwarrow {}
\ctsdisplay swarrow {}
}
\explain
These commands provide arrows of different kinds.  They
are classified as relations (\xref{relations}).
The vertical arrows in the list are also \minref{delimiter}s, so you can make
them larger by using |\big| et al.\ (\xref \big).

The command |\iff| differs from |\Longleftrightarrow| in that
it produces extra space to the left and right of the arrow.

You can place symbols or other legends on top of a left or right arrow
with |\buildrel| (\xref \buildrel).

\example
$$f(x)\mapsto f(y) \iff x \mapsto y$$
|
\dproduces
$$f(x)\mapsto f(y) \iff x \mapsto y$$

\eix^^{arrows}
\endexample
\enddesc

%==========================================================================
\subsection {Named mathematical functions}

\begindesc
\xrdef{namedfns}
\bix^^{functions, names of}
{\symbolspace = 36pt
\threecolumns 32
\easy\ctsdisplay cos {}
\ctsdisplay sin {}
\ctsdisplay tan {}
\ctsdisplay cot {}
\ctsdisplay csc {}
\ctsdisplay sec {}
\ctsdisplay arccos {}
\ctsdisplay arcsin {}
\ctsdisplay arctan {}
\ctsdisplay cosh {}
\ctsdisplay coth {}
\ctsdisplay sinh {}
\ctsdisplay tanh {}
\ctsdisplay det {}
\ctsdisplay dim {}
\ctsdisplay exp {}
\ctsdisplay ln {}
\ctsdisplay log {}
\ctsdisplay lg {}
\ctsdisplay arg {}
\ctsdisplay deg {}
\ctsdisplay gcd {}
\ctsdisplay hom {}
\ctsdisplay ker {}
\ctsdisplay inf {}
\ctsdisplay sup {}
\ctsdisplay lim {}
\ctsdisplay liminf {}
\ctsdisplay limsup {}
\ctsdisplay max {}
\ctsdisplay min {}
\ctsdisplay Pr {}
\egroup}
\explain
These commands set the names of various mathematical functions
in roman type, as is customary.
If you apply a superscript or subscript to one of these commands,
\TeX\ will in most cases typeset it in the usual place.
In display style, \TeX\ typesets superscripts and subscripts 
on |\det|, |\gcd|, |\inf|, |\lim|, |\liminf|,
|\limsup|, |\max|, |\min|, |\Pr|, and |\sup|
as though they were limits,
i.e., directly above or directly below the function name.

\example
$\cos^2 x + \sin^2 x = 1\qquad\max_{a \in A} g(a) = 1$
|
\produces
$\cos^2 x + \sin^2 x = 1\qquad\max_{a \in A} g(a) = 1$
\endexample\enddesc

\begindesc
\cts bmod {}
\explain
This command produces a binary operation for indicating a ^{modulus}
within a formula.
\example
$$x = (y+1) \bmod 2$$
|
\dproduces
$$x = (y+1) \bmod 2$$
\endexample
\enddesc

\begindesc
\cts pmod {}
\explain
This command provides a notation for indicating a ^{modulus} in parentheses
at the end of a formula.
\example
$$x \equiv y+1 \pmod 2$$
|
\dproduces
$$x \equiv y+1 \pmod 2$$

\eix^^{functions, names of}
\endexample
\enddesc

%==========================================================================
\subsection {Large operators}

\begindesc 
\bix^^{operators//large}
\threecolumns 15
\easy\ctsdoubledisplay bigcap {}
\ctsdoubledisplay bigcup {}
\ctsdoubledisplay bigodot {}
\ctsdoubledisplay bigoplus {}
\ctsdoubledisplay bigotimes {}
\ctsdoubledisplay bigsqcup {}
\ctsdoubledisplay biguplus {}
\ctsdoubledisplay bigvee {}
\ctsdoubledisplay bigwedge {}
\ctsdoubledisplay coprod {}
{\symbolspace = 42pt\basicdisplay {\hskip 26pt$\smallint$}%
   {\\smallint}\ddstrut}%
   \xrdef{\smallint} \pix\ctsidxref{smallint}
\ctsdoubledisplay int {}
\ctsdoubledisplay oint {}
\ctsdoubledisplay prod {}
\ctsdoubledisplay sum {}
}
\explain
These commands produce various large operator symbols.  
\TeX\ produces the smaller size when it's in ^{text style}
\minrefs{math mode} and the larger size when it's in ^{display style}.
Operators are one of \TeX's \minref{class}es of math symbols.
\TeX\ puts different amounts of space
around different classes of math symbols.

The large operator symbols with `|big|' in their names are different
from the corresponding binary operations (see \xref{binops}) such as
|\cap| ($\cap$) since they usually appear at the beginning
of a formula.  \TeX\ uses different spacing for a large operator
than it does for a binary operation.

Don't confuse `$\sum$' (|\sum|) with `$\Sigma$'^^|\Sigma| (|\Sigma|)
or confuse `$\prod$' (|\prod|) with `$\Pi$' ^^|\Pi| (|\Pi|).
|\Sigma| and |\Pi| produce capital Greek letters, which are smaller and
have a different appearance.

A large operator can have ^{limits}.  The lower limit is specified as a
subscript and the upper limit as a superscript.

\example
$$\bigcap_{k=1}^r (a_k \cup b_k)$$
|
\dproduces
$$\bigcap_{k=1}^r (a_k \cup b_k)$$
\endexample
\interexampleskip
\example
$${\int_0^\pi \sin^2 ax\,dx} = {\pi \over 2}$$
|
\dproduces
$${\int_0^\pi \sin^2 ax\,dx} = {\pi \over 2}$$
\endexample
\enddesc

\begindesc
\cts limits {}
\explain
When it's in text style, \TeX\ normally places limits after a large operator.
This command tells \TeX\ to place
limits above and below a large operator rather than after it.

If you specify more than one of |\limits|, |\nolimits|, 
and |\display!-limits|, the last command rules.

\example
Suppose that $\bigcap\limits_{i=1}^Nq_i$ contains at least 
two elements.
|
\produces
Suppose that $\bigcap\limits_{i=1}^Nq_i$ contains at least 
two elements.
\endexample
\enddesc

\begindesc
\cts nolimits {}
\explain
When it's in display
style, \TeX\ normally places limits above and below a large operator.
(The |\int| operator is an exception---\TeX\
places limits for |\int| after the operator in all cases.)
^^|\int//limits after|
This command tells \TeX\ to place
limits after a large operator rather than above and below it.

If you specify more than one of |\limits|, |\nolimits|, 
and |\display!-limits|, the last command rules.

\example
$$\bigcap\nolimits_{i=1}^Nq_i$$
|
\dproduces
$$\bigcap\nolimits_{i=1}^Nq_i$$
\endexample
\enddesc

\begindesc
\cts displaylimits {}
\explain
This command tells \TeX\ to 
follow its normal rules for placement of limits:
\olist\compact
\li Limits on ^|\int| are placed after the operator.
\li Limits on other large operators are placed after the
operator in text style.
\li Limits on other large operators are placed above and below the operator
in display style.
\endolist
It's usually simpler to use |\limits| or |\nolimits|
to produce a specific effect, but |\display!-limits| is sometimes
useful in \minref{macro} definitions.

Note that \plainTeX\ defines ^|\int| as a macro that sets |\nolimits|,
so |\int\displaylimits| in text style restores the |\limits|
convention.  

