summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/xymtex/xymyl.tex
blob: daae2314c7db06e177c49a30654a2659238c6935 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
%xymyl.tex 
%Copyright (C) 1998, Shinsaku Fujita, All rights reserved. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%This file is a part of xymtx200.tex that is the manual of the macro 
%package `XyMTeX' (version 2.00) for drawing chemical structural formulas.  
%This file is not permitted to be translated into Japanese and any other
%languages. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\chapter{Introduction}

\section{History}
\subsection{Version 1.00 (1993)}

The first version of the \XyMTeX{} system (version 1.00, 1993) 
with a detailed on-line manual 
has been depositted to NIFTY-Serve archives (FPRINT library No.\ 7) 
by the author\cite{fujita2a} and to the CTAN by volunteers\cite{fujita2b}. 
The articles on the construction and usage of \XyMTeX{} have appeared in 
Ref. \cite{fujita1,fujita1a}. 
Although the packages (style files) of the \XyMTeX{} system have 
originally aimed at using under 
the \LaTeX{}2.09 system, they also work effectively 
under the \LaTeXe{} system \cite{lamport2,goossens} without any changes. Thus, 
what you have to do is to rewrite a top statement for \LaTeX{}2.09 such as 
\begin{verbatim}
\documentstyle[epic,carom,hetarom]{article}
\end{verbatim}
into the counterpart for \LaTeXe{}, {\em e.g.}, 
\begin{verbatim}
\documentclass{article}
\usepackage{epic,carom,hetarom}
\end{verbatim}

\subsection{Version 1.01 (1996)}

The Version 1.01 of the \XyMTeX{} system has been released in 1996, 
when the system with a detailed on-line manual 
was depositted to NIFTY-Serve archives (FPRINT library No.\ 7) 
by the author \cite{fujita2c}.  The system is now available  
from Fujita's homepage \cite{fujita2d} via internet 
or from a CD-ROM that is attached to the referece manual published 
in 1997 \cite{XyMTeXbook}.\footnote{%
The basic items described in the \XyMTeX book are 
common and applied also in Version 2.00.  
Please refer to the \XyMTeX book, when 
they are used without explanations in this manual.} 

The purpose of version 1.01 is 
the updating of \XyMTeX{} to meet the \LaTeXe{} way of 
preparing packages (option style files). 
The following items have 
been revised or added for encouraging the \XyMTeX{} users 
to write articles of chemical fields. 

\begin{enumerate}
\item Each of the old sty files of \XyMTeX{} has been rewritten 
into a dtx file, from which we have prepared a new sty file by using 
the {\sf docstrip} utility of \LaTeXe. 
If you want to obtain the document of each source 
file, you may apply \LaTeXe{} to the corresponding drv file, which 
has also been prepared from the dtx file by using the {\sf docstrip} 
utility. 
\item Macros for drawing chair-form cyclohexanes and 
for drawing adamantanes of an alternative type have been added. 
\item Macros for drawing polymers have been added. 
\item The package {\sf chemist.sty}, which was originally 
prepared for \cite{fujita2}, has been rewritten into a dtx file and 
added to \XyMTeX{} as a new component. This package enables us 
to use various functions such as 
 \begin{enumerate}
 \item the numbering and cross-reference 
  of chemical compounds and derivatives, 
 \item various arrows of fixed and flexible length for chemical equations, 
 \item `chem' version and chemical environments for describing 
  chemical equations, and 
 \item various box-preparing macros for chemical or general use.  
 \end{enumerate}
\end{enumerate}

\subsection{Version 1.02 (1998, not released)}

The Version 1.02 of \XyMTeX{} has been devoted to the 
development of the nested-substitution method, 
which simplifies the coding of \XyMTeX{} commands.   
In \XyMTeX{} version 1.01, each subsitituent is assumed to be rather small 
so that it can be specified by means of a substitution list ``SUBSLIST''. 
For example, 1-fluorobenzene, 
\begin{center}
\bzdrh{4==F}
\end{center}
is drawn by the following code: 
\begin{verbatim}
\bzdrh{4==F}
\end{verbatim}
To draw a substituent with a complicated structure, 
a designation of the same line produces an insufficient result. 
Thus, if we simply write the code 
\begin{verbatim}
\bzdrh{4==\bzdrh{}}
\end{verbatim}
to draw a biphenyl structure, 
we have a separate structure as follows:

\vskip1.5\baselineskip
\begin{center}
\bzdrh{4==\bzdrh{}}
\end{center}

Within the scope of \XyMTeX version 1.01, 
such a substituent with a complicated structure 
can be treated by three distinct methods  
(see Chapters 14 and 15 of \XyMTeX book). 

