1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
|
\documentclass[a4paper]{article}
\newif\ifpdf
\ifx\pdfoutput\undefined
\pdffalse % we do not use PDFLaTeX
\else
\pdfoutput=1 % we use PDFLaTeX
\pdftrue
\fi
\usepackage{linuxdoc-sgml}
\usepackage{qwertz}
\usepackage{url}
\usepackage[latin1]{inputenc}
\ifpdf
\usepackage[pdftex,colorlinks=true,urlcolor=blue,linkcolor=blue]{hyperref}
\pdfcompresslevel=9
\else
\usepackage{t1enc}
%% \usepackage[dvips]{hyperref}
\fi
\usepackage[english]{babel}
\usepackage{epsfig}
\usepackage{null}
\def\addbibtoc{
\addcontentsline{toc}{section}{\numberline{\mbox{}}\relax\bibname}
}%end-preamble
\setcounter{page}{1}
\urldef{\aaaurl} \url{http://www-math.univ-poitiers.fr/~phan/m3Dplain.html}
\urldef{\aaburl} \url{http://directory.fsf.org/GNU/3DLDF.html}
\urldef{\aacurl} \url{http://www.povray.org/}
\urldef{\aadurl} \url{http://www.blender3d.org/}
\urldef{\aaeurl} \url{http://jl.photodex.com/dog/}
\urldef{\aafurl} \url{http://www.flexer.it/galrey/}
\urldef{\aagurl} \url{http://lince.cii.fc.ul.pt/xcmd/xcmd.html}
\urldef{\aahurl} \url{http://www.ctan.org/tex-archive/graphics/metapost/contrib/macros/latexmp/}
\urldef{\aaiurl} \url{http://www.ida.liu.se/~joned/download/mps2eps/}
\urldef{\aajurl} \url{http://matagalatlante.org/nobre/hyt/technicaldrawfromphoto.html}
\urldef{\aakurl} \url{http://www.gnuplot.info/}
\urldef{\aalurl} \url{http://gri.sourceforge.net/}
\title{FEATPOST macros}
\author{L. Nobre G., {\ttfamily http://matagalatlante.org}}
\date{December 2004}
\abstract{ This document intends to be an explanation of the MetaPost macros defined in the {\ttfamily FEATPOST} package. Its purpose is to draw
two or three-dimensional physics diagrams.
The {\ttfamily FEATPOST} package is supposed to help you draw figures
containing 3D dots, vectors, flat arrows, angles, parametric
lines, circles, ellipses, cones, cylinders, spheres, globes, hemispheres, toruses, elliptical frusta,
polygons, polyhedra, functional and parametric surfaces, direction fields, field lines
and trajectories in vector fields, schematic automobiles, electric charges, etc.
The fact that it is a programming language instead of Computer Aided Design (CAD) helps the user to experiment different figure layouts without changing specified geometric relationships among figure elements. Two of the intrinsic MetaPost features which may be important for physics
diagrams are: (i) the typesetting power of
TeX is easily called when needed and (ii) besides a sufficient
number of mathematical operators, geometric relationships may
be expressed by linear equations, without explicit assignements.
}
\begin{document}
\maketitle
\section{Introduction}
3D in MetaPost is not a new idea. Denis Roegel
contributed related packages to CTAN some years ago. It was the
subject of a 1997 TUGboat article (V18, N4, 274-283). Anthony
Phan has been developing a very elegant package
called
{\em m3D} {\tt \aaaurl}
. Due to his skilled coding, {\ttfamily m3D} can
handle larger objects and can produce more realistic renderings than
{\ttfamily FEATPOST}. Another possibilty is
{\em GNU 3DLDF} {\tt \aaburl}
.
In any case we are talking about vector-based abstract diagrams,
so the functionality of
these packages is nearer to {\ttfamily GNUPLOT} than to {\ttfamily OpenGL}.
We could also talk about {\ttfamily
{\em POV-ray} {\tt \aacurl}
} or
{\ttfamily
{\em blender} {\tt \aadurl}
} but these
are focused on ray-traced images, a completely different thing.
Regarding software {\ttfamily FEATPOST} requires only MetaPost but
reccomends {\ttfamily LaTeX, bash, ImageMagick, ghostscript,
Linuxdoc, Textutils, dvips, epstopdf, sed, gv, plaympeg,
{\em dog} {\tt \aaeurl}
,
{\em galrey} {\tt \aafurl}
} and {\ttfamily
{\em xcmd} {\tt \aagurl}
}. Also, it is highly beneficial to
be able to understand and cope with MetaPost error messages as
{\ttfamily FEATPOST} has no protection against mistaken inputs. One
probable cause of errors is the use of variables with the name of
procedures, like
\begin{tscreen}
\begin{verbatim}
X, Y, Z, N, rp, cb, ps
\end{verbatim}
\end{tscreen}
All other procedure names have six or more characters.
The user must be aware that MetaPost has a limited arithmetic power
and that the author has limited programming skills,
which may lead to unperfect 3D figures or very long processing time.
It's advisable not to try very complex diagrams and it's recommended to
keep 3D coordinates within order 1 (default MetaPost units).
All {\ttfamily FEATPOST} macros are build apon the MetaPost
{\ttfamily color} variable type. It looks like this:
\begin{tscreen}
\begin{verbatim}
(red,green,blue)
\end{verbatim}
\end{tscreen}
Its components may, nevertheless,
be arbtitrary numbers, like:
\begin{tscreen}
\begin{verbatim}
(X,Y,Z)
\end{verbatim}
\end{tscreen}
So, the
{\ttfamily color} type is adequate to define not only colors but
also 3D points and vectors.
\section{Small Tutorial}
One very minimalistic example program could be:
\begin{tscreen}
\begin{verbatim}
beginfig(1);
cartaxes(1,1,1);
endfig;
end;
\end{verbatim}
\end{tscreen}
where {\ttfamily cartaxes} is a
{\ttfamily FEATPOST} macro that produces
the Cartesian referential.
One small example program may be:
\begin{tscreen}
\begin{verbatim}
f := 5.4*(1.5,0.5,1);
Spread := 30;
beginfig(1);
numeric gridstep, sidenumber, i, j, coord, aa, ab, ac;
color pa;
gridstep = 0.9;
sidenumber = 10;
coord = 0.5*sidenumber*gridstep;
for i=0 upto sidenumber:
for j=0 upto sidenumber:
pa := (-coord+j*gridstep,-coord+i*gridstep,0);
aa := uniformdeviate(360);
ab := uniformdeviate(180);
ac := uniformdeviate(90);
kindofcube( false, false, pa, aa, ab, ac, 0.4, 0.4, 0.9 );
endfor;
endfor;
endfig;
end.
\end{verbatim}
\end{tscreen}
where {\ttfamily kindofcube}
is a {\ttfamily FEATPOST} macro that produces
a rectangular prism (cuboid).
\begin{figure}[tbp]
\ifpdf
\else
\centerline{\epsfig{file=../allps/kindofcube.1,height=5cm,angle=0}}\fi
\ifpdf
\centerline{\epsfig{file=../nontextualpng/kindofcube.1.png}}\fi
\caption{Example that uses {\ttfamily kindofcube}.}
\end{figure}
\label{figkindofcube1}
The main variable of any three-dimensional figure is the
point of view. {\ttfamily FEATPOST} uses the variable {\ttfamily f}
as the point of view. {\ttfamily Spread} is another global
variable that controls the size of the projection.