If you specify more than one of |\limits|, |\nolimits|, 
and |\display!-limits|, the last command rules.

\example
$$a(\lambda) = {1 \over {2\pi}} \int\displaylimits
_{-\infty}^{+\infty} f(x)e^{-i\lambda x}\,dx$$
|
\dproduces
$$a(\lambda) = {1 \over {2\pi}} \int\displaylimits
_{-\infty}^{+\infty} f(x)e^{-i\lambda x}\,dx$$

\eix^^{operators//large}
\endexample
\enddesc


%==========================================================================
\subsection {Punctuation}

\begindesc
\bix^^{punctuation in math formulas}
\cts cdotp {}
\cts ldotp {}
\explain
These two commands respectively produce a centered dot and a dot
positioned on the \minref{baseline}.  They are valid only in math
\minref{mode}.  \TeX\ treats them as punctuation, putting no extra space in
front of them but a little extra space after them.
In contrast, \TeX\ puts an equal amount of space on both sides
of a centered dot generated by the ^|\cdot| command (\xref \cdot).
\example
$x \cdotp y \quad x \ldotp y \quad x \cdot y$
|
\produces
$x \cdotp y \quad x \ldotp y \quad x \cdot y$
\endexample
\enddesc

\begindesc
\cts colon {}
\explain
This command produces a colon punctation symbol.
It is valid only in math mode.
The difference between |\colon| and the colon character (|:|) is that
`|:|' is an operator, so \TeX\ puts extra space to the left of it whereas
it doesn't put extra space to the left of |\colon|.
\example
$f \colon t \quad f : t$
|
\produces
$f \colon t \quad f : t$

\eix^^{punctuation in math formulas}
\endexample
\enddesc


%==========================================================================
\secondprinting{\vfill\eject\null\vglue-30pt\vskip0pt}
\section {Superscripts and subscripts}

\begindesc
\margin{Two groups of commands have been combined here.}
\bix^^{superscripts}
\bix^^{subscripts}
\secondprinting{\vglue-12pt}
\makecolumns 4/2:
\easy\ctsact _ \xrdef{@underscore} {\<argument>}
\cts sb {\<argument>}
\ctsact ^ \xrdef{@hat} {\<argument>}
\cts sp {\<argument>}
\secondprinting{\vglue-4pt}
\explain
The commands in each column are equivalent.  The commands in the first
column typeset \<argument> as a subscript, and those in the second
column typeset \<argument> as a superscript.  The |\sb| and |\sp|
commands are mainly useful if you're working on a terminal that lacks an
underscore or caret, or if you've redefined `|_|' or `|^|' and need
access to the original definition.  These commands are also used for
setting lower and upper limits on summations and integrals.  ^^{lower
limits} ^^{upper limits}

If a subscript or superscript is not a single \minref{token}, you need
to enclose it in a \minref{group}.  \TeX\ does not prioritize subscripts
or superscripts, so it will reject formulas such as |a_i_j|, |a^i^j|, or
|a^i_j|.

Subscripts and superscripts are normally typeset in ^{script style}, or
in ^{scriptscript style} if they are second-order, e.g., a subscript on
a subscript or a superscript on a a subscript.  You can set \emph{any}
text in a math formula in a script or scriptscript \minref{style} with
the ^|\scriptstyle| and ^|\scriptscriptstyle| commands (\xref
\scriptscriptstyle).

You can apply a subscript or superscript to any of the commands that
produce named mathematical functions in roman type (see
\xref{namedfns}).  In certain cases (again, see \xref{namedfns}) the
subscript or superscript appears directly above or under the function
name as shown in the examples of ^|\lim| and ^|\det| below.

\example
$x_3 \quad t_{\max} \quad a_{i_k} \quad \sum_{i=1}^n{q_i}
   \quad x^3\quad e^{t \cos\theta}\quad r^{x^2}\quad 
   \int_0^\infty{f(x)\,dx}$ 
$$\lim_{x\leftarrow0}f(x)\qquad\det^{z\in A}\qquad\sin^2t$$
|
\produces
\secondprinting{\divide\abovedisplayskip by 2}
$x_3 \quad t_{\max} \quad a_{i_k} \quad \sum_{i=1}^n{q_i}
   \quad x^3\quad e^{t \cos\theta}\quad r^{x^2}\quad 
   \int_0^\infty{f(x)\,dx}$ 
$$\lim_{x \leftarrow 0} f(x)\qquad
   \det^{z \in A}\qquad \sin^2 t$$

\eix^^{superscripts}
\eix^^{subscripts}
\endexample
\enddesc

\secondprinting{\vfill\eject}

%==========================================================================
\subsection {Selecting and using styles}

\begindesc
\bix^^{styles}
\cts textstyle {}
\cts scriptstyle {}
\cts scriptscriptstyle {}
\cts displaystyle {}
\explain
^^{text style} ^^{script style} ^^{scriptscript style} ^^{display style}
These commands override the normal \minref{style} and hence the
font that \TeX\ uses in setting a formula.  Like
font-setting commands such as |\it|, they are in
effect until the end of the group containing them.
They are useful when \TeX's choice of style is inappropriate for the formula
you happen to be setting.
\example
$t+{\scriptstyle t + {\scriptscriptstyle t}}$
|
\produces
$t+{\scriptstyle t + {\scriptscriptstyle t}}$
\endexample
\enddesc


\begindesc
\cts mathchoice {%
   \rqbraces{\<math$_1$>}
   \rqbraces{\<math$_2$>}
   \rqbraces{\<math$_3$>}
   \rqbraces{\<math$_4$>}}
\explain
This command tells \TeX\ to typeset one of the subformulas
\<math$_1$>, \<math$_2$>, \<math$_3$>, or \<math$_4$>, making its choice
according to the current \minref{style}.
That is, if \TeX\ is in 
display style it sets the |\mathchoice| as \<math$_1$>; in text style it sets
it as \<math$_2$>; in script style it sets it as \<math$_3$>;
and in scriptscript style it sets it as \<math$_4$>.
\example
\def\mc{{\mathchoice{D}{T}{S}{SS}}}
The strange formula $\mc_{\mc_\mc}$ illustrates a 
mathchoice.
|
\produces
\def\mc{{\mathchoice{D}{T}{S}{SS}}}
The strange formula $\mc_{\mc_\mc}$ illustrates a 
mathchoice.
\endexample
\enddesc

\begindesc
\cts mathpalette {\<argument$_1$> \<argument$_2$>}
\explain
^^{math symbols}
This command provides a convenient way of 
producing a math construct that works in all four \minref{style}s.
To use it, you'll normally need to define an additional macro,
which we'll call |\build|.
The call on |\math!-palette| should then have the form
|\mathpalette|\allowbreak|\build|\<argument>.

|\build| tests what style \TeX\ is in and typesets \<argu\-ment> accordingly.
It should be defined to have two parameters.
When you call |\math!-palette|, it will in turn call |\build|,
with |#1| being a
command that selects the current style and |#2| being \<argument>.
Thus, within the definition of |\build| you can typeset something
in the current style by preceding it with `|#1|'.
See \knuth{page~360} for examples of using |\mathpalette|
and \knuth{page~151} for a further explanation of how it works. 