\begin{enumerate}
\item(Method I)
When we write a code \verb/\bzdrh{4==}\bzdrh{}/ 
to draw a biphenyl structure, 
we obtain an insufficient result such as 
\begin{center}
\bzdrh{4==}\bzdrh{}
\end{center}
since each command has an area to draw its target sturucture. 
To remedy this situation, we can write 
\begin{verbatim}
\bzdrh{4==}\kern-33pt\bzdrh{}
\end{verbatim}
Then, we obtain the following structure:
\begin{center}
\bzdrh{4==}\kern-33pt\bzdrh{}
\end{center}
However, a more complicated adjustment is 
necessary to apply this method to a case in which 
the components of a structual formula are not linearly aligned. 
\item (Method II)
We can carry out the same task by using 
the \LaTeX{} picture einvironment. 
The code
\begin{verbatim}
\begin{picture}(1400,700)(0,0)
\put(0,0){\bzdrh{4==}}
\put(546,0){\bzdrh{}}
\end{picture}
\end{verbatim}
produces the following structure: 
\begin{center}
\begin{picture}(1400,700)(0,0)
\put(0,0){\bzdrh{4==}}
\put(546,0){\bzdrh{}}
\end{picture}
\end{center}
This method realizes such a complicated adustment as mentioned above, 
since the \verb/\put/ is capable of putting components at arbitrary positions. 
\item (Method III) 
In a further method of drawing the biphenyl structure, 
one phenyl group is regarded as a substituent of the other phenyl.
These two parts can be combined by writing a code, 
\begin{verbatim}
\bzdrh{4==\kern-25pt\lower37pt\hbox to0pt{\bzdrh{}}}
\end{verbatim}
in which the commands \verb/\kern/ (for horizontal adjustment) and 
\verb/\lower/ (for vertical adjustment) are used to adjust the 
substitution site. Thereby, we have
\begin{center}
\bzdrh{4==\kern-25pt\lower37pt\hbox to0pt{\bzdrh{}}}
\end{center}
This method has a disadvantage of calculating 
adjustment values manually for every formula to be drawn.  
\end{enumerate}

These three methods are useful for drawing complicated structure. 
However, they have an essential disadvantage: their codes give 
no, or at most partial, connectivity data between parts to be combined, though 
such parts appear to be combined as a picture. 
For example, the code 
\begin{verbatim}
\bzdrh{4==\kern-25pt\lower37pt\hbox to0pt{\bzdrh{3==Cl}}}
\end{verbatim}
producing 
\begin{center}
\bzdrh{4==\kern-25pt\lower37pt\hbox to0pt{\bzdrh{3==Cl}}}
\end{center}
has no connectivity data at the meta position to the chlorine 
atom of the scecond benzene ring. 

As clarified by the discussion in the preceding paragraphs, 
the \XyMTeX{} system should have a function to place 
substituents at appropriate sites without complex designation, 
where connectivity data are maintained during the process 
of drawing. 
The target of \XyMTeX{} Version 1.02 is to treat nested 
substitution with the automatic adjustment of subsitution sites
(named as the nested-substitution method). 
Concretely speaking, for example, 
such a code as 
\begin{verbatim}
\bzdrh{1==F;4==\bzdrh{1==(yl);3==Cl}}
\end{verbatim}
directly produces 
\begin{center}
\bzdrh{1==F;4==\bzdrh{1==(yl);3==Cl}}
\end{center}
where the code shows that the second benzene ring is 
linked to the para position of the first benzene ring 
at the meta position to the chlorine atom. 
Thus the target accomplished by the ``yl''-function, 
as shown in this code. 

\section{Version 2.00 (1998)}

The ``yl''-function developed in \XyMTeX{} Version 1.02 
is regarded as a modification  of SUSBLISTs. 
As an extention of this mothodology, 
BONDLISTs can be modified to treat ring fusion, 
since each ring fusion is considered to be a kind of 
substitution on a bond.  In addition, 
ATOMLIST can also be used to 
treat spiro rings, since each spiro ring 
is a kind of atom replacement at an appropriate vertex. 

To expand the scope of the \XyMTeX{} system, 
we introduce several new functions as follows.  
\begin{enumerate}
\item Several bond modifiers are added to draw  
alternative up- and down-bonds as well as 
to treat ring fusion. 
\item The ``yl''-function for SUBSLISTs is further improved. 
The commands \verb/\ryl/ and \verb/\lyl/ are 
prepared to typeset intervening moieties. 
\item Ring fusion is treated by adding a fusing unit to 
the BONDLIST of each command. 
\item Several fusing units (three- to six-membered units) 
are developed (fusering.sty). 
\item A new function for typesetting a spiro ring is 
introduced in each command for general use. 
A spiro ring is treated by ring-replacement technique, 
where the corresponding code is 
written in the ATOMLIST of each command. 
\item Commands for typeseting zigzag polymethylenes are 
developed (methylen.sty). 
\item Commands for drawing six-six fused carbocycles 
and heterocycles are added. 
\item An optional argument SKBONDLIST is added to 
each command of general use for drawing  
boldfaced and dotted skeletal bonds. 
\item An optional argument OMIT is added to 
each command of general use for drawing related 
skeletons by bond deletion. 
\end{enumerate}