Another example may be:
\begin{tscreen}
\begin{verbatim}
f := (13,7,3.5);
Spread := 35;
beginfig(1);
numeric i, len, wang, reflen, frac, coordg;
numeric fws, NumLines, inray, outay;
path conepath, cira, cirb, ella, ellb, tuba, tubb, tubc;
color axe, aroc, cubevertex, conecenter, conevertex;
color allellaxe, ellaaxe, ellbaxe, pca, pea, pcb, peb;
frac := 0.5;
len := 0.6;
wang := 60;
axe := (0,cosd(90-wang),sind(90-wang));
fws := 4;
reflen := 0.2*fws;
outay := 0.45*fws;
inray := 0.7*outay;
coordg := frac*fws;
NumLines := 30;
HoriZon := -0.5*fws;
setthestage( 0.5*NumLines, 2*fws );
cubevertex = (0.12*fws,-0.5*fws,-0.5*fws);
kindofcube(false,true,cubevertex,180,0,0,0.65*fws,0.2*fws,fws);
aroc := outay*(0,cosd(wang),sind(wang))-0.5*(0,fws,fws);
rigorousdisc( inray, true, aroc, outay, axe*len );
allellaxe := reflen*( 0.707, 0.707, 0 );
ellaaxe := reflen*( 0.707, -0.707, 1.0 );
ellbaxe := reflen*( -0.707, 0.707, 1.0 );
conecenter = ( coordg, coordg, -0.5*fws );
pca := ( coordg, -coordg, -0.5*fws );
pcb := ( -coordg, coordg, -0.5*fws );
pea := ( coordg, -coordg, 0.9*fws );
peb := ( -coordg, coordg, 0.9*fws );
cira := goodcirclepath( pca, blue, reflen );
cirb := goodcirclepath( pcb, blue, reflen );
ella := ellipticpath( pea, allellaxe, ellaaxe );
ellb := ellipticpath( peb, allellaxe, ellbaxe );
tuba := twocyclestogether( cira, ella );
tubb := twocyclestogether( cirb, ellb );
tubc := twocyclestogether( ella, ellb );
unfill tubb; draw tubb;
unfill tubc; draw tubc;
unfill tuba; draw tuba;
conevertex = conecenter + ( -3.5*reflen, 0, 0.8*fws );
verygoodcone(false,conecenter,blue,reflen,conevertex);
endfig;
end.
\end{verbatim}
\end{tscreen}
where we find a {\ttfamily rigorousdisc}
and a {\ttfamily verygoodcone}
(the nicest {\ttfamily FEATPOST} macros) in addition to
{\ttfamily setthestage}, {\ttfamily twocyclestogether} and
{\ttfamily kindofcube}.
\begin{figure}[tbp]
\ifpdf
\else
\centerline{\epsfig{file=../allps/stageforthree.1,height=5cm,angle=0}}\fi
\ifpdf
\centerline{\epsfig{file=../nontextualpng/stageforthree.1.png}}\fi
\caption{Example that uses {\ttfamily rigorousdisc} and {\ttfamily verygoodcone}.}
\end{figure}
\label{figstageforthree}
\subsection{Mechanics}
The following is the sequence of steps necessary to produce
the diagrams.
\begin{enumerate}
\item To use LaTeX fonts enter the shell command
\par
\addvspace{\medskipamount}
\nopagebreak\hrule
\begin{verbatim}
export TEX=latex
\end{verbatim}
\nopagebreak\hrule
\addvspace{\medskipamount}
\item Make your MetaPost program know {\ttfamily FEATPOST} macros.
This may be accomplished in two ways:
\begin{itemize}
\item Insert the line:
\begin{tscreen}
\begin{verbatim}
input featpost3Dplus2D;
\end{verbatim}
\end{tscreen}
at
the beginning
of your program and
then enter the shell command
\par
\addvspace{\medskipamount}
\nopagebreak\hrule
\begin{verbatim}
mpost yourprogram.mp
\end{verbatim}
\nopagebreak\hrule
\addvspace{\medskipamount}
or
\item Pre-compile the macros into a {\ttfamily mem} file,
for instance:
\par
\addvspace{\medskipamount}
\nopagebreak\hrule
\begin{verbatim}
inimpost featpost.mp
\end{verbatim}
\nopagebreak\hrule
\addvspace{\medskipamount}
and then run your
program with
\par
\addvspace{\medskipamount}
\nopagebreak\hrule
\begin{verbatim}
mpost -mem featpost yourprogram.mp
\end{verbatim}
\nopagebreak\hrule
\addvspace{\medskipamount}
\end{itemize}
\item If your program contains LaTeX text you may insert, at the
beginning, the lines
\begin{tscreen}
\begin{verbatim}
verbatimtex
\documentclass{article}
\begin{document}
etex
\end{verbatim}
\end{tscreen}
and at the end
\begin{tscreen}
\begin{verbatim}
verbatimtex
\end{document}
etex
\end{verbatim}
\end{tscreen}
or make use of the
{\em latexmp} {\tt \aahurl}
package.
\item Pass the produced figure(s) through {\ttfamily dvips}
if they contain any text. You may do this with the provided
shell script {\ttfamily laproof}.
\par
\addvspace{\medskipamount}
\nopagebreak\hrule
\begin{verbatim}
laproof yourprogram N
\end{verbatim}
\nopagebreak\hrule
\addvspace{\medskipamount}
where {\ttfamily N}
is the figure number. This
script produces an EPS figure that may be viewed with
{\ttfamily gv} but that should not be inserted in LaTeX
documents. Insert the original figure in LaTeX
documents. Instead of {\ttfamily laproof} you may just as
well use
{\em MPS2EPS} {\tt \aaiurl}
.
\end{enumerate}
\subsection{Main Features}
\subsubsection{Perspectives}
{\ttfamily FEATPOST} can do three kinds of perspective.
\begin{tscreen}
\begin{verbatim}
f := ( 1.2 , 2.0 , 1.6 );
Spread := 75;
V1 := (1,1,1);
V2 := (-1,1,1);
V3 := (-1,-1,1);
V4 := (1,-1,1);
V5 := (1,1,-1);
V6 := (-1,1,-1);
V7 := (-1,-1,-1);
V8 := (1,-1,-1);
makeface1(1,2,3,4);makeface2(5,6,7,8);
makeface3(1,2,6,5);makeface4(2,3,7,6);
makeface5(3,4,8,7);makeface6(4,1,5,8);
makeline1(1,7);makeline2(2,8);
makeline3(3,5);makeline4(4,6);
beginfig(1);
ParallelProj := true;
SphericalDistortion := false;
draw_all_test(red,true);
endfig;
beginfig(2);
ParallelProj := false;
SphericalDistortion := false;
draw_all_test(green,true);
endfig;
beginfig(3);
ParallelProj := false;
SphericalDistortion := true;
PrintStep := 5;
draw_all_test(blue,true);
endfig;
end;
\end{verbatim}
\end{tscreen}
\begin{figure}[tbp]
\ifpdf
\else
\centerline{\epsfig{file=../allps/cubicfigures.1,height=5cm,angle=0}}\fi
\ifpdf
\centerline{\epsfig{file=../nontextualpng/cubicfigures.1.png}}\fi
\caption{Orthogonal perspective.}
\end{figure}
\label{figcubicfigures1}
\begin{figure}[tbp]
\ifpdf
\else
\centerline{\epsfig{file=../allps/cubicfigures.2,height=5cm,angle=0}}\fi
\ifpdf
\centerline{\epsfig{file=../nontextualpng/cubicfigures.2.png}}\fi
\caption{Rigorous perspective.}
\end{figure}
\label{figcubicfigures2}
\begin{figure}[tbp]
\ifpdf
\else
\centerline{\epsfig{file=../allps/cubicfigures.3,height=5cm,angle=0}}\fi
\ifpdf
\centerline{\epsfig{file=../nontextualpng/cubicfigures.3.png}}\fi
\caption{Fish-eye perspective.}
\end{figure}
\label{figcubicfigures3}
\subsubsection{From 3D to 2D}
The most important macro is {\ttfamily rp} that converts 3D points
to two-dimensional (2D) rigorous, orthogonal
or fish-eye projections. To draw a line in
3D-space try
\begin{tscreen}
\begin{verbatim}
draw rp(a)--rp(b);
\end{verbatim}
\end{tscreen}
where
{\ttfamily a} and {\ttfamily b} are points in space
(of {\ttfamily color} type).