\eix^^{styles}
\enddesc

%==========================================================================
\section {Compound symbols}

%==========================================================================
\subsection {Math accents}

\begindesc
\xrdef{mathaccent}
^^{accents}
^^{math//accents}
%
\easy\ctsx acute {^{acute accent} as in $\acute x$}
\ctsx b {^{bar-under accent} as in $\b x$}
\ctsx bar {^{bar accent} as in $\bar x$}
\ctsx breve {^{breve accent} as in $\breve x$}
\ctsx check {^{check accent} as in $\check x$}
\ctsx ddot {^{double dot accent} as in $\ddot x$}
\ctsx dot {^{dot accent} as in $\dot x$}
\ctsx grave {^{grave accent} as in $\grave x$}
\ctsx hat {^{hat accent} as in $\hat x$}
\ctsx widehat {^{wide hat accent} as in $\widehat {x+y}$}
\ctsx tilde {^{tilde accent} as in $\tilde x$}
\ctsx widetilde {^{wide tilde accent} as in $\widetilde {z+a}$}
\ctsx vec {^{vector accent} as in $\vec x$}
\explain
These commands produce accent marks in math formulas.  You'll ordinarily
need to leave a space after any one of them.
A wide accent can be applied to a multicharacter subformula;
\TeX\ will center the accent over the subformula.
The other accents are usefully applied only to a single character.

\example
$\dot t^n \qquad \widetilde{v_1 + v_2}$
|
\produces
$\dot t^n \qquad \widetilde{v_1 + v_2}$
\endexample

\begindesc
\cts mathaccent {\<mathcode>}
\explain
This command tells \TeX\ to typeset a math accent
whose family and character code are given by \<mathcode>.  (\TeX\ ignores
the class of the \minref{mathcode}.)
See \knuth{Appendix~G} for the details of how \TeX\ positions such an accent.
The usual way to use |\mathaccent| is to put it in a macro definition
that gives a name to a math accent.
\example
\def\acute{\mathaccent "7013}
|
\endexample
\enddesc

\see ``Accents'' (\xref {accents}).
\enddesc

%==========================================================================
\subsection {Fractions and other stacking operations}

\begindesc
\bix^^{fractions}
\bix^^{stacking subformulas}
\easy\cts over {}
\cts atop {}
\cts above {\<dimen>}
\cts choose {}
\cts brace {}
\cts brack {}
\explain
{\def\fri{\<formula$_1$>}%
\def\frii{\<formula$_2$>}%
These commands stack one subformula on top of another one.  We will explain how
|\over| works, and then relate the other commands to it.

|\over| is the command that you'd normally use to produce a fraction.
^^{fractions//produced by \b\tt\\over\e} 
If you write something in one of the following forms:
\csdisplay
$$!fri\over!frii$$
$!fri\over!frii$
\left!<delim>!fri\over!frii\right!<delim>
{!fri\over!frii}
|
you'll get a fraction with numerator \fri\  and denominator \<for\-mu\-la$_2$>,
i.e., \fri\ over \frii.
In the first three of
these forms the |\over| is not implicitly contained in a group;
it absorbs
everything to its left and to its right until it comes to a boundary,
namely, the beginning or end of a group.

You can't use |\over| or any of the other commands in this group
more than once in a formula.
Thus a formula such as:
\csdisplay
$$a \over n \choose k$$
|
isn't legal.
This is not a severe restriction because
you can always enclose one of the commands in braces.
The reason for the restriction is that if you had two of these commands
in a single formula, \TeX\ wouldn't know how to group them.

The other commands are similar to |\over|, with the following exceptions:
\ulist\compact
\li |\atop| leaves out the fraction bar. 
\li |\above| provides a fraction bar of thickness \<dimen>.
\li |\choose|
leaves out the fraction bar and encloses the construct in parentheses.
(It's called ``choose'' because $n \choose k$ is the notation for the
number of ways of choosing $k$ things out of $n$ things.)
\li |\brace| leaves out the fraction bar and encloses the construct in braces.
\li |\brack|
leaves out the fraction bar and encloses the construct in brackets.
\endulist
}%
\example
$${n+1 \over n-1}      \qquad {n+1 \atop n-1}   \qquad
  {n+1 \above 2pt n-1} \qquad {n+1 \choose n-1} \qquad
  {n+1 \brace n-1}     \qquad {n+1 \brack n-1}$$
|
\dproduces
$${n+1 \over n-1}      \qquad {n+1 \atop n-1}   \qquad
  {n+1 \above 2pt n-1} \qquad {n+1 \choose n-1} \qquad
  {n+1 \brace n-1}     \qquad {n+1 \brack n-1}$$
\endexample
\enddesc

\begindesc
\cts overwithdelims {\<delim$_1$> \<delim$_2$>}
\cts atopwithdelims {\<delim$_1$> \<delim$_2$>}
\cts abovewithdelims {\<delim$_1$> \<delim$_2$> \<dimen>}
\explain
Each of these commands stacks one subformula on top of another one and
surrounds the entire construct with \<delim$_1$> on the left and
\<delim$_2$> on the right.  These commands follow the same rules as
|\over|, |\atop|, and |\above|. The \<dimen> in |\abovewithdelims|
specifies the thickness of the fraction bar.
\example
$${m \overwithdelims () n}\qquad
  {m \atopwithdelims !|!| n}\qquad
  {m \abovewithdelims \{\} 2pt n}$$
|
\dproduces
$${m \overwithdelims () n}\qquad
  {m \atopwithdelims || n}\qquad
  {m \abovewithdelims \{\} 2pt n}$$
\endexample
\enddesc

\begindesc
\cts cases {}
\explain
^^{combinations, notation for}
This command produces the mathematical form that denotes a choice among
several cases.
Each case has two parts, separated by `|&|'.
\TeX\ treats the first part as a math formula
and the second part as ordinary text.  Each
case must be followed by |\cr|.

\example
$$g(x,y) = \cases{f(x,y),&if $x<y$\cr
                  f(y,x),&if $x>y$\cr
                  0,&otherwise.\cr}$$
|
\dproduces
$$g(x,y) = \cases{f(x,y),&if $x<y$\cr
                  f(y,x),&if $x>y$\cr
                  0,&otherwise.\cr}$$
\endexample
\enddesc

\begindesc
\cts underbrace {\<argument>}
\cts overbrace {\<argument>}
\cts underline {\<argument>}
\cts overline {\<argument>}
\cts overleftarrow {\<argument>}
\cts overrightarrow {\<argument>}
\explain
These commands place extensible ^{braces}, lines, or ^{arrows}
over or under the subformula given by \<argument>.
\TeX\ will make these constructs as wide as they need to be for
the context.
When \TeX\ produces the extended braces, lines, or arrows, it considers
only the dimensions of the \minref{box} containing \<argument>.
If you use more than one of these commands in a single formula, the
braces, lines, or arrows they produce
may not line up properly with each other.
You can use the |\mathstrut| command (\xref \mathstrut)
to overcome this difficulty.
\example
$$\displaylines{
\underbrace{x \circ y}\qquad \overbrace{x \circ y}\qquad
\underline{x \circ y}\qquad \overline{x \circ y}\qquad
\overleftarrow{x \circ y}\qquad
\overrightarrow{x \circ y}\cr
{\overline r + \overline t}\qquad
{\overline {r \mathstrut} + \overline {t \mathstrut}}\cr
}$$
|
\dproduces
$$\displaylines{
\underbrace{x \circ y}\qquad \overbrace{x \circ y}\qquad
\underline{x \circ y}\qquad \overline{x \circ y}\qquad
\overleftarrow{x \circ y}\qquad
\overrightarrow{x \circ y}\cr
{\overline r + \overline t}\qquad
{\overline {r \mathstrut} + \overline {t \mathstrut}}\cr
}$$
\endexample
\enddesc