The \XyMTeX{} system (version 2.00) consists of package files 
listed in Table \ref{tt:200a1}.  
The package file `\textsf{chemstr.sty}' is the basic file 
that is automatically read within any other package file of \XyMTeX{}. 
It contains macros for internal use, {\em e.g.}, 
common commands for bond-setting and atom-setting. 
The other package files contain macros for users. 
These files are designed to work not only as packages for \LaTeXe 
but also as option style files for \LaTeX{}2.09 (native mode). 
\begin{table}[hpbt]
\caption{Package Files of \protect\XyMTeX{}}
\label{tt:200a1}
\begin{center}
\begin{tabular}{lp{10cm}}
\hline
package name & \multicolumn{1}{c}{included functions} \\ 
\hline
\textsf{aliphat.sty}
  & macros for drawing aliphatic compounds \\
\textsf{carom.sty}
  & macros for drawing vertical and horizontal types 
    of carbocyclic compounds \\
\textsf{lowcycle.sty}
  & macros for drawing five-or-less-membered carbocyles. \\
\textsf{ccycle.sty}
  & macros for drawing bicyclic compounds etc. \\
\textsf{hetarom.sty}
  & macros for drawing vertical types of heterocyclic compounds \\
\textsf{hetaromh.sty}
  & macros for drawing horizontal types of heterocyclic compounds \\
\textsf{hcycle.sty}
  & macros for drawing pyranose and furanose derivatives \\
\textsf{chemstr.sty}
  & basic commands for atom- and bond-typesetting \\
\textsf{locant.sty}
  & commands for printing locant numeres \\
\textsf{polymers.sty}
  & commands for drawing polymers \\
\textsf{fusering.sty}
  & commands for drawing units for ring fusion \\ 
\textsf{methylen.sty}
  & commands for drawing zigzag polymethylene chains \\ 
\textsf{xymtex.sty}
  & a package for calling all package files \\
\textsf{chemist.sty}
  & commands for using `chem' version and chemical environments \\ 
\hline
\end{tabular}
\end{center}
\end{table}

The use of \textsf{xymtex.sty} calling all package files 
may sometimes cause the ``\TeX{} capacity exceeded'' error.  
In this case, you should call necessary packages distinctly 
by using the \verb/\usepackage/ command.  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\chapter{Bond Modifiers Added}

\section{Alternative Bond Modifiers for Up and Down Bonds}

In addition to the original bond modifiers (see the \XyMTeX book), 
the present version of \XyMTeX{} 
provides us with several bond modifiers that can be used  
in the argument SUBSLIST of each \XyMTeX{} command.  
These modifiers are listed in Table \ref{tt:200a} 
along with the original bond modifiers. 

\begin{table}
\caption{Locant numbering and bond modifiers for SUBSLIST}
\label{tt:200a}
\begin{center}
\begin{tabular}{lp{12cm}}
\hline
Bond Modifiers & \multicolumn{1}{c}{Printed structures} \\
\hline
\multicolumn{2}{l}{\bfseries Original Bond Modifiers} \\
           $n$ or $n$S  &  exocyclic single bond at $n$-atom \\
           $n$D         &  exocyclic double bond at $n$-atom \\
           $n$A         &  alpha single bond at $n$-atom \\
           $n$B         &  beta single bond at $n$-atom \\
           $n$Sa        &  alpha (not specified) single bond at $n$-atom \\
           $n$Sb        &  beta (not specified) single bond at $n$-atom \\
           $n$SA        &  alpha single bond at $n$-atom (dotted line) \\
           $n$SB        &  beta single bond at $n$-atom (boldface) \\
\hline 
\multicolumn{2}{l}{\bfseries Bond Modifiers Added} \\
           $n$Sd        &  alpha single bond at $n$-atom (dotted line) 
                           with an alternative direction to $n$SA \\
           $n$Su        &  beta single bond at $n$-atom (boldface) 
                           with an alternative direction to $n$SB \\
           $n$FA        &  alpha single bond at $n$-atom (dotted line) 
                           for ring fusion \\
           $n$FB        &  beta single bond at $n$-atom (boldface) 
                           for ring fusion \\
           $n$GA        &  alpha single bond at $n$-atom (dotted line) 
                           for the other ring fusion \\
           $n$GB        &  beta single bond at $n$-atom (boldface) 
                           for the other ring fusion \\
\hline
\end{tabular}
\end{center}
\end{table}

The added bond modifiers, `Sd' (d for down) and `Su' (u for up), designate 
$\alpha$- and $\beta$-bonds in such an exchanged 
manner as the original bond modifiers, `SA' and `SB' designate. 
Figure \ref{ff:200a} shows the comparison between 
the added bond modifiers and the original ones 
by using a cyclohexane skeleton (\verb/\cyclohexanev/). 

\begin{figure}[h]
\begin{center}
\cyclohexanev{1Sd==1Sd;1Su==1Su;%
2Sd==2Sd;2Su==2Su;3Sd==3Sd;3Su==3Su;%
4Sd==4Sd;4Su==4Su;5Sd==5Sd;5Su==5Su;%
6Sd==6Sd;6Su==6Su} \qquad\qquad
\cyclohexanev{1SA==1SA;1SB==1SB;%
2SA==2SA;2SB==2SB;3SA==3SA;3SB==3SB;%
4SA==4SA;4SB==4SB;5SA==5SA;5SB==5SB;%
6SA==6SA;6SB==6SB}
\caption{Bond Modifiers for $\alpha$- and $\beta$-Bonds}
\label{ff:200a}
\end{center}
\end{figure}

\section{Bond Modifiers for Ring Fusion}

In the present verstion (2.00), we have added a new function for ring fusion. 
Since the function requires bond modifiers 
for desiginating substitution at such fused positions, 
we have added the modifiers, `FA', `FB', `GA', and  `GB'. 
These modifiers are illustrated in Figure \ref{ff:200b}


\begin{figure}
\begin{center}
\cyclohexanev{1FA==1FA;1GB==1GB;3FA==3FA;3GB==3GB;5FA==5FA;5GB==5GB}
\qquad\qquad
\cyclohexanev{1FB==1FB;1GA==1GA;3FB==3FB;3GA==3GS;5FB==5FB;5GA==5GA}