But if you're going for fish-eye it's better to
\begin{tscreen}
\begin{verbatim}
draw pathofstraightline(a,b);
\end{verbatim}
\end{tscreen}
If
you don't know, leave it as
\begin{tscreen}
\begin{verbatim}
drawsegment(a,b,withpen somepen);
\end{verbatim}
\end{tscreen}
\subsubsection{Angles}
When {\ttfamily FEATPOST} was created its main ability was
to mark and to calculate angles. This is done with the
macros {\ttfamily angline} and {\ttfamily getangle} as in the
following program:
\begin{tscreen}
\begin{verbatim}
f := (5,3.5,1);
beginfig(2);
cartaxes(1,1,1);
color va, vb, vc, vd;
va = (0.29,0.7,1.0);
vb = (X(va),Y(va),0);
vc = N((-Y(va),X(va),0));
vd = (0,Y(vc),0);
drawarrow rp(black)--rp(va);
draw rp(black)--rp(vb)--rp(va) dashed evenly;
draw rp(vc)--rp(vd) dashed evenly;
drawarrow rp(black)--rp(vc);
squareangline( va, vc, black, 0.15 );
angline(va,red,black,0.75,decimal getangle(va,red),lft);
endfig;
\end{verbatim}
\end{tscreen}
\begin{figure}[tbp]
\ifpdf
\else
\centerline{\epsfig{file=../allps/cartaxes.2,height=5cm,angle=0}}\fi
\ifpdf
\centerline{\epsfig{file=../allpng/cartaxes.2.gs.png}}\fi
\caption{Example that uses {\ttfamily cartaxes}, {\ttfamily angline} and {\ttfamily getangle}.}
\end{figure}
\label{figcartaxes2}
\subsubsection{Intersections}
The most advanced feature of {\ttfamily FEATPOST} is the
ability to calculate the intersections of planar and
convex polygons\footnote{Unfortunately, this is also the
most "bugged" feature.}. It can draw the visible
part of arbitrary sets of polygons as in
the following program:
\begin{tscreen}
\begin{verbatim}
numeric phi;
phi = 0.5*(1+sqrt(5));
V1 := ( 1, phi,0);V2 := (-1, phi,0);
V3 := (-1,-phi,0);V4 := ( 1,-phi,0);
V5 := (0, 1, phi);V6 := (0,-1, phi);
V7 := (0,-1,-phi);V8 := (0, 1,-phi);
V9 := ( phi,0, 1);V10:= ( phi,0,-1);
V11:= (-phi,0,-1);V12:= (-phi,0, 1);
makeface1(1,2,3,4);makeface2(5,6,7,8);
makeface3(9,10,11,12);
beginfig(1);
sharpraytrace;
endfig;
end
\end{verbatim}
\end{tscreen}
\begin{figure}[tbp]
\ifpdf
\else
\centerline{\epsfig{file=../allps/sharpraytrace.1,height=5cm,angle=0}}\fi
\ifpdf
\centerline{\epsfig{file=../allpng/sharpraytrace.1.gs.png}}\fi
\caption{Example that uses {\ttfamily sharpraytrace}.}
\end{figure}
\label{figsharpraytrace}
\subsubsection{Coming back to 3D from 2D}
It is now possible to do an "automatic perspective tuning"
with the aid of macro {\ttfamily photoreverse} which is under
development. Please, refer to example
{\ttfamily photoreverse.mp} and to
{\em FeatPost Deeper Technicalities} {\tt \aajurl}
.
\begin{figure}[tbp]
\ifpdf
\else
\centerline{\epsfig{file=../alleps/photoreverse.1.eps,height=5cm,angle=0}}\fi
\ifpdf
\centerline{\epsfig{file=../allpng/photoreverse.1.gs.png}}\fi
\caption{Example that uses {\ttfamily photoreverse}. It may
not work when vertical lines are not vertical in
average on the photo.}
\end{figure}
\label{figphotoreverse}
\paragraph{Coming back to 3D from 1D}
Using the same algorithm of {\ttfamily photoreverse}, the
macro {\ttfamily improvertex} allows one to approximate a
point in 3D-space with given distances from three other
points (an initial guess is required).
\section{Reference Manual}
Some words about notation.
The meaning of macro, function, procedure and routine is the same.
Global variables are presented like this:
\begin{tscreen}
\begin{verbatim}
vartype var, anothervar
anothervartype yetanothervar
\end{verbatim}
\end{tscreen}
Explanation of var, anothervar and
yetanothervar. vartype can be any one of
MetaPost types but the meaning
of {\ttfamily color} is a three-dimensional point or vector, not an
actual color like yellow, black or white. If the meaning is
an actual color then the type will be {\ttfamily colour}.
All global variables have default values.
Functions are presented like this:
\begin{itemize}
\item returntype {\bfseries function()}
Explanation of function. returntype can be any one of MetaPost
types plus global, draw or drawlabel.
global means that the function
changes some of the global variables. draw means that
the function
changes the currentpicture. drawlabel means that the
function changes
the currentpicture and adds text to it.
\begin{enumerate}
\item {\ttfamily type1}
Explanation of the first argument. The type of
one argument can be any one
of MetaPost types plus {\ttfamily suffix} or
{\ttfamily text}.
\item {\ttfamily type2}
Explanation of the second argument.
There is the possibility that the
function has no arguments. In that case the
function is presented like
"returntype {\bfseries function}".
\item Etc.
\end{enumerate}
\end{itemize}
\subsection{Global variables}
\begin{tscreen}
\begin{verbatim}
boolean ParallelProj
boolean SphericalDistortion
\end{verbatim}
\end{tscreen}
Kind of projection calculated by {\ttfamily rp}.
By default projections
are rigorous but if {\ttfamily ParallelProj} is set
{\ttfamily true} then
parallel lines remain parallel in the projection.
It is the same as
placing the point of view infinitely far without loosing
sight.
If {\ttfamily SphericalDistortion} is set {\ttfamily true}
there will be a
distortion coming from: (i) the projection being done
on a sphere of
center {\ttfamily f} and (ii) this sphere being plaited
onto the paper page.
\begin{figure}[tbp]
\ifpdf
\else
\centerline{\epsfig{file=../allps/rigorousdiscSD.1,height=5cm,angle=0}}\fi
\ifpdf
\centerline{\epsfig{file=../nontextualpng/rigorousdiscSD.1.png}}\fi
\caption{Figure that uses {\ttfamily SphericalDistortion:=true} and {\ttfamily rigorousdisc}.}
\end{figure}
\label{sphericaldisc}
\begin{tscreen}
\begin{verbatim}
color f, viewcentr
\end{verbatim}
\end{tscreen}
The point of view is {\ttfamily f}. The plane or sphere
of projection contains
the center of view {\ttfamily viewcentr}.
The axis parallel to zz that contains the
{\ttfamily viewcentr} is projected on a vertical line.
\begin{tscreen}
\begin{verbatim}
numeric Spread
pair ShiftV, OriginProjPagePos
numeric PageWidth
numeric PageHeight
\end{verbatim}
\end{tscreen}
These variables control
the placement of the projection on the
paper. {\ttfamily Spread} is the magnification
and {\ttfamily ShiftV} is the position of the
{\ttfamily viewcentr} projection on the
paper. But, if at some point in your program you introduce
{\ttfamily produce\_auto\_scale} then the
{\ttfamily currentpicture} will be
centered at {\ttfamily OriginProjPagePos}
and scaled to fit inside a rectangle of
{\ttfamily PageWidth} by {\ttfamily PageHeight}.
\begin{tscreen}
\begin{verbatim}
color V[]
color L[]p[]
color F[]p[]
\end{verbatim}
\end{tscreen}
Vertexes, lines and faces.