\begindesc\secondprinting{\vglue-.5\baselineskip\vskip0pt}
\cts buildrel {\<formula> {\bt \\over} \<relation>}
\explain
^^{relations//putting formulas above}
This command produces a \minref{box} in which \<formula>
is placed on top of \<relation>. \TeX\ treats the result as a relation
for spacing purposes \seeconcept{class}.
\example
$\buildrel \rm def \over \equiv$
|
\produces
$\buildrel \rm def \over \equiv$

\eix^^{fractions}
\eix^^{stacking subformulas}
\endexample
\enddesc

\secondprinting{\vfill\eject}


%==========================================================================
\subsection {Dots}

\begindesc
\bix^^{dots}
\easy\cts ldots {}
\cts cdots {}
\explain
These commands produce three ^{dots} in a row.  For |\ldots|, the dots
are on the baseline; for |\cdots|, the dots are centered with respect to
the axis (see the explanation of |\vcenter|, \xref\vcenter).

\example
$t_1 + t_2 + \cdots + t_n \qquad x_1,x_2, \ldots\,, x_r$
|
\produces
$t_1 + t_2 + \cdots + t_n \qquad x_1,x_2, \ldots\,, x_r$
\endexample
\enddesc

\begindesc
\easy\cts vdots {}
\explain
This command produces three vertical dots.
\example
$$\eqalign{f(\alpha_1)& = f(\beta_1)\cr
   \noalign{\kern -4pt}%
   &\phantom{a}\vdots\cr % moves the dots right a bit
   f(\alpha_k)& = f(\beta_k)\cr}$$
|
\dproduces
$$\eqalign{f(\alpha_1)& = f(\beta_1)\cr
   \noalign{\kern -4pt}%
   &\phantom{a}\vdots\cr
   f(\alpha_k)& = f(\beta_k)\cr}$$
\endexample
\enddesc

\begindesc
\cts ddots {}
\explain
This command produces three dots on a diagonal.
Its most common use is to indicate repetition along the diagonal of a matrix.
\example
$$\pmatrix{0&\ldots&0\cr
           \vdots&\ddots&\vdots\cr
           0&\ldots&0\cr}$$
|
\dproduces
$$\pmatrix{0&\ldots&0\cr
           \vdots&\ddots&\vdots\cr
           0&\ldots&0\cr}$$

\eix^^{dots}
\endexample
\enddesc

\see |\dots| \ctsref\dots.

%==========================================================================
\subsection {Delimiters}

\begindesc
\bix^^{delimiters}
%
\cts lgroup {}
\cts rgroup {}
\explain
These commands produce large left and right ^{parentheses}
that are defined as opening and closing \minref{delimiter}s.
The smallest available size for these delimiters is |\Big|.
If you use smaller sizes, you'll get weird characters.
\example
$$\lgroup\dots\rgroup\qquad\bigg\lgroup\dots\bigg\rgroup$$
|
\dproduces
$$\lgroup\dots\rgroup\qquad\bigg\lgroup\dots\bigg\rgroup$$
\endexample
\enddesc

\begindesc
\margin{{\tt\\vert} and {\tt\\Vert} were explained elsewhere.}
\easy\cts left {}
\cts right {}
\explain
These commands must be used together in the pattern:
\display
{{\bt \\left} \<delim$_1$> \<subformula> {\bt \\right} \<delim$_2$>}
This construct causes \TeX\ to produce \<subformula>, 
enclosed in the \minref{delimiter}s \<delim$_1$> and \<delim$_2$>.
The vertical size of the delimiter is adjusted to fit the 
vertical size (height plus depth) of \<subformula>.  \<delim$_1$> and
\<delim$_2$> need not correspond.
For instance, you could use `|]|' as a left delimiter
and `|(|' as a right delimiter in a single use of |\left|
and |\right|.

|\left| and |\right| have the important property that they define a
group, i.e., they act like left and right braces.  This grouping
property is particularly useful when you put ^|\over| (\xref{\over}) or
a related command between |\left| and |\right|, since you don't need to
put braces around the fraction constructed by |\over|.

If you want a left delimiter but not a right delimiter, you can use `|.|' in
place of the delimiter you don't want and it will turn into empty space
(of width ^|\nulldelimiterspace|).
\example
$$\left\Vert\matrix{a&b\cr c&d\cr}\right\Vert
  \qquad \left\uparrow q_1\atop q_2\right.$$
|
\dproduces
$$\left\Vert\matrix{a&b\cr c&d\cr}\right\Vert
  \qquad \left\uparrow q_1\atop q_2\right.$$
\endexample
\enddesc

\begindesc
\cts delimiter {\<number>}
\explain
This command produces a delimiter whose characteristics are given by
\<number>.  \<number> is normally written in hexadecimal notation.
You can use the |\delimiter| command instead of a character in any context
where \TeX\ expects a delimiter (although the command is rarely used
outside of a macro definition).
Suppose that \<number> is the hexadecimal number $cs_1s_2s_3
l_1l_2l_3$.  Then \TeX\ takes the delimiter to have 
\minref{class} $c$, small variant
$s_1s_2s_3$, and large variant $l_1l_2l_3$.  Here $s_1s_2s_3$ indicates
the math character found in position $s_2s_3$ of family $s_1$, and
similarly for $l_1l_2l_3$.  This is the same convention as the one
used for ^|\mathcode| (\xref\mathcode).
\example
\def\vert{\delimiter "026A30C} % As in plain TeX.
|
\endexample
\enddesc


\begindesc 
\margin{{\tt\\delcode} was explained in two places.  The
combined explanation is now in `General operations'.}
\cts delimiterfactor {\param{number}}
\cts delimitershortfall {\param{number}}
\explain
^^{delimiters//height of}
These parameters together tell \TeX\ how the height of a \minref{delimiter}
should be related to the vertical size of the subformula
with which the delimiter is associated.
|\delimiterfactor| gives the minimum
ratio of the delimiter size to the vertical size of the subformula, and
|\delimitershortfall| gives the maximum by which the height of the
delimiter will be reduced from that of the vertical size of the subformula.