\cyclohexanev{2FA==2FA;2GB==2GB;4FA==4FA;4GB==4GB;6FA==6FA;6GB==6GB}
\qquad\qquad
\cyclohexanev{2FB==2FB;2GA==2GA;4FB==4FB;4GA==4GA;6FB==6FB;6GA==6GA}
\caption{Bond Modifiers for Ring Fusion}
\label{ff:200b}
\end{center}
\end{figure}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\chapter{Nested-Substituent Method}

\section{Introduction}

Chapter 14 (Combining Structures) 
and Chapter 15 (Large Substituents) of the \XyMTeX book 
have described several techniques to draw complicated formulas. 
Among them, the nested-substituent method is most promising. 
For example, the code 
\begin{verbatim}
\bzdrh{1==Cl;4==\kern-25pt\lower37pt\hbox to0pt{\bzdrh{3==F}}}
\end{verbatim}
gives a combined structure, 
\begin{center}
\bzdrh{1==Cl;4==\kern-25pt\lower37pt\hbox to0pt{\bzdrh{3==F}}}
\end{center}
Although the code shows the connectivity between the two phenyl 
groups, the following disadvantages remain: 
\begin{enumerate}
\item The code contains no data indicating that the connection site 
is the meta-position concerning the fluorine atom. 
\item The commands \verb/\kern/ (for horizontal adjustment) and 
\verb/\lower/ (for vertical adjustment) are necessary to adjust the 
subsitutution site. 
\end{enumerate} 

As clarified by the above examples, the main target of \XyMTeX{} 
Version 2.00 is to extend the nested-substituent method 
so that it provides a function of indicating full connectivity data 
as well as a function of 
automatical adjustment without using such commands 
as \verb/\kern/ and \verb/\lower/. 

\section{``yl''-Functions}

In \XyMTeX{} Version 2.00, the ``yl''-function is 
added so as to improve the nested-subsituent method. 
Thereby, any structure drawn by a \XyMTeX{} 
command (except a few special commands) 
can be converted into the corresponding substituent 
by adding the code \verb/(yl)/ with a locant number. 
The resulting code for the substituent can be added 
to the SUBSLIST of any other command for 
drawing a mother skeleton, where the final code 
contains the full connectivity data of the combined structure. 
For example, the code 
\begin{verbatim}
\bzdrh{1==Cl;4==\bzdrh{1==(yl);3==F}}
\end{verbatim}
typesets the following structure, 
\begin{center}
\bzdrh{1==Cl;4==\bzdrh{1==(yl);3==F}}
\end{center}
Thus, fluorobenzene produced by the command \verb/\bzdrh{3==F}/ 
is converted into a subsituent, i.e. 3-fluorophenyl, 
by adding the code \verb/(yl)/, as shown in the 
code,  \verb/\bzdrh{1==(yl);3==F}/.  Then, the resulting code 
is added to the SUBSLIST of another command \verb/\bzdrh/. 

The connectivity at the meta-position is 
represented by the statement \verb/1==(yl)/ of 
the innner code \verb/\bzdrh{1==(yl);3==F}/. 
Note that the inner code \verb/\bzdrh{1==(yl);3==F}/ produces 
a substituent with no height and no width and that 
the reference point of the substituent is shifted to 
the point no.~1 by the (yl)-statement in order to 
link to the mother structure (the phenyl group 
produced by the code \verb/\bzdrh{1==Cl;4=={...}}/). 

The shift of a reference point becomes clear when 
we examine a formula,
\begin{center}
\vspace*{2cm}
\bzdrh{1==Cl;3==\bzdrh{6==(yl);3==F}}
\end{center}
generated by the code, 
\begin{verbatim}
\bzdrh{1==Cl;3==\bzdrh{6==(yl);3==F}}
\end{verbatim}
The original structure of the substituent with no ``yl'' function 
is found to be 
\begin{center}
\begin{picture}(700,800)(0,0)
\put(0,0){\bzdrh{3==F}}
\put(0,0){\circle*{50}}
\end{picture}
\end{center}
as generated by the code 
\begin{verbatim}
\begin{picture}(700,800)(0,0)
\put(0,0){\bzdrh{3==F}}
\put(0,0){\circle*{50}}
\end{picture}
\end{verbatim}
where the solid circle is the reference point. 
The picture shown above 
indicates that the reference point 
is different from any vertices of the benzene ring. 
On the other hand, the code with a ``yl''-function, 
\begin{verbatim}
\begin{picture}(700,800)(0,-200)
\put(0,0){\bzdrh{6==(yl);3==F}}
\put(0,0){\circle*{50}}
\end{picture}
\end{verbatim}
typesets the following structure, 
\begin{center}
\begin{picture}(700,800)(0,-200)
\put(0,0){\bzdrh{6==(yl);3==F}}
\put(0,0){\circle*{50}}
\end{picture}
\end{center} 
The picture shown above 
indicates that the reference point is shifted to the position 
no.~6 of the benzene ring. 