The idea here is to draw
polygons and/or arbitrary lines in 3D space.
Defining the polygons and
the lines can be a bit tedious as {\ttfamily FEATPOST} is not
interactive. First, one defines a list of the
vertexes ({\ttfamily V[]}) that define the
polygons and/or the lines.
There is a list of polygons and a list of
lines. Each polygon ({\ttfamily F[]p[]}) or
line ({\ttfamily L[]p[]}) is itself a list of vertexes.
All vertexes of the same poligon should belong
to the same plane.
\begin{tscreen}
\begin{verbatim}
numeric NL
numeric npl[]
numeric NF
numeric npf[]
\end{verbatim}
\end{tscreen}
Number of lines, number of vertexes of each line,
number of faces, number of vertexes of each face.
\begin{tscreen}
\begin{verbatim}
numeric PrintStep
\end{verbatim}
\end{tscreen}
{\ttfamily Printstep} is the size of iterative jumps
along lines. Used by
{\ttfamily lineraytrace}, {\ttfamily faceraytrace} and
{\ttfamily pathofstraightline}.
Big {\ttfamily Printstep}s make fast raytracings.
\begin{tscreen}
\begin{verbatim}
boolean FCD[]
colour TableC[]
numeric TableColors
numeric FC[]
colour HigColor
colour SubColor
color LightSource
\end{verbatim}
\end{tscreen}
{\ttfamily FCD} means "face color defined". The
{\ttfamily draw\_invisible} macro draws
polygons in colour, if it is defined. The colour must be
selected from the table of colours {\ttfamily TableC} that has
as many as {\ttfamily TableColors}. The colour {\ttfamily FC}
of each polygon will depend on its position relatively to
{\ttfamily LightSource} where we suppose there is a lamp that
emits light coloured {\ttfamily HigColor}. Furthermore the
colour of each polygon may be modified if it belongs to a
functional or parametric surface. In this case, if we are
looking at the polygon from below than {\ttfamily SubColor} is
subtracted from its colour.
\begin{tscreen}
\begin{verbatim}
numeric RopeColorSeq[]
numeric RopeColors
\end{verbatim}
\end{tscreen}
These are used by {\ttfamily ropepattern}.
\begin{tscreen}
\begin{verbatim}
numeric TDAtiplen
numeric TDAhalftipbase
numeric TDAhalfthick
\end{verbatim}
\end{tscreen}
These control the shape of Three-Dimensional Arrows.
\begin{tscreen}
\begin{verbatim}
boolean ShadowOn
numeric HoriZon
\end{verbatim}
\end{tscreen}
When {\ttfamily ShadowOn} is set {\ttfamily true}, some objects can
cast a black shadow on a horizontal plane of {\ttfamily Z}
coordinate equal to {\ttfamily HoriZon} (an area from
this plane may be drawn with {\ttfamily setthestage}) as if
there is a punctual source of light at
{\ttfamily LightSource}.
The macros that can produce shadows, in addition to their
specific production, are
\begin{itemize}
\item {\ttfamily emptyline}
\item {\ttfamily rigorousdisc}
\item {\ttfamily verygoodcone}
\item {\ttfamily tropicalglobe}
\item {\ttfamily whatisthis}
\item {\ttfamily kindofcube}
\item {\ttfamily draw\_all\_test}
\item {\ttfamily fill\_faces}
\item {\ttfamily positivecharge}
\end{itemize}
All macros that contain {\bfseries shadow} in their name
calculate the location of shadows (using {\ttfamily cb}).
\begin{tscreen}
\begin{verbatim}
path VGAborder
\end{verbatim}
\end{tscreen}
This path and the macro {\ttfamily produce\_vga\_border} are
meant to help you clip the {\ttfamily currentpicture} to a 4:3
rectangle as in a movie frame.
\begin{tscreen}
\begin{verbatim}
pair PhotoPair[]
color PhotoPoint[]
numeric PhotoMarks
\end{verbatim}
\end{tscreen}
These are used by {\ttfamily photoreverse}.
\begin{tscreen}
\begin{verbatim}
pen ForePen, BackPen
path CLPath
numeric NCL
\end{verbatim}
\end{tscreen}
These are used by {\ttfamily closedline}.
\subsection{Definitions}
\begin{itemize}
\item global makeline@\#( text1)
\item global makeface@\#( text1)
\end{itemize}
Both of these functions ease the task of
defining lines and polygons. Just
provide a list of vertexes in the right
sequence for each polygon and/or
line. Suppose a tetrahedron
\begin{tscreen}
\begin{verbatim}
V3:=(+1,-1,-1);V2:=(-1,+1,-1);
V4:=(+1,+1,+1);V1:=(-1,-1,+1);
makeface2(1,2,3);makeface3(1,2,4);
makeface1(3,4,1);makeface4(3,4,2);
\end{verbatim}
\end{tscreen}
The
number in the last makeface or last
makeline procedure name must be the
number of polygons or lines. All polygons and lines from 1 upto this
number must be defined but the sorting may be any of your liking.
\subsection{Macros}
\subsubsection{Very Basic Macros}
\begin{itemize}
\item numeric {\bfseries X()}
Returns the first coordinate of a point or vector (of
color type). Replaces {\ttfamily redpart}.
\item numeric {\bfseries Y()}
Returns the second coordinate of a point or vector.
Replaces {\ttfamily greenpart}.
\item numeric {\bfseries Z()}
Returns the second coordinate of a point or vector.
Replaces {\ttfamily bluepart}.
\item draw {\bfseries produce\_auto\_scale}
The currentpicture is centered in, and adjusted
to the size of, an A4
paper page. This avoids the control of {\ttfamily Spread} and
{\ttfamily ShiftV}.
\item string {\bfseries cstr()} Converts a color into its
string. Usefull in combination with {\ttfamily getready}.
\item string {\bfseries bstr()} Converts a boolean expression into its
string. Usefull in combination with {\ttfamily getready}.
\end{itemize}
\subsubsection{Vector Calculus}
\begin{itemize}
\item color {\bfseries N()} Unit vector. Returns
{\ttfamily black} (the null vector) when the argument has
null norm. The "N" means "normalized".
\item numeric {\bfseries cdotprod()} Dot product of two
vectors.
\item color {\bfseries ccrossprod()} Cross product of two
vectors.
\item numeric {\bfseries ndotprod()} Cossine of the angle
beetween two vectors.
\item color {\bfseries ncrossprod()} Normalized cross product
of twovectors.
\item numeric {\bfseries conorm()} Euclidean norm of a
vector.
\item numeric {\bfseries getangle()} Angle beetween two
vectors.
\item pair {\bfseries getanglepair()} Orientation angles
of a vector. The first angle ({\ttfamily xpart}) is
measured beetween the vector projection on the {\ttfamily XY}
plane and the {\ttfamily X} axis. The second angle
({\ttfamily ypart})is measured
beetween the vector and its projection on the {\ttfamily XY}
plane. This may be usefull to find the arguments of
{\ttfamily kindofcube}
\item color {\bfseries eulerrotation()} Three-dimensional
rotation of a vector.
\begin{enumerate}
\item {\ttfamily numeric} Angle of rotation around the
{\ttfamily Z} component.
\item {\ttfamily numeric} Angle of rotation around the
rotated {\ttfamily Y} component.
\item {\ttfamily numeric} Angle of rotation around the
two times rotated {\ttfamily X} component.
\item {\ttfamily color} Vector to be rotated.
\end{enumerate}
\item color {\bfseries randomfear} Generates a randomly
oriented unit vector.