Suppose that the \minref{box} containing the subformula
has height $h$ and depth $d$, and let $y=2\,\max(h,d)$.
Let the value of |\delimiterfactor| be $f$ and the value of
|\delimitershortfall| be $\delta$.
Then \TeX\ takes the minimum delimiter size to be at least $y \cdot
f/1000$ and at least $y-\delta$.  In particular, if |\delimiterfactor|
is exactly $1000$ then \TeX\ will try to make a delimiter at least as tall
as the formula to which it is attached.
See \knuth{page~152 and page~446 (Rule 19)}
for the exact details of how \TeX\ uses these parameters.
\PlainTeX\ sets |\delimiter!-factor| to $901$ and 
|\delimiter!-shortfall| to |5pt|.
\enddesc

\see |\delcode| (\xref\delcode), |\vert|, |\Vert|,
and |\backslash| (\xref\vert).
\eix^^{delimiters}

%==========================================================================
\subsection {Matrices}

\begindesc
\cts matrix
   {{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
\cts pmatrix
   {{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
\cts bordermatrix
   {{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
\explain
Each of these three commands produces a ^{matrix}.  
The elements of each row of the input matrix
are separated by `|&|' and each row in turn is ended
by |\cr|.
(This is the same form that is used for an
\minref{alignment}.)
The commands differ in the following ways:
\ulist\compact
\li |\matrix| produces a matrix without any surrounding or inserted
\minref{delimiter}s.
\li |\pmatrix| produces a matrix surrounded by parentheses.
\li |\bordermatrix| produces a matrix in which the first row and the first
column are treated as labels.  (The first element of the first row is
usually left blank.)  The rest of the matrix is enclosed in
parentheses.
\endulist
\TeX\ can make the parentheses for |\pmatrix| and |\bordermatrix| as large as
they need to be by inserting vertical extensions.  If you want a matrix
to be surrounded by delimiters other than parentheses, you should use
|\matrix| in conjunction with |\left| and |\right| (\xref \left).

\example
$$\displaylines{
   \matrix{t_{11}&t_{12}&t_{13}\cr
           t_{21}&t_{22}&t_{23}\cr
           t_{31}&t_{32}&t_{33}\cr}\qquad
\left\{\matrix{t_{11}&t_{12}&t_{13}\cr
           t_{21}&t_{22}&t_{23}\cr
           t_{31}&t_{32}&t_{33}\cr}\right\}\cr
\pmatrix{t_{11}&t_{12}&t_{13}\cr
           t_{21}&t_{22}&t_{23}\cr
           t_{31}&t_{32}&t_{33}\cr}\qquad
\bordermatrix{&c_1&c_2&c_3\cr
           r_1&t_{11}&t_{12}&t_{13}\cr
           r_2&t_{21}&t_{22}&t_{23}\cr
           r_3&t_{31}&t_{32}&t_{33}\cr}\cr}$$
|
\dproduces
$$\displaylines{
   \matrix{t_{11}&t_{12}&t_{13}\cr
   t_{21}&t_{22}&t_{23}\cr
   t_{31}&t_{32}&t_{33}\cr}\qquad
\left\{\matrix{t_{11}&t_{12}&t_{13}\cr
   t_{21}&t_{22}&t_{23}\cr
   t_{31}&t_{32}&t_{33}\cr}\right\}\cr
\pmatrix{t_{11}&t_{12}&t_{13}\cr
   t_{21}&t_{22}&t_{23}\cr
   t_{31}&t_{32}&t_{33}\cr}\qquad
\bordermatrix{&c_1&c_2&c_3\cr
   r_1&t_{11}&t_{12}&t_{13}\cr
   r_2&t_{21}&t_{22}&t_{23}\cr
   r_3&t_{31}&t_{32}&t_{33}\cr}\cr}$$
\endexample
\enddesc

%==========================================================================
\subsection {Roots and radicals}

\begindesc
\easy\cts sqrt {\<argument>}
\explain
This command produces the notation for the square root of \<argument>.
\example
$$x = {-b\pm\sqrt{b^2-4ac} \over 2a}$$
|
\dproduces
$$x = {-b\pm\sqrt{b^2-4ac} \over 2a}$$
\endexample
\enddesc

\begindesc
\easy\cts root {\<argument$_1$> {\bt \\of} \<argument$_2$>}
\explain
This command produces the notation for a root of \<argument$_2$>, where the
root is given by \<argument$_1$>.
\example
$\root \alpha \of {r \cos \theta}$
|
\produces
$\root \alpha \of {r \cos \theta}$
\endexample
\enddesc

\begindesc
\cts radical {\<number>}
\explain
This command produces a radical sign
whose characteristics are given by
\<number>.  It uses the same representation as the delimiter code
^^{delimiter codes}
in the ^|\delcode| command (\xref \delcode).

\example
\def\sqrt{\radical "270370} % as in plain TeX
|
\endexample
\enddesc

%==========================================================================
\section {Equation numbers}

\begindesc
\easy\cts eqno {}
\cts leqno {}
\explain
These commands attach an equation number to a displayed formula.
|\eqno| puts the equation number on the right and |\leqno| puts it on
the left.
The commands must be given at the end of the formula.
If you have a multiline display and you want to number more than one
of the lines, use the |\eq!-alignno| or |\leq!-alignno| command
(\xref \eqalignno).

These commands are valid only in display math mode.

\example
$$e^{i\theta} = \cos \theta + i \sin \theta\eqno{(11)}$$
|
\produces
$$e^{i\theta} = \cos \theta + i \sin \theta\eqno{(11)}$$
\endexample
\example
$$\cos^2 \theta + \sin^2 \theta = 1\leqno{(12)}$$
|
\produces
\abovedisplayskip = -\baselineskip
$$\cos^2 \theta + \sin^2 \theta = 1\leqno{(12)}$$
\endexample
\enddesc


%==========================================================================
\section {Multiline displays}

\begindesc
\bix^^{displays//multiline}
\cts displaylines
   {{\bt \rqbraces{\<line>\ths\\cr$\ldots$\<line>\ths\\cr}}}
\explain
This command produces a multiline math display in which each line is
centered independently of the other lines.
You can use the |\noalign| command (\xref \noalign) to change the amount
of space between two lines of a multiline display.

If you want to attach equation numbers to some or all of the equations
in a multiline math display, you should use |\eqalignno| or
|\leqalignno|.
\example
$$\displaylines{(x+a)^2 = x^2+2ax+a^2\cr
                (x+a)(x-a) = x^2-a^2\cr}$$
|
\dproduces\centereddisplays
$$\displaylines{
(x+a)^2 = x^2+2ax+a^2\cr
(x+a)(x-a) = x^2-a^2\cr
}$$
\endexample
\enddesc

\begindesc
\cts eqalign {}
   {{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
\cts eqalignno {}
   {{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
\cts leqalignno {}
   {{\bt \rqbraces{\<line> \\cr $\ldots$ \<line> \\cr}}}
\explain
^^{equation numbers}
These commands produce a multiline math display
in which certain corresponding parts of the lines are lined up vertically.
The |\eqalignno| and |\leqalignno| commands also let you
provide equation numbers for some or all of the lines.
|\eqalignno| puts the equation numbers on the right and
|\leqalignno| puts them on the left.

Each line in the display is ended by |\cr|.  Each of the parts to be aligned
(most often an equals sign) is preceded by
`|&|'.  An `|&|' also precedes each equation number, which comes at the
end of a line.
You can put more than one of these commands in a single display in order
to produce several groups of equations.  In this case, only the rightmost
or leftmost group can be produced by |\eqalignno| or |\leqalignno|.