The code \verb/\bzdrh{1==(yl);3==F}/ producing the substituent 
can be used in the argument of any structure-drawing command 
of \XyMTeX{}. The following example is the one 
in which it is placed in the argument of a command \verb/\bzdrv/. 
Thus, the code 
\begin{verbatim}
\bzdrv{1==Cl;3==\bzdrh{1==(yl);3==F}}
\end{verbatim}
typesets the following structure, 
\begin{center}
\bzdrv{1==Cl;3==\bzdrh{1==(yl);3==F}}
\end{center}

The structural formula of 1-chloro-4-morphorinobenzene 
can be drawn in two different ways. The codes, 
\begin{verbatim}
\bzdrh{1==Cl;4==\sixheteroh[]{1==N;4==O}{1==(yl)}}
\hskip 6cm
\sixheteroh[]{1==N;4==O}{1==\bzdrh{1==Cl;4==(yl)}}
\end{verbatim}
produce the following formulas: 
\begin{center}
\bzdrh{1==Cl;4==\sixheteroh[]{1==N;4==O}{1==(yl)}}
\hskip 6cm
\sixheteroh[]{1==N;4==O}{1==\bzdrh{1==Cl;4==(yl)}}
\end{center}
In the former code, 
the morphorino group is regareded as a substituent, 
as the name ``1-chloro-4-morphori\-nobenzene'' indicates. 
On the other hand,  the chlorophenyl group 
is considered to be a substituent in the latter code 
so as to correspond to the name ``N-(4-chlorophenyl)morphorine''. 

The ``yl''-function is quite versatile, as indicated by the code,  
\begin{verbatim}
\decaheterov[]{4a==N}{4D==O;7B==HO;{{10}A}==H;%
5==\bzdrv{3==OMe;4==OMe;6==Br;1==(yl)}}
\end{verbatim}
producing the following structure: 
\begin{center}
\decaheterov[]{4a==N}{4D==O;7B==HO;{{10}A}==H;%
5==\bzdrv{3==OMe;4==OMe;6==Br;1==(yl)}}
\end{center}
\par\vskip2cm
\noindent
where the substituted phenyl group is regarded as a substituent. 
An opposite view can be realized by the code 
\begin{verbatim}
\bzdrv{3==OMe;4==OMe;6==Br;%
1==\decaheterov[]{4a==N}{4D==O;7B==HO;{{10}A}==H;5==(yl)}}
\end{verbatim}
which typesets the same structure: 
\vskip2cm
\begin{center}
\bzdrv{3==OMe;4==OMe;6==Br;%
1==\decaheterov[]{4a==N}{4D==O;7B==HO;{{10}A}==H;5==(yl)}}
\end{center}
where the moiety drawn by the command \verb/\decaheterov/ is 
regarded as a substituent. 

Two or more substituents generated by the ``yl''-function 
can be introduced into an ATOMLIST. For example, 
\begin{verbatim}
\bzdrh{1==\bzdrh{4==(yl)};4==\bzdrh{1==(yl);3==F}}
\end{verbatim}
typesets the following structure, 
\begin{center}
\bzdrh{1==\bzdrh{4==(yl)};4==\bzdrh{1==(yl);3==F}}
\end{center}

The structural formula of hexaphenylbenzene can be 
drawn by this technique.  Thus the code, 
\begin{verbatim}
\bzdrv{1==\bzdrv{4==(yl)};%
2==\bzdrv{5==(yl)};3==\bzdrv{6==(yl)};%
4==\bzdrv{1==(yl)};5==\bzdrv{2==(yl)};%
6==\bzdrv{3==(yl)}}
\end{verbatim}
generates the following formula: 
\begin{center}
\vspace*{1cm}
\bzdrv{1==\bzdrv{4==(yl)};%
2==\bzdrv{5==(yl)};3==\bzdrv{6==(yl)};%
4==\bzdrv{1==(yl)};5==\bzdrv{2==(yl)};%
6==\bzdrv{3==(yl)}}

\vspace*{1cm}
\end{center}

\section{Nested ``yl''-functions}

Two or more ``yl''-functions can be nested. 
For example, a structure 
\begin{center}
\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)}}
\end{center}
depicted by the code,
\begin{verbatim} 
\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)}}
\end{verbatim}
can be converted into a substituent by adding 
``yl''-function, as shown in the following code: 
\begin{verbatim} 
\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}
\end{verbatim}
Then this substituent is nested in the SUBSLIST of 
the command \verb/\cyclohexaneh/ to give a code, 
\begin{verbatim}
\cyclohexaneh[]{4==%
\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
\end{verbatim}
Thereby we have the structural formula of 
benzoylcyclohexane: 
\begin{center}
\cyclohexaneh[]{4==%
\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
\end{center}

The resulting structure can be further converted into 
a substituent by adding ``yl''-function. The 
following example shows that the substituent is 
linked to the 4-position of a naphthol ring:
\begin{center}
\naphdrh{1==HO;4==%
\cyclohexaneh[]{1==(yl);4==%
\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}}
\end{center}
which is typeset by the triply nested code: 
\begin{verbatim}
\naphdrh{1==HO;4==%
\cyclohexaneh[]{1==(yl);4==%
\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}}
\end{verbatim}
The same structural formula can be drawn by regarding 
the 1-naphthol-4-yl group and the benzoyl group as 
substituents, as shown in the following code: 
\begin{verbatim}
\cyclohexaneh[]{%
1==\naphdrh{1==HO;4==(yl)};%
4==\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
\end{verbatim}
Accordingly, we have 
\begin{center}
\cyclohexaneh[]{%
1==\naphdrh{1==HO;4==(yl)};%
4==\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
\end{center}