\end{itemize}
\subsubsection{Projection Macros}
\begin{itemize}
\item pair {\bfseries rp()} Converts spatial positions into
planar positions on the paper page. The conversion
considers the values of the following global
variables: {\ttfamily viewcentr},
{\ttfamily ParallelProj}, {\ttfamily SphericalDistortion},
{\ttfamily Spread} and {\ttfamily ShiftV}. When both
{\ttfamily ParallelProj} and {\ttfamily SphericalDistortion}
are {\ttfamily false} it won't work if either (i) the
vectors {\ttfamily f-viewcentr} and {\ttfamily f-R} are
perpendicular ({\ttfamily R} is the argument) or (ii)
{\ttfamily f} and {\ttfamily viewcentr} share the same
{\ttfamily X} and {\ttfamily Y} coordinates.
\begin{enumerate}
\item {\ttfamily color} Spatial position.
\end{enumerate}
\item color {\bfseries cb()} Calculates the position of the
shadow of a point. Uses {\ttfamily HoriZon} and
{\ttfamily LightSource}.
\begin{enumerate}
\item {\ttfamily color} Point position.
\end{enumerate}
\item color {\bfseries projectpoint()} Calculates the
intersection beetween a plane and a straight
line. The plane contains a given point and is
perpendicular to the line connecting the
{\ttfamily LightSource} and this same point.
The line is defined by another given point and the
{\ttfamily LightSource}. Summary: {\ttfamily projectpoint}
returns the projection of the second argument on a
plane that contains the first argument. Can be used to
draw shadows cast on generic planes.
\begin{enumerate}
\item {\ttfamily color} Origin of the projection plane.
\item {\ttfamily color} Point to be projected.
\end{enumerate}
\end{itemize}
\subsubsection{Plain Basic Macros}
\begin{itemize}
\item draw {\bfseries signalvertex()} Draws a dot
sized inversely proportional to its distance from
the viewpoint {\ttfamily f}.
\begin{enumerate}
\item {\ttfamily color} Location.
\item {\ttfamily numeric} Factor of proportionality
("size of the dot").
\item {\ttfamily colour} Colour of the dot.
\end{enumerate}
\begin{figure}[tbp]
\ifpdf
\else
\centerline{\epsfig{file=../allps/torus.1,height=5cm,angle=0}}\fi
\ifpdf
\centerline{\epsfig{file=../nontextualpng/torus.1.png}}\fi
\caption{Figure that uses {\ttfamily signalvertex}.}
\end{figure}
\item path {\bfseries pathofstraightline()} When using
{\ttfamily SphericalDistortion:=true}, straight lines
look like curves. This macro returns the curved path
of a straight line beetween two points. This path will
have a greater {\ttfamily length} ("time") when
{\ttfamily PrintStep} is made smaller.
\item drawlabel {\bfseries cartaxes()}
Cartesean axes with prescribed lenghtes and apropriate labels.
\begin{enumerate}
\item {\ttfamily numeric} Length of the {\ttfamily X} axe.
\item {\ttfamily numeric} Length of the {\ttfamily Y} axe.
\item {\ttfamily numeric} Length of the {\ttfamily Z} axe.
\end{enumerate}
\item draw {\bfseries emptyline()} This procedure produces
a sort of a tube that can cross over itself. It
facilitates the drawing of, for instance, thick
helical curves but it won't
look right if the curves are drawn getting apart from
the point of view. Please, accept this inconveniance.
As like many other {\ttfamily FEATPOST} macros this one
can produce visually correct diagrams only in limited
conditions. Can cast a shadow.
\begin{enumerate}
\item {\ttfamily boolean} Choose {\ttfamily true} to join
this line with a previously drawn line.
\item {\ttfamily numeric} Factor of proportionality
("diameter of the tube"). The tubes are just
sequences of dots drawn by {\ttfamily signalvertex}.
\item {\ttfamily colour} Colour of the tube border.
\item {\ttfamily colour} Colour of the tube.
\item {\ttfamily numeric} Total number of dots on the
tube line.
\item {\ttfamily numeric} Fraction of the tube diameter
that is drawn with the tube colour.
\item {\ttfamily numeric} This is the number of dots
that are redrawn with the colour of the tube for
each drawn dot with the color of the tube
border. Usually 1 or 2 are enough.
\item {\ttfamily text} This is the name a function
that returns a 3D point of the line for each value
of a parameter in beetween 0 and 1.
\end{enumerate}
\begin{figure}[tbp]
\ifpdf
\else
\centerline{\epsfig{file=../allps/joinedemptylines.1,height=5cm,angle=0}}\fi
\ifpdf
\centerline{\epsfig{file=../nontextualpng/joinedemptylines.1.png}}\fi
\caption{Figure that uses {\ttfamily emptyline}.
The junction point of two different lines is indicated
by an arrow. Note the unperfection on the top
right, inside the upper turn. }
\end{figure}
\label{joinedemptylines}
\item draw {\bfseries closedline()} This procedure produces
a tube that can cross over itself. It
facilitates the drawing of, for instance, thick
helical curves but it won't
look right as its thickness does not change with the
distance from the point of view. The drawing is
entirely done in two dimensions, so the tube diameter
depends on the global variables {\ttfamily ForePen} and
{\ttfamily BackPen}. There can be more than one closed
line in a figure but all get the same diameter.
\begin{enumerate}
\item {\ttfamily numeric} Total number of path segments
on the tube line.
\item {\ttfamily numeric} Use 0.5 or more.
\item {\ttfamily numeric} Use 0.75 or more.
\item {\ttfamily text} This is the name a function
that returns a 3D point of the closed line for each value
of a parameter in beetween 0 and 1.
\end{enumerate}
\item drawlabel {\bfseries angline()}
Draws an arch beetween two straight lines with a
common point and places a label
near the middle of the arch (marks an
angle).
\begin{enumerate}
\item {\ttfamily color} Point of one line.
\item {\ttfamily color} Point ot the other line.
\item {\ttfamily color} Common point.
\item {\ttfamily numeric} Distance beetween the arch and
the common point.
\item {\ttfamily picture} Label.
\item {\ttfamily suffix} Position of the label relatively
to the middle of the arch. May
be one of {\ttfamily lft, rt, top, bot, ulft, urt,
llft} and {\ttfamily lrt}.
\end{enumerate}
\item drawlabel {\bfseries anglinen()}
The same as the previous function but the
sixth argument is numeric:
0={\ttfamily rt};
1={\ttfamily urt};
2={\ttfamily top};
3={\ttfamily ulft};
4={\ttfamily lft};
5={\ttfamily llft};
6={\ttfamily bot};
7={\ttfamily lrt};
any other number places the label
on the middle of the arch.
\item draw {\bfseries squareangline()}
This is supposed to mark 90 degree angles
but works for any angle value.
\begin{enumerate}
\item {\ttfamily color} Point of one line.
\item {\ttfamily color} Point ot the other line.
\item {\ttfamily color} Common point.
\item {\ttfamily numeric} Distance beetween the "arch"
and the common point.
\end{enumerate}
\item path {\bfseries rigorouscircle()}
3D circle. The total "time" of this path is 8. This
small number makes it easy to select parts of the
path. The circle is drawn using the
"left-hand-rule". If you put your left-hand thumb
parallel the circle axe then the other left-hand
fingers curl in the same sense as the circle
path. This path allways starts, approching the view
point, from a point on a diameter of the
circle that projects orthogonaly to its axe, and
rotating around the axe in the way of the left-hand-rule.
\begin{enumerate}
\item {\ttfamily color} Center of the circle.
\item {\ttfamily color} Direction orthogonal to the
circle (circle axe).
\item {\ttfamily numeric} Radius of the circle.