You can use the |\noalign| command (\xref \noalign) to change the amount
of space between two lines of a multiline display.
\example
$$\left\{\eqalign{f_1(t) &= 2t\cr f_2(t) &= t^3\cr
         f_3(t) &= t^2-1\cr}\right\}
  \left\{\eqalign{g_1(t) &= t\cr g_2(t) &= 1}\right\}$$
|
\dproduces
$$\left\{\eqalign{f_1(t) &= 2t\cr f_2(t) &= t^3\cr
   f_3(t) &= t^2-1\cr}\right\}
\left\{\eqalign{g_1(t) &= t\cr g_2(t) &= 1}\right\}$$
\nextexample
$$\eqalignno{
\sigma^2&=E(x-\mu)^2&(12)\cr
   &={1 \over n}\sum_{i=0}^n (x_i - \mu)^2&\cr
   &=E(x^2)-\mu^2\cr}$$
|
\produces
\abovedisplayskip = -\baselineskip
$$\eqalignno{
\sigma^2&=E(x-\mu)^2&(12)\cr
   &={1 \over n}\sum_{i=0}^n (x_i - \mu)^2&\cr
   &=E(x^2)-\mu^2\cr}$$
\nextexample
$$\leqalignno{
\sigma^2&=E(x-\mu)^2&(6)\cr
   &=E(x^2)-\mu^2&(7)\cr}$$
|
\produces
\abovedisplayskip = -\baselineskip
$$\leqalignno{
\sigma^2&=E(x-\mu)^2&(6)\cr
   &=E(x^2)-\mu^2&(7)\cr}$$
\nextexample
$$\eqalignno{
  &(x+a)^2 = x^2+2ax+a^2&(19)\cr
  &(x+a)(x-a) = x^2-a^2\cr}$$
% same effect as \displaylines but with an equation number
|
\dproduces
$$\eqalignno{
&(x+a)^2 = x^2+2ax+a^2&(19)\cr
&(x+a)(x-a) = x^2-a^2\cr
}$$
% same effect as \displaylines but with an equation number

\eix^^{displays//multiline}
\endexample
\enddesc

%==========================================================================
\section {Fonts in math formulas}

\begindesc
^^{fonts}
\xrdef{mathfonts}
%
\easy\ctsx cal {use calligraphic uppercase font}
\ctsx mit {use math italic font}
\ctsx oldstyle {use old style digit font}
\explain
These commands cause \TeX\ to typeset the following text in the
specified font.  You can only use them in \minref{math mode}.
The |\mit| command is useful for producing slanted capital ^{Greek letters}.
You can also use the commands given in
\headcit{Selecting fonts}{selfont} to change fonts in math mode.
\example
${\cal XYZ} \quad
{\mit AaBb\Gamma \Delta \Sigma} \quad 
{\oldstyle 0123456789}$
|
\produces
${\cal XYZ} \quad
{\mit AaBb\Gamma \Delta \Sigma} \quad 
{\oldstyle 0123456789}$
\endexample
\enddesc

^^{type styles}
\begindesc
\ctsx itfam {family for italic type}
\ctsx bffam {family for boldface type}
\ctsx slfam {family for slanted type}
\ctsx ttfam {family for typewriter type}
\explain
These commands define type families \minrefs{family} for use in
\minref{math mode}.  Their principal use is in defining the
|\it|, |\bf|, |\sl|, and |\tt| commands so that they work in math mode.
\enddesc

\begindesc
\cts fam {\param{number}}
\explain
When \TeX\ is in \minref{math mode}, it ordinarily typesets a character
using the font family ^^{class} given in its \minref{mathcode}.
^^{family//given by \b\tt\\fam\e}
However, when \TeX\ is in math mode and encounters a character whose
\minref{class} is $7$ (Variable), it typesets that character using
the font \minref{family} given by the value of |\fam|, provided that the
value of |\fam| is between $0$ and $15$.
If the value of |\fam| isn't in that range, \TeX\ uses the family in
the character's mathcode as in the ordinary case.
\TeX\ sets |\fam| to $-1$ whenever it enters math mode.
Outside of math mode, |\fam| has no effect.

By assigning a value to
|\fam| you can change the way that \TeX\ typesets ordinary
characters such as variables.    
For instance, by setting |\fam| to |\ttfam|, you cause \TeX\ to typeset
variables using a typewriter font.
\PlainTeX\ defines |\tt| as a \minref{macro} that, among other things,
sets |\fam| to |\ttfam|.
\example
\def\bf{\fam\bffam\tenbf} % As in plain TeX.
|
\endexample
\enddesc

\begindesc
\cts textfont {\<family>\param{fontname}}
\cts scriptfont {\<family>\param{fontname}}
\cts scriptscriptfont {\<family>\param{fontname}}
\explain
^^{text style}
^^{script style}
^^{scriptscript style}
Each of these parameters specifies the font that \TeX\ is to use for
typesetting the indicated \minref{style} in the indicated \minref{family}.
These choices have no effect outside of \minref{math mode}.
\example
\scriptfont2 = \sevensy % As in plain TeX.
|
\endexample
\enddesc

\see ``Type styles'' (\xref{seltype}).
%==========================================================================
\section {Constructing math symbols}

%==========================================================================
\subsection {Making delimiters bigger}

\begindesc
\makecolumns 16/4:
\easy\cts big {}
\cts bigl {}
\cts bigm {}
\cts bigr {}
\cts Big {}
\cts Bigl {}
\cts Bigm {}
\cts Bigr {}
\cts bigg {}
\cts biggl {}
\cts biggm {}
\cts biggr {}
\cts Bigg {}
\cts Biggl {}
\cts Biggm {}
\cts Biggr {}
\explain
^^{delimiters//enlarging}
These commands make \minref{delimiter}s bigger than their normal size.
The commands in the four columns
produce successively larger sizes.  The difference between |\big|,
|\bigl|, |\bigr|, and |bigm| has to do with the \minref{class} of the
enlarged delimiter:
\ulist\compact
\li |\big| produces an ordinary symbol.
\li |\bigl| produces an opening symbol.
\li |\bigr| produces a closing symbol.
\li |\bigm| produces a relation symbol.
\endulist
\noindent
\TeX\ uses the class of a symbol in order to decide how much space to put 
around that symbol.

These commands, unlike |\left| and |\right|,
do \emph{not} define a group.

\example
$$(x) \quad \bigl(x\bigr) \quad \Bigl(x\Bigr) \quad
   \biggl(x\biggr) \quad \Biggl(x\Biggr)\qquad
[x] \quad \bigl[x\bigr] \quad \Bigl[x\Bigr] \quad
   \biggl[x\biggr] \quad \Biggl[x\Biggr]$$
|
\dproduces
$$(x) \quad \bigl(x\bigr) \quad \Bigl(x\Bigr) \quad
\biggl(x\biggr) \quad \Biggl(x\Biggr)\qquad
[x] \quad \bigl[x\bigr] \quad \Bigl[x\Bigr] \quad
\biggl[x\biggr] \quad \Biggl[x\Biggr]$$
\endexample
\enddesc

%==========================================================================
\subsection {Parts of large symbols}

\begindesc
\cts downbracefill {}
\cts upbracefill {}
\explain
These commands respectively produce upward-pointing
and downward-pointing extensible ^{horizontal braces}. ^^{braces}
\TeX\ will make the braces as wide as necessary.
These commands
are used in the definitions of ^|\overbrace| and ^|\underbrace|
(\xref \overbrace).
\example
$$\hbox to 1in{\downbracefill} \quad
   \hbox to 1in{\upbracefill}$$
|
\dproduces
$$\hbox to 1in{\downbracefill} \quad
   \hbox to 1in{\upbracefill}$$
\endexample
\enddesc