\bigskip
The structure of benzoylcyclohexane can also be drawn by considering 
the \verb/\tetrahedral/ moiety as a mother skeleton, 
as shown in the code:  
\begin{verbatim}
\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)};2==\cyclohexaneh[]{4==(yl)}}
\end{verbatim}
Thereby, we have the formula, 
\begin{center}
\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)};2==\cyclohexaneh[]{4==(yl)}}
\end{center}
which shows that 
two or more substituents produced by the ``yl''-function 
can be written in a SUBSLIST. 
This treatment corresponds to the alternative name of 
benzoylcyclohexane, i.e., cyclohexyl phenyl ketone, 
since the codes \verb/\cyclohexaneh{4==(yl)}/ and 
\verb/\bzdrh{1==(yl)}/ represent 
a cyclohexyl and a phenyl group, respectively. 

Although 
the resulting structure cannot be used as a substituent concerning 
the cyclohexane ring, the SUBSLIST of the command \verb/\cyclohexaneh/ 
is capable of accomodating the substituent \verb/\naphdrh{1==HO;4==(yl)}/ 
to give 
\begin{verbatim}
\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)};%
2==\cyclohexaneh[]{4==(yl);1==\naphdrh{1==HO;4==(yl)}}}
\end{verbatim}
which typesets the same structural formula: 
\begin{center}
\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)};%
2==\cyclohexaneh[]{4==(yl);1==\naphdrh{1==HO;4==(yl)}}}

\vspace*{1cm}
\end{center}


The formula, 
\begin{center}
\vspace*{2cm}
\bzdrv{%
1==\bzdrv{4==(yl);2==\bzdrv{5==(yl)}};%
2==\bzdrv{5==(yl);3==\bzdrv{6==(yl)}};%
3==\bzdrv{6==(yl);4==\bzdrv{1==(yl)}};%
4==\bzdrv{1==(yl);5==\bzdrv{2==(yl)}};%
5==\bzdrv{2==(yl);6==\bzdrv{3==(yl)}};%
6==\bzdrv{3==(yl);1==\bzdrv{4==(yl)}}}

\vspace*{2cm}
\end{center}
illustrates the more complicated structure of a code 
with nested ``yl''-functions: 
\begin{verbatim}
\bzdrv{%
1==\bzdrv{4==(yl);2==\bzdrv{5==(yl)}};%
2==\bzdrv{5==(yl);3==\bzdrv{6==(yl)}};%
3==\bzdrv{6==(yl);4==\bzdrv{1==(yl)}};%
4==\bzdrv{1==(yl);5==\bzdrv{2==(yl)}};%
5==\bzdrv{2==(yl);6==\bzdrv{3==(yl)}};%
6==\bzdrv{3==(yl);1==\bzdrv{4==(yl)}}}
\end{verbatim}

To simplify the coding, we define a macro 
drawing a biphenyl unit as follows: 
\begin{verbatim}
\def\biph#1#2#3{\bzdrv{#1==(yl);#2==\bzdrv{#3==(yl)}}}
\end{verbatim}
Then, this macro is used in the SUBSLIST of \verb/\bzdrv/ 
to give the code, 
\begin{verbatim}
\bzdrv{%
1==\biph{4}{2}{5};%
2==\biph{5}{3}{6};%
3==\biph{6}{4}{1};%
4==\biph{1}{5}{2};%
5==\biph{2}{6}{3};%
6==\biph{3}{1}{4}}
\end{verbatim}
Thereby, we have
\begin{center}
\vspace*{2cm}
\def\biph#1#2#3{\bzdrv{#1==(yl);#2==\bzdrv{#3==(yl)}}}
\bzdrv{%
1==\biph{4}{2}{5};%
2==\biph{5}{3}{6};%
3==\biph{6}{4}{1};%
4==\biph{1}{5}{2};%
5==\biph{2}{6}{3};%
6==\biph{3}{1}{4}}

\vspace*{2cm}
\end{center}

A more complex nested code, 

\begin{verbatim}
\vspace*{8cm}
\bzdrv{%
1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);%
3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);4==\bzdrv{1==(yl);%
4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);5==\bzdrv{2==(yl);%
5==\bzdrv{2==(yl)}}}}}}}}}};%
2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);%
4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);5==\bzdrv{2==(yl);%
5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);6==\bzdrv{3==(yl);%
6==\bzdrv{3==(yl)}}}}}}}}}};%
3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);%
5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);6==\bzdrv{3==(yl);%
6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);1==\bzdrv{4==(yl);%
1==\bzdrv{4==(yl)}}}}}}}}}};%
4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);%
6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);1==\bzdrv{4==(yl);%
1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);2==\bzdrv{5==(yl);%
2==\bzdrv{5==(yl)}}}}}}}}}};%
5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);%
1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);2==\bzdrv{5==(yl);%
2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);3==\bzdrv{6==(yl);%
3==\bzdrv{6==(yl)}}}}}}}}}};%
6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);%
2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);3==\bzdrv{6==(yl);%
3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);4==\bzdrv{1==(yl);%
4==\bzdrv{1==(yl)}}}}}}}}}}}
\end{verbatim}
produces the following formula:

\clearpage%to avoid ! TeX capacity exceeded

\begin{center}
\vspace*{8cm}
\bzdrv{%
1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);%
3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);4==\bzdrv{1==(yl);%
4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);5==\bzdrv{2==(yl);%
5==\bzdrv{2==(yl)}%
}}}%
}}}%
}}};%
2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);%
4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);5==\bzdrv{2==(yl);%
5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);6==\bzdrv{3==(yl);%
6==\bzdrv{3==(yl)}%
}}}%
}}}%
}}};%
3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);%
5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);6==\bzdrv{3==(yl);%
6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);1==\bzdrv{4==(yl);%
1==\bzdrv{4==(yl)}%
}}}%
}}}%
}}};%
4==\bzdrv{1==(yl);5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);%
6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);1==\bzdrv{4==(yl);%
1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);2==\bzdrv{5==(yl);%
2==\bzdrv{5==(yl)}%
}}}%
}}}%
}}};%
5==\bzdrv{2==(yl);6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);%
1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);2==\bzdrv{5==(yl);%
2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);3==\bzdrv{6==(yl);%
3==\bzdrv{6==(yl)}%
}}}%
}}}%
}}};%
6==\bzdrv{3==(yl);1==\bzdrv{4==(yl);2==\bzdrv{5==(yl);%
2==\bzdrv{5==(yl);3==\bzdrv{6==(yl);3==\bzdrv{6==(yl);%
3==\bzdrv{6==(yl);4==\bzdrv{1==(yl);4==\bzdrv{1==(yl);%
4==\bzdrv{1==(yl)}%
}}}%
}}}%
}}}}
\end{center}

\clearpage

The code to draw this structural formula is 
too complicated to cause the ``\TeX{} capacity exceeded'' error.  
To avoid the error, we use \verb/\clearpage/ commands before 
and after the output of the formula.  
In addition, we call only necessary packages 
to treat this cocument without the use of \textsf{xymtex.sty} 
calling all package files. 

\section{Remarks}
\subsection{Drawing Domains}
Substituents produced by the ``yl''-function have no dimensions. 
For example, benzoylcyclohexane 
\begin{center}
\fbox{%
\cyclohexaneh[]{4==%
\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}%
}
\end{center}
produced by the code 
\begin{verbatim}
\cyclohexaneh[]{4==%
\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
\end{verbatim}
has a drawing domain around the cyclohexane mother skeleton, 
as encircled by a frame.  Since the bezoyl moiety occupies no area, 
it may be superimposed on other contexts 
so as to require some space adjustments. 
For example, the above code duplicated without 
any space adjustment, 
\begin{verbatim}
\cyclohexaneh[]{4==%
\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
\cyclohexaneh[]{4==%
\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}%
\end{verbatim}
gives an insufficient result: 
\begin{center}
\cyclohexaneh[]{4==%
\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
\cyclohexaneh[]{4==%
\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}%
\end{center}
This superposition can be avoided by a horizontal spacing.  Thus 
the code
\begin{verbatim}
\cyclohexaneh[]{4==%
\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
\hskip2cm
\cyclohexaneh[]{4==%
\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}%
\end{verbatim}
typesets improved formulas: 
\begin{center}
\cyclohexaneh[]{4==%
\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
\hskip2cm
\cyclohexaneh[]{4==%
\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}%
\end{center}

If a more thorough adjustment is required, 
a formula should be placed in a \LaTeX{} picture environment
as follows. 
\begin{verbatim}
\begin{picture}(1600,900)(0,0)
\cyclohexaneh[]{4==%
\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
\end{picture}
\end{verbatim}
This code produces 
\begin{center}
\fbox{%
\begin{picture}(1600,900)(0,0)
\cyclohexaneh[]{4==%
\tetrahedral{2==(yl);0==C;1D==O;4==\bzdrh{1==(yl)}}}
\end{picture}
}
\end{center}
where a frame is added by means of a \verb/\fbox/ command. 

A drawing domain around a formula depends upon a mother skeleton 
selected. For example, the formula of benzoylcyclohexane at the top 
of this section has a drawing domain shown by the frame, since 
a \verb/\cyclohexaneh/ is selected as a mother skeleton. 
On the other hand, the alternative formula 
of benzoylcyclohexane depicted by the code, 
\begin{verbatim}
\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)};2==\cyclohexaneh[]{4==(yl)}}
\end{verbatim}
has a drawing domain due to the \verb/\tetrahedral/ skeleton. 
Thus, the code gives the following output: 
\begin{center}
\fbox{%
\tetrahedral{0==C;1D==O;4==\bzdrh{1==(yl)};2==\cyclohexaneh[]{4==(yl)}}
}
\end{center}
where the frame indicates such a drawing domain, 
when an \verb/\fbox/ command is used around 
the \verb/\tetrahedral/ command. 
The domain shown by the frame (due to \verb/\fbox/) is equal to 
any domain based on the simple use of the \verb/\tetrahedral/ command 
(without using the ``yl''-function). 
For example, compare the above frame with the one 
appearing in the formula, 
\begin{center}
\fbox{\tetrahedral{0==C;1D==O;4==Cl;2==Cl}}
\end{center}
depicted by the code, 
\begin{verbatim}
\fbox{\tetrahedral{0==C;1D==O;4==Cl;2==Cl}}
\end{verbatim}