\end{enumerate}
\begin{figure}[tbp]
\ifpdf
\else
\centerline{\epsfig{file=../allps/anglinerigorouscircle.1,height=5cm,angle=0}}\fi
\ifpdf
\centerline{\epsfig{file=../allpng/anglinerigorouscircle.1.gs.png}}\fi
\caption{Figure that uses {\ttfamily anglinen} and {\ttfamily rigorouscircle}.}
\end{figure}
\item draw {\bfseries tdarrow()} Draws a flat arrow that
begins at the first argument and ends at the second.
The shape of the arrow is controled by the global
variables {\ttfamily TDAtiplen, TDAhalftipbase, TDAhalfthick}.
\item path {\bfseries twocyclestogether()} This macro
allows you to draw any solid that has no vertexes
and that has two, exactly two, planar cyclic edges.
In fact, it doesn't need to be a solid. Just
provide the pathes of both cyclic edges as arguments
but note that the returned path is polygonal.
In order to complete
the drawing of this solid you have to choose one of
the edges to be drawn immediatly afterwards. This is
done automatically by the {\ttfamily whatisthis} macro
for the case of two parallel and concentric ellipses.
\item path {\bfseries ellipticpath()} Produces an elliptic
path in 3D space.
\begin{enumerate}
\item {\ttfamily color} Position of the center.
\item {\ttfamily color} Major or minor axe.
\item {\ttfamily color} The other axe.
\end{enumerate}
\item drawlabel {\bfseries labelinspace()} Draw some 2D
{\ttfamily picture} on some 3D plane (only when
{\ttfamily ParallelProj:=true}).
\begin{enumerate}
\item {\ttfamily color} Position for the lower-left
corner.
\item {\ttfamily color} Orientation of the picture's
bottom edge.
\item {\ttfamily color} Orientation of the picture's
letf edge.
\item {\ttfamily text} 2D picture's name.
\end{enumerate}
\begin{figure}[tbp]
\ifpdf
\else
\centerline{\epsfig{file=../allps/labelinspace.1,height=5cm,angle=0}}\fi
\ifpdf
\centerline{\epsfig{file=../allpng/labelinspace.1.gs.png}}\fi
\caption{Example that uses {\ttfamily labelinspace}.}
\end{figure}
\end{itemize}
\subsubsection{Standard Objects}
\begin{itemize}
\item path {\bfseries goodcirclepath()}
Another 3D circle macro. More rigorous
than {\ttfamily rigorouscircle} but when
the direction ortogonal to the circle is almost
orthogonal to the line {\ttfamily viewpoint--center}
it doesn't work correctly.
The total "time" of this path is 36.
\begin{enumerate}
\item {\ttfamily color} Center of the circle.
\item {\ttfamily color} Direction ortogonal to
the circle.
\item {\ttfamily numeric} Radius of the
circle.
\end{enumerate}
\item draw {\bfseries spatialhalfsfear()} An
hemisphere. Doesn't work with {\ttfamily f} inside it.
\begin{enumerate}
\item {\ttfamily color} Center.
\item {\ttfamily color} Vector ortogonal to
the frontier circle and pointing
out of the concavity.
\item {\ttfamily numeric} Radius of the
(hemi)sphere.
\end{enumerate}
\item path {\bfseries spatialhalfcircle()}
And yet another 3D circle macro. Only the visible or the hidden
part. This is usefull to mark sections of
cylinders or spherical major circles.
\begin{enumerate}
\item {\ttfamily color} Center of the circle.
\item {\ttfamily color} Direction ortogonal to the
circle.
\item {\ttfamily numeric} Radius of the circle.
\item {\ttfamily boolean} The visible part is selected with
{\ttfamily true} and the hidden
with {\ttfamily false}.
\end{enumerate}
\item draw {\bfseries rigorousdisc()}
3D opaque cylinder with/without a hole. Can cast a
shadow (without the hole).
\begin{enumerate}
\item {\ttfamily numeric} Ray of an axial hole.
\item {\ttfamily boolean} Option for completly opaque cylinder
({\ttfamily true}) or partial
pipe ({\ttfamily false}) when there is no hole. When
the cylinder has an hole this option should be
{\ttfamily true}.
\item {\ttfamily color} Center of one circular base.
\item {\ttfamily numeric} Radius of both circular bases.
\item {\ttfamily color} Vector that defines the length and
orientation of the
cylinder. The addition the third and fifth
arguments should give the
position of the center of the other circular base.
\end{enumerate}
\item draw {\bfseries verygodcone()} 3D cone. Can cast a shadow.
\begin{enumerate}
\item {\ttfamily bolean} Option to draw dashed evenly
the invisible edge ({\ttfamily true}) or not
({\ttfamily false}).
\item {\ttfamily color} Center of the circular base.
\item {\ttfamily color} Direction ortogonal to the
circular base.
\item {\ttfamily numeric} Radius of the circular base.
\item {\ttfamily color} Position of the vertex
\end{enumerate}
\item path {\bfseries rigorousfearpath()}
3D sphere. Simple but hard.
\begin{enumerate}
\item {\ttfamily color} Center position.
\item {\ttfamily numeric} Radius.
\end{enumerate}
\item draw {\bfseries tropicalglobe()} Globe with
minor circles. Can cast a shadow.
\begin{enumerate}
\item {\ttfamily numeric} Number of marked latitudes.
\item {\ttfamily color} Center position.
\item {\ttfamily numeric} Radius
\item {\ttfamily color} Axe orientation.
\end{enumerate}
\begin{figure}[tbp]
\ifpdf
\else
\centerline{\epsfig{file=../allps/tropicalglobe.1,height=5cm,angle=0}}\fi
\ifpdf
\centerline{\epsfig{file=../nontextualpng/tropicalglobe.1.png}}\fi
\caption{Figure that uses {\ttfamily tropicalglobe}.
}
\end{figure}
\item draw {\bfseries whatisthis()} An elliptic
frustum. Both edges are elliptic an have the same
orientation but one may be greater than the other.
Can cast a shadow.
\begin{enumerate}
\item {\ttfamily color} Reference edge center.
\item {\ttfamily color} Major or minor axe.
\item {\ttfamily color} The other axe.
\item {\ttfamily numeric} Length of the original
cylinder.
\item {\ttfamily numeric} Edges axes length ratio.
\end{enumerate}
\item draw {\bfseries kindofcube()} Polyhedron with six
orthogonal faces (cuboid).
\begin{enumerate}
\item {\ttfamily boolean} Also draw the invisible edges
{\ttfamily dashed evenly} ({\ttfamily true}) or do not.
\item {\ttfamily boolean} The reference point may be a
vertex ({\ttfamily true}) or the center({\ttfamily false}).
\item {\ttfamily color} Reference point.
\item {\ttfamily numeric} Alpha1.
\item {\ttfamily numeric} Alpha2.
\item {\ttfamily numeric} Alpha3.
\item {\ttfamily numeric} L1. Length of the first side.
\item {\ttfamily numeric} L2. Length of the second side.
\item {\ttfamily numeric} L3. Length of the third side.
\end{enumerate}
These arguments are represented in the next figure.
\begin{figure}[tbp]
\ifpdf
\else
\centerline{\epsfig{file=../allps/kindofcube.2,height=5cm,angle=0}}\fi
\ifpdf
\centerline{\epsfig{file=../allpng/kindofcube.2.gs.png}}\fi
\caption{Figure that uses and explains {\ttfamily kindofcube}. Note that the three indicated
angles may be used as arguments of {\ttfamily eulerrotation}.}
\end{figure}
\label{kindofcube2}
\item draw {\bfseries setthestage()} Produces an horizontal
square made of squares. Its {\ttfamily Z} coordinate is defined by
{\ttfamily HoriZon}.
\begin{enumerate}
\item {\ttfamily numeric} Number of squares in each side.