\begindesc
\cts arrowvert {}
\cts Arrowvert {}
\cts lmoustache {}
\cts rmoustache {}
\cts bracevert {}
\explain
These commands produce portions of certain large
delimiters
^^{delimiters//parts of}
and can themselves be used as delimiters.
They refer to characters in the ^|cmex10| math font.
\example
$$\cdots \Big\arrowvert \cdots \Big\Arrowvert \cdots
  \Big\lmoustache \cdots \Big\rmoustache \cdots
  \Big\bracevert \cdots$$
|
\dproduces
$$\cdots \Big\arrowvert \cdots \Big\Arrowvert \cdots
  \Big\lmoustache \cdots \Big\rmoustache \cdots
  \Big\bracevert \cdots$$
\endexample
\enddesc


%==========================================================================
\section {Aligning parts of a formula}

%==========================================================================
\subsection {Aligning accents}

\begindesc
\bix^^{accents//aligning}
\cts skew {\<number> \<argument$_1$> \<argument$_2$>}
\explain
This command shifts the accent \<argument$_1$> by
\<number> \minref{mathematical unit}s to the right of its normal position
with respect to \<argu\-ment$_2$>.
The most common use of this command is for 
modifying the position of an accent that's over
another accent.
\example
$$\skew 2\bar{\bar z}\quad\skew 3\tilde{\tilde y}\quad
  \skew 4\tilde{\hat x}$$   
|
\dproduces
$$\skew 2\bar{\bar z}\quad\skew 3\tilde{\tilde y}\quad
  \skew 4\tilde{\hat x}$$   
\endexample
\enddesc

\begindesc
\cts skewchar {\<font>\param{number}}
\explain
The |\skewchar| of a font
is the character in the font whose kerns,
as defined in the font's metrics file, determine the positions
of math accents. That is, suppose that \TeX\ is applying a math accent
to the character `|x|'.  \TeX\ checks if the character pair
`|x\skewchar|' has a kern; if so, it moves the accent by the amount of
that kern. The complete algorithm that \TeX\ uses to position math
accents (which involves many more things) is in \knuth{Appendix~G}.

If the value of |\skewchar| is not in the range $0$--$255$,
\TeX\ takes the kern value to be zero.

Note that \<font> is a control sequence
that names a font, not a \<font\-name> that names font files.
Beware: 
an assignment to |\skewchar| is \emph{not} undone at the end
of a group.
If you want to change |\skewchar| locally, you'll need to
save and restore its original value explicitly.
\enddesc

\begindesc
\cts defaultskewchar {\param{number}}
\explain
When \TeX\ reads the metrics file
^^{metrics file//default skew character in}
for a font in response to a
^|\font| command, it sets the font's ^|\skewchar| to
|\default!-skewchar|.
If the value of |\default!-skewchar| is 
not in the range $0$--$255$, \TeX\ does not assign any
skew characters by default.
\PlainTeX\ sets |\defaultskewchar| to $-1$, and it's usually best
to leave it there.
\margin{Misleading example deleted.}
\eix^^{accents//aligning}
\enddesc

%==========================================================================
\subsection {Aligning material vertically}

\begindesc
\cts vcenter {\rqbraces{\<vertical mode material>}}
\ctsbasic {\\vcenter to \<dimen> \rqbraces{\<vertical mode material>}}{}
\ctsbasic {\\vcenter spread \<dimen> \rqbraces{\<vertical mode material>}}{}
\explain
Every math formula has an invisible
``^{axis}'' that \TeX\ treats as a kind of
horizontal centering line for that formula.
For instance, the axis of a formula consisting of a
fraction is at the center of the fraction bar.
The |\vcenter| command tells \TeX\ to place the \<vertical mode material>
in a \minref{vbox} and to center the vbox
with respect to the axis of the formula it is currently constructing.

The first form of the command
centers the material as given.  The second and third
forms expand or shrink the material vertically as in the |\vbox| command
(\xref \vbox).

\example
$${n \choose k} \buildrel \rm def \over \equiv \>
\vcenter{\hsize 1.5 in \noindent the number of 
combinations of $n$ things taken $k$ at a time}$$
|
\dproduces
$${n \choose k} \buildrel \rm def \over \equiv \>
\vcenter{\hsize 1.5 in \noindent the number of 
combinations of $n$ things taken $k$ at a time}$$
\endexample
\enddesc

%==========================================================================
\section {Producing spaces}

%==========================================================================
\subsection {Fixed-width math spaces}

\begindesc
\bix^^{space//in math formulas}
\ctspecial ! \ctsxrdef{@shriek}
\ctspecial , \ctsxrdef{@comma}
\ctspecial > \ctsxrdef{@greater}
\ctspecial ; \ctsxrdef{@semi}
\explain
These commands produce various amounts of ^{extra space} in formulas.  They
are defined in terms of \minref{mathematical unit}s, so \TeX\ adjusts
the amount of space according to the current \minref{style}.
\ulist
\li |\!!| produces a negative thin space, i.e., it reduces the space
between its neighboring subformulas by the amount of a thin space.
\li |\,| produces a thin space.
\li |\>| produces a medium space.
\li |\;| produces a thick space.
\endulist
\example
$$00\quad0\!!0\quad0\,0\quad0\>0\quad0\;0\quad
{\scriptstyle 00\quad0\!!0\quad0\,0\quad0\>0\quad0\;0}$$
|
\dproduces
$$00\quad0\!0\quad0\,0\quad0\>0\quad0\;0\quad
{\scriptstyle 00\quad0\!0\quad0\,0\quad0\>0\quad0\;0}$$
\endexample
\enddesc

\begindesc
\cts thinmuskip {\param{muglue}}
\cts medmuskip {\param{muglue}}
\cts thickmuskip {\param{muglue}}
\explain
These parameters define thin, medium, and thick spaces in
math mode.
\example
$00\quad0\mskip\thinmuskip0\quad0\mskip\medmuskip0
   \quad0\mskip\thickmuskip0$
|
\produces
$00\quad0\mskip\thinmuskip0\quad0\mskip\medmuskip0
   \quad0\mskip\thickmuskip0$
\endexample
\enddesc

\begindesc
\cts jot {\param{dimen}}
\explain
This parameter defines a distance that is equal to three points (unless
you change it).
The |\jot| is a convenient unit of measure for opening up \hbox{math displays}.
\enddesc

%==========================================================================
\subsection {Variable-width math spaces}

\begindesc
\cts mkern {\<mudimen>}
\explain
^^{kerns//in math formulas}
This command
produces a \minref{kern}, i.e., blank space, of width \<mudimen>.
The kern is measured
in \minref{mathematical unit}s, which vary according to the style.
Aside from its unit of measurement, this command behaves just like
|\kern| (\xref \kern) does in horizontal mode.

\example
$0\mkern13mu 0 \qquad {\scriptscriptstyle 0 \mkern13mu 0}$
|
\produces
$0\mkern13mu 0 \qquad {\scriptscriptstyle 0 \mkern13mu 0}$
\endexample
\enddesc

\begindesc
\cts mskip {\<mudimen$_1$> {\bt plus} \<mudimen$_2$> {\bt minus}
   \<mudimen$_3$>}
\explain
^^{glue}
This command produces horizontal \minref{glue}
that has natural width \<mu\-dimen$_1$>, stretch \<mudimen$_2$>,
and shrink \<mudimen$_3$>.
The glue is measured in \minref{mathematical unit}s, which vary according
to the style.  Aside from its units of measurement, this command behaves
just like |\hskip| (\xref \hskip).