\subsection{Reference Points}

Each \XyMTeX{} command for drawing a mother skeleton 
has its reference point and its inner reference point. 
These points can be printed out by switching 
\verb/\origpt/ on.  For example, the code
\begin{verbatim}
{
\origpttrue
\cyclohexanev{}
}
\end{verbatim}
generates the diagram: 
\begin{center}
{
\origpttrue
\cyclohexanev{}
}
\end{center}
where the solid circle indicates the reference point (0,0) and 
the open circle indicates the inner reference point (400,240). 
The values of cooridates are output on a display and in a log file: 
\begin{verbatim}
command `sixheterov' origin: (0,0) ---> (400,240)
\end{verbatim}
since \verb/\cyclohexanev/ is based on \verb/\sixheterov/. 


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\chapter{Linking Units}

The commands \verb/\ryl/ and \verb/\lyl/ described 
in this chapter are added to 
the {\sf chemstr} package (file name: chemstr.sty). 
The \verb/\divalenth/ command is added to 
the {\sf aliphat} package (file name: aliphat.sty). 

\section{$\backslash$ryl command}. 

The ``yl''-function provides us with 
a tool to generate a substituent that 
is linked {\itshape directly} to a substitution site 
of a mother skeleton.  There are, however, 
many cases in which a substituent 
is linked to a substitution site by an intervening unit 
(e.g., O, SO$_{2}$ and NH).  
The command \verb/\ryl/ is used to 
generate a right-hand substituent with a linking unit. 
For example, the code 
\begin{verbatim}
\ryl(5==NH--SO$_{2}$){4==\bzdrh{1==(yl)}}
\end{verbatim}
produces a benzenesulfonamido substituent, 
\bigskip
\begin{center}
\ryl(5==NH--SO$_{2}$){4==\bzdrh{1==(yl)}}

\vspace*{1cm}
\end{center}
The resulting unit is added to the SUBSLIST of 
a command for drawing a skeletal command. 
For example, the code 
\begin{verbatim}
\bzdrh{3==\ryl(5==NH--SO$_{2}$){4==\bzdrh{1==(yl)}}}
\end{verbatim}
generates the following formula: 
\begin{center}
\vspace*{1cm}
\bzdrh{3==\ryl(5==NH--SO$_{2}$){4==\bzdrh{1==(yl)}}}
\end{center}

The \verb/\ryl/ command takes two arguments. 
\begin{verbatim}
\ryl(LINK){GROUP}
\end{verbatim}
The first argument LINK in the parentheses indicates 
an intervening unit with an integer showing 
the slope of a left incidental bond. 
For example, the number 5 of the code \verb/5==NH--SO$_{2}$/ 
shown above represents that the left terminal is to be linked 
through $(-5,-3)$ bond, though the linking bond 
is not typeset by the \verb/\ryl/ command only. 
The slopes of the linking bonds are designated by 
integers between 0 and 8: 
\begin{center}
\begin{tabular}{cc|cc|cc}
0 & $(0,1)$    & 1 & $(-3,5)$  & 2 & $(-1,1)$  \\
3 & $(-5,3)$   & 4 & $(-1,0)$  & 5 & $(-5,-3)$ \\
6 & $(-1,-1)$  & 7 & $(-3,-5)$ & 8 & $(0,-1)$ \\
\end{tabular}
\end{center}

The second argument GROUP of \verb/\ryl/ is 
a substituent produced by a ``yl''-function, 
where a number before a delimiter (==) indicates 
the slope of a right incidental bond. 
For example, the number 4 of the code 
\verb/4==\bzdrh{1==(yl)}/ shown above 
represents that the right terminal is to be linked 
through $(1,0)$ bond to the benzene ring generated by  
the \verb/\bzdrh/ command. 
The slopes of the linking bonds are designated by 
integers between 0 and 8: 
\begin{center}
\begin{tabular}{cc|cc|cc}
0 & $(0,1)$    & 1 & $(3,5)$  & 2 & $(1,1)$  \\
3 & $(5,3)$   & 4 & $(1,0)$  & 5 & $(5,-3)$ \\
6 & $(1,-1)$  & 7 & $(3,-5)$ & 8 & $(0,-1)$ \\
\end{tabular}
\end{center}

To illustrate linking bonds with various slopes, 
the code 
\begin{verbatim}
\cyclohexanev[]{%
1==\ryl(8==NH--SO$_{2}$){1==\bzdrh{6==(yl)}};
2==\ryl(5==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};
3==\ryl(3==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};%
4==\ryl(0==NH--SO$_{2}$){7==\bzdrh{2==(yl)}}}
\end{verbatim}
is written to give 

\vspace*{2cm}
\begin{center}
\cyclohexanev[]{%
1==\ryl(8==NH--SO$_{2}$){1==\bzdrh{6==(yl)}};
2==\ryl(5==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};
3==\ryl(3==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};%
4==\ryl(0==NH--SO$_{2}$){7==\bzdrh{2==(yl)}}}
\end{center}
\vspace*{2cm}

Other examples are drawn by