\item {\ttfamily numeric} Size of each side.
\end{enumerate}
\item draw {\bfseries setthearena()} Produces an horizontal
circle made of circles. Its {\ttfamily Z} coordinate is defined by
{\ttfamily HoriZon}. Due to the fact that the center of a
circle is not on the center of its central perspective
projection, this may look a bit strange.
\begin{enumerate}
\item {\ttfamily numeric} Number of circles on a
diameter.
\item {\ttfamily numeric} Diameter.
\end{enumerate}
\item draw {\bfseries smoothtorus()} Toxic donut (not to be
eaten). Produces an error message when {\ttfamily f} is
close to the table.
\begin{enumerate}
\item {\ttfamily color} Center.
\item {\ttfamily color} Direction orthogonal to the
torus plane.
\item {\ttfamily numeric} Big ray.
\item {\ttfamily numeric} Small ray.
\end{enumerate}
\end{itemize}
\subsubsection{Composed Objects}
\begin{itemize}
\item draw {\bfseries positivecharge()} Draws a sphere with a
plus or minus sign on the surface. The horizontal
segment of the sign is drawn on the horizontal plane
that contains the sphere center. The middle point of
this segment is on a vertical plane containing the
viewpoint.
\begin{enumerate}
\item {\ttfamily boolean} Selects the sign ({\ttfamily true}
means positive).
\item {\ttfamily color} Position of the center.
\item {\ttfamily numeric} Sphere ray.
\end{enumerate}
\begin{figure}[tbp]
\ifpdf
\else
\centerline{\epsfig{file=../allps/positivecharge.1,height=5cm,angle=0}}\fi
\ifpdf
\centerline{\epsfig{file=../nontextualpng/positivecharge.1.png}}\fi
\caption{Figure that uses {\ttfamily positivecharge},
{\ttfamily getready} and {\ttfamily doitnow}.
}
\end{figure}
\item draw {\bfseries simplecar()} Draws a cuboid and four
discs in a configuration ressembling an automobile. The
first three arguments of {\ttfamily simplecar} are the same
as the the last seven arguments of {\ttfamily kindofcube}
but grouped in colors.
\begin{enumerate}
\item {\ttfamily color} Center of the cuboid that
constitutes the body of the car..
\item {\ttfamily color} Angles defining the orientation
of the car (see {\ttfamily kindofcube}).
\item {\ttfamily color} Dimensions of the car.
\item {\ttfamily color} Characteristics of the front
wheels. {\ttfamily redpart}-distance from the
front. {\ttfamily greenpart}-width of the front wheels (length
of the cylinders). {\ttfamily bluepart}-wheel ray.
\item {\ttfamily color} Same as above for the rear wheels
\end{enumerate}
\begin{figure}[tbp]
\ifpdf
\else
\centerline{\epsfig{file=../allps/simplecar.1,height=5cm,angle=0}}\fi
\ifpdf
\centerline{\epsfig{file=../nontextualpng/simplecar.1.png}}\fi
\caption{Figure that uses {\ttfamily setthearena} and
{\ttfamily simplecar}. }
\end{figure}
\end{itemize}
\subsubsection{Shadow Pathes}
\begin{itemize}
\item draw {\bfseries signalshadowvertex()} Draws the
shadow of a {\ttfamily signalvertex} dot.
\begin{enumerate}
\item {\ttfamily color} Location of the light-blocking dot.
\item {\ttfamily numeric} Factor of proportionality
("size of the dot").
\item {\ttfamily colour} Colour of the dot.
\end{enumerate}
\item path {\bfseries ellipticshadowpath()} Produces the
shadow of an elliptic path.
\begin{enumerate}
\item {\ttfamily color} Position of the center.
\item {\ttfamily color} Major or minor axe.
\item {\ttfamily color} The other axe.
\end{enumerate}
\item path {\bfseries circleshadowpath()} Produces the
shadow of a circle.
\begin{enumerate}
\item {\ttfamily color} Center of the circle.
\item {\ttfamily color} Direction ortogonal to
the circle.
\item {\ttfamily numeric} Radius of the
circle.
\end{enumerate}
\item path {\bfseries rigorousfearshadowpath()}
3D sphere shadow.
\begin{enumerate}
\item {\ttfamily color} Center position.
\item {\ttfamily numeric} Radius.
\end{enumerate}
\end{itemize}
\subsubsection{Differential Equations}
Before we proceed, be aware that solving differential
equations (DE) is mainly an experimental activity. The most
probable result of a procedure that atempts to solve a DE
is garbage. The procedure may be unstable, the solution
may be littered with singularities or something may go
wrong. If you don't have a basic understanding of
differential equations then skip this section, please.
\begin{itemize}
\item path {\bfseries fieldlinepath()} A vectorial field line is
everywhere tangent to the field vectors.
Two different parallel fields
have the same field lines. So the field only
constrains the direction of the field lines, not any kind
of "speed" and, therefore, it is recommended to
normalize the field before using this macro that
contains a second-order Runge-Kutta method
implementation.
\begin{enumerate}
\item {\ttfamily numeric} Total number of steps.
\item {\ttfamily color} Initial position.
\item {\ttfamily numeric} Step (arc)length.
\item {\ttfamily text} Name of the function that
returns a field vector for each 3D position.
\end{enumerate}
\item path {\bfseries trajectorypath()} The acceleration of a
particle in a conservative force field is equal to the
ratio (conservative force)/(particle mass). The
acceleration is also equal to the second order time
derivative of the particle position. This produces a
second order differential equation that we solve using a
second-order Runge-Kutta method implementation.
\begin{enumerate}
\item {\ttfamily numeric} Total number of steps.
\item {\ttfamily color} Initial position.
\item {\ttfamily color} Initial velocity.
\item {\ttfamily numeric} Time step.
\item {\ttfamily text} Name of the function that
returns a (force/mass) vector for each 3D position.
\end{enumerate}
\item path {\bfseries magnetictrajectorypath()} The
acceleration of a
charged particle in a magnetic field is equal to the
ratio (magnetic force)/(particle mass) but the magnetic
force depends on both the velocity and the magnetic field. The
acceleration is also equal to the second order time
derivative of the particle position. This produces a
second order differential equation that we solve using a
fourth-order Runge-Kutta method implementation.
\begin{enumerate}
\item {\ttfamily numeric} Total number of steps.
\item {\ttfamily color} Initial position.
\item {\ttfamily color} Initial velocity.
\item {\ttfamily numeric} Time step.
\item {\ttfamily text} Name of the function that
returns a (charge)*(magnetic field)/(partcle mass)
vector for each 3D position.
\end{enumerate}
\end{itemize}
\subsubsection{Renderers}
\begin{itemize}
\item draw {\bfseries sharpraytrace} Heavy procedure that
draws only the visible part of all edges of all defined
faces. There's no point in using this procedure when
there are no intersections beetween faces. Any how
this will not work for non-convex faces nor when
{\ttfamily SphericalDistortion:=true}.
\item draw {\bfseries lineraytrace()} Draws only the
visible part of all defined lines using sequences of dots
({\ttfamily signalvertex} and {\ttfamily PrintStep}).
\begin{enumerate}
\item {\ttfamily numeric} Dot size.
\item {\ttfamily colour} Dot colour.
\end{enumerate}
\item draw {\bfseries faceraytrace()} Draws only the
visible part of all edges of all defined faces
using sequences of dots
({\ttfamily signalvertex} and {\ttfamily PrintStep}).
\begin{enumerate}
\item {\ttfamily numeric} Dot size.
\item {\ttfamily colour} Dot colour.
\end{enumerate}
\item draw {\bfseries draw\_all\_test()} Draws all defined
edges (and lines) in a correct way independently of
the kind of projection used. Can cast a shadow (but
the shadow is not correct when
{\ttfamily SphericalDistortion:=true}).
\begin{enumerate}
\item {\ttfamily colour} Colour of the segments.