\example
$0\mskip 13mu 0 \quad {\scriptscriptstyle 0 \mskip 13mu 0}$
|
\produces
$0\mskip 13mu 0 \quad {\scriptscriptstyle 0 \mskip 13mu 0}$
\endexample
\enddesc

\begindesc
\cts nonscript {}
\explain
When \TeX\ is currently typesetting in script or scriptscript
\minref{style} and encounters this command 
immediately in front of glue or a kern,
it cancels the glue or kern.
|\nonscript| has no effect in the other styles.

This command provides a way of ``tightening up'' the spacing in 
script and scriptscript styles, which generally are set in smaller type.
It is of little use outside of macro definitions.
\example
\def\ab{a\nonscript\; b}
$\ab^{\ab}$
|
\produces
\def\ab{a\nonscript\; b}
$\ab^{\ab}$
\endexample
\enddesc

\see |\kern| (\xref\kern), |\hskip| (\xref\hskip).
\eix^^{space//in math formulas}


%==========================================================================
\subsection {Spacing parameters for displays}

\begindesc
\bix^^{displays//spacing parameters for}
\cts displaywidth {\param{dimen}}
\explain
This parameter specifies the maximum width that
\TeX\ allows for a math display.  If \TeX\ cannot fit the display
into a space of this width, it sets an overfull \minref{hbox}
and complains.
\TeX\ sets the value of |\displaywidth| when it encounters the `|$$|'
that starts the display.  This initial value is
|\hsize| (\xref \hsize) unless it's overridden by changes to the
paragraph shape.
See \knuth{pages~188--189} for a more detailed explanation of this parameter.
\enddesc

\begindesc
\cts displayindent {\param{dimen}}
\explain
This parameter specifies the space by which \TeX\ indents a
math display.
\TeX\ sets the value of |\displayindent| when it encounters the `|$$|'
that starts the display.  Usually this initial value is zero,
but if the paragraph shape indicates that the display should
be shifted by an amount $s$,
\TeX\ will set |\displayindent| to $s$.
See \knuth{pages~188--189} for a more detailed explanation of this parameter.
\enddesc

\begindesc
\cts predisplaysize {\param{dimen}}
\explain
\TeX\ sets this parameter to the width of the line preceding
a math display.
\TeX\ uses |\predisplaysize| to determine whether or not
the display starts to
the left of where the previous line ends, i.e., whether or not it visually
overlaps the previous line.  
If there is overlap, it uses the |\abovedisplayskip| and
|\belowdisplayskip| glue in setting the display;
otherwise it uses the |\abovedisplay!-shortskip| and
|\belowdisplay!-shortskip| glue.
See \knuth{pages~188--189} for a more detailed explanation of this parameter.
\enddesc

\begindesc
\cts abovedisplayskip {\param{glue}}
\explain
This parameter specifies the amount of vertical glue that
\TeX\ inserts before a display when the display starts to
the left of where the previous line ends, i.e., when it visually
overlaps the previous line.
\PlainTeX\ sets |\abovedisplayskip| to |12pt plus3pt minus9pt|.
See \knuth{pages~188--189} for a more detailed explanation of this parameter.
\enddesc

\begindesc
\cts belowdisplayskip {\param{glue}}
\explain
This parameter specifies the amount of vertical glue that
\TeX\ inserts after a display when the display starts to
the left of where the previous line ends, i.e., when it visually
overlaps the previous line.
\PlainTeX\ sets |\belowdisplay!-skip| to |12pt plus3pt minus9pt|.
See \knuth{pages~188--189} for a more detailed explanation of this parameter.
\enddesc

\begindesc
\cts abovedisplayshortskip {\param{glue}}
\explain
This parameter specifies the amount of vertical glue that
\TeX\ inserts before a math display 
when the display starts to
the right of where the previous line ends, i.e., when it does not visually
overlap the previous line.
\PlainTeX\ sets |\abovedisplay!-shortskip| to |0pt plus3pt|.
See \knuth{pages~188--189} for a more detailed explanation of this parameter.
\enddesc

\begindesc
\cts belowdisplayshortskip {\param{glue}}
\explain
This parameter specifies the amount of vertical glue that
\TeX\ inserts after a display 
when the display starts to
the right of where the previous line ends, i.e., when it does not visually
overlap the previous line.
\PlainTeX\ sets |\belowdisplay!-shortskip| to |7pt plus3pt minus4pt|.
See \knuth{pages~188--189} for a more detailed explanation of this parameter.

\eix^^{displays//spacing parameters for}
\enddesc


%==========================================================================
\subsection {Other spacing parameters for math}

\begindesc
\cts mathsurround {\param{dimen}}
\explain
This parameter specifies the amount of space that \TeX\
inserts before and after a math formula in text mode (i.e., a formula
surrounded by single |$|'s).  See \knuth{page~162} for further details about
its behavior.
\PlainTeX\ leaves |\mathsurround| at |0pt|.
\enddesc

\begindesc
\cts nulldelimiterspace {\param{dimen}}
\explain
^^{delimiters//null, space for}
This parameter specifies the width of the
space produced by a null \minref{delimiter}.
\PlainTeX\ sets |\nulldelimiterspace| to |1.2pt|.
\enddesc

\begindesc
\cts scriptspace {\param{dimen}}
\explain
This parameter specifies the amount of space that \TeX\
inserts before and after a subscript or superscript.
The |\nonscript| command (\xref\nonscript) ^^|\nonscript|
after a subscript or superscript cancels this space.
\PlainTeX\ sets |\script!-space| to |0.5pt|.
\enddesc

%==========================================================================
\section {Categorizing math constructs}

\begindesc
\makecolumns 7/2:
\cts mathord {}
\cts mathop {}
\cts mathbin {}
\cts mathrel {}
\cts mathopen {}
\cts mathclose {}
\cts mathpunct {}
\explain
These commands tell \TeX\ to treat the construct that follows as belonging
to a particular ^{class} (see \knuth{page~154} for the definition
of the classes).  They are listed here in the order of the class numbers,
from $0$ to $6$.  Their primary 
effect is to adjust the spacing around the construct
to be whatever it is for the specified class.

\example
$\mathop{\rm minmax}\limits_{t \in A \cup B}\,t$
% By treating minmax as a math operator, we can get TeX to
% put something underneath it.
|
\produces
$\mathop{\rm minmax}\limits_{t \in A \cup B}\,t$
\endexample
\enddesc

\begindesc
\cts mathinner {}
\explain
This command tells \TeX\ to treat the construct that follows
as an ``inner formula'', e.g., a fraction, for spacing purposes.
It resembles the class commands given just above.
\enddesc

%==========================================================================
\section {Special actions for math formulas}

\begindesc
\cts everymath {\param{token list}}
\cts everydisplay {\param{token list}}
\explain
^^{displays//actions for every display}
These parameters specify \minref{token} lists that \TeX\ inserts
at the start of every text math or display math formula, respectively.
You can
take special actions at the start of each math formula by
assigning those actions to |\everymath| or
|\everydisplay|.  Don't forget that if you want both kinds of formulas to
be affected, you need to set \emph{both} parameters.
\example
\everydisplay={\heartsuit\quad}
\everymath = {\clubsuit}
$3$ is greater than $2$ for large values of $3$.
$$4>3$$
|
\produces
\everydisplay={\heartsuit\quad}
\everymath = {\clubsuit}
$3$ is greater than $2$ for large values of $3$.
$$4>3$$
\endexample
\enddesc

\enddescriptions
\eix^^{math}
\endchapter
\byebye