\item {\ttfamily boolean} If {\ttfamily true} the lines
are also drawn.
\end{enumerate}
\item draw {\bfseries fill\_faces()} Unfills and draws all
faces in the order they were defined (without
sorting). Can cast a shadow.
\begin{enumerate}
\item {\ttfamily text} Like the argument of
{\ttfamily drawoptions} but used only inside this
macro and only for the edges.
\end{enumerate}
\item draw {\bfseries draw\_invisible()} This is a fast way
of removing hidden lines that doesn't
allow for intersecting polygons nor
polygons of very different area. It works by
sorting all polygons by
distance to {\ttfamily f} and then by "filling" the
polygons. This routine may be used to draw graphs
of 3D surfaces.
\begin{enumerate}
\item {\ttfamily boolean} If {\ttfamily true} polygons are
sorted relatively to
nearest vertex and, if {\ttfamily false}, relatively to their
mass center. Choose {\ttfamily false} for surface
plots.
\item {\ttfamily boolean} If {\ttfamily false} then the
polygons are painted with their {\ttfamily FC} colour
modified by {\ttfamily LightSource}. If {\ttfamily true}
then the next two arguments are used and the
polygons are darkened proportionaly to their
distance from {\ttfamily f}.
\item {\ttfamily colour} Colour of faces.
\item {\ttfamily colour} Colour of the edges.
\end{enumerate}
\item global {\bfseries getready()} When you don't want to
edit the source of the MetaPost program, to resort the
objects so they'll be drawn correctly, use this macro
and the next.
\begin{enumerate}
\item {\ttfamily string} Command line that would draw
some object. For instance:
{\ttfamily "rigorousfearpath(black,1);"}.
\item {\ttfamily color} Reference position of that
object.
\end{enumerate}
\item draw {\bfseries doitnow} The reference positions
given as arguments of previous {\ttfamily getready} calls
are used to sort and draw the objects also given as
string arguments to previous {\ttfamily getready}
calls. Remember to initialize {\ttfamily Nobjects:=0;}
before a second figure.
\end{itemize}
\subsubsection{Nematics (Direction Fields)}
Nematics are the least ordered liquid crystals. Their
configurations can be described by direction fields
(vector fields without arrows). The two following routines
ease the task of representing their configurations.
\begin{itemize}
\item global {\bfseries generatedirline()} Defines a single
straight line segment in a given position and with a
given orientation.
\begin{enumerate}
\item {\ttfamily numeric} Line index number.
\item {\ttfamily numeric} Angle beetween the {\ttfamily X}
axe and the projection of the line on the
{\ttfamily XY} plane.
\item {\ttfamily numeric} Angle beetween the line
and the {\ttfamily XY} plane.
\item {\ttfamily numeric} Line (arc)length.
\item {\ttfamily color} Position of the line middle
point.
\end{enumerate}
\item draw {\bfseries director\_invisible()} This is a
direction field renderer that can sort direction
lines. This routine
draws straight lines of given "thickness" beetween the
first all the points
of all the {\ttfamily L[]p[]} lines. It is supposed to
help you draw vector fields
without arrows but taking care of invisibility.
The lines may be
generated by {\ttfamily generatedirline} or by other macros.
\begin{enumerate}
\item {\ttfamily boolean} When there is no need to sort
lines you may use {\ttfamily false} here.
\item {\ttfamily numeric} "Thickness" of the
direction lines
\item {\ttfamily boolean} Use {\ttfamily true} for cyclic
"direction" lines.
\end{enumerate}
\end{itemize}
\begin{figure}[tbp]
\ifpdf
\else
\centerline{\epsfig{file=../allps/twistflat.1,height=5cm,angle=0}}\fi
\ifpdf
\centerline{\epsfig{file=../nontextualpng/twistflat.1.png}}\fi
\caption{Figure that uses {\ttfamily director\_invisible} and {\ttfamily generatedirline}.}
\end{figure}
\subsubsection{Surface Plots}
Many powerfull plotting packages like
{\ttfamily
{\em gnuplot} {\tt \aakurl}
} and
{\ttfamily
{\em gri} {\tt \aalurl}
}
are freely available. Because of this, {\ttfamily FEATPOST}
surface plots are geared towards unusual features like
equilateral triangular grid, hexagonal domain and merging
together functional and parametric surface descriptions.
\begin{itemize}
\item draw {\bfseries hexagonaltrimesh()} Plots a
functional surface on a triangular or hexagonal
domain. Uses the {\ttfamily LightSource}.
\begin{enumerate}
\item {\ttfamily boolean} Select the kind of
domain. {\ttfamily true} for hexagonal and
{\ttfamily false} for triangular. The domain is
centered on the origin ({\ttfamily black}). When the
domain is hexagonal two of its corners are on the
{\ttfamily -YY} axe. When the
domain is triangular one of its corners is on the
{\ttfamily X} axe.
\item {\ttfamily numeric} Number of small triangles on
each side of the triangular domain or three times
the number of small triangles on
each side of the hexagonal domain.
\item {\ttfamily numeric} Length of the triangular
domain side or three times the hexagonal domain
side.
\item {\ttfamily text} Name of the function that
returns the {\ttfamily Z} coordinate of a surface
point of coordinates {\ttfamily X} and {\ttfamily Y}.
\end{enumerate}
\begin{figure}[tbp]
\ifpdf
\else
\centerline{\epsfig{file=../allps/hexagonaltrimesh.1,height=5cm,angle=0}}\fi
\ifpdf
\centerline{\epsfig{file=../nontextualpng/hexagonaltrimesh.1.png}}\fi
\caption{Figure that uses {\ttfamily hexagonaltrimesh}.
}
\end{figure}
\item global {\bfseries partrimesh()} Defines a parametric
surface that can be drawn with
{\ttfamily draw\_invisible}. In the following descriptions
{\ttfamily S} and {\ttfamily T} are the parameters. Remember
to initialize {\ttfamily NF}. The surface is defined so
that quadrangles are used whenever possible. If
impossible, two triangles are used but their
orientation is selected to maximize the surface
smoothness. Also note that, unlike
{\ttfamily hexagonaltrimesh()}, the spatial range you
require to be visible is always first reshaped into a
cube and second compressed or extended vertically. How
much the cube is compressed or extended depends on the
last {\ttfamily numeric} argument, the compression factor
for {\ttfamily Z}, meaning that the final height of the
cube is 2/(compression factor). Thanks to Sebastian
Sturm for pointing the need to explain this.
\begin{enumerate}
\item {\ttfamily numeric} Number of {\ttfamily T} steps.
\item {\ttfamily numeric} Number of {\ttfamily S} steps.
\item {\ttfamily numeric} Minimal {\ttfamily T} value.
\item {\ttfamily numeric} Maximal {\ttfamily T} value.
\item {\ttfamily numeric} Minimal {\ttfamily S} value.
\item {\ttfamily numeric} Maximal {\ttfamily S} value.
\item {\ttfamily numeric} Minimal {\ttfamily X} value.
\item {\ttfamily numeric} Maximal {\ttfamily X} value.
\item {\ttfamily numeric} Minimal {\ttfamily Y} value.
\item {\ttfamily numeric} Maximal {\ttfamily Y} value.
\item {\ttfamily numeric} Minimal {\ttfamily Z} value.
\item {\ttfamily numeric} Maximal {\ttfamily Z} value.
\item {\ttfamily numeric} Compression factor for {\ttfamily Z}
values.
\item {\ttfamily text} Name of the function that
returns a surface point (of {\ttfamily color} type)
for each pair ({\ttfamily S},{\ttfamily T}).
\end{enumerate}
\end{itemize}
\end{document}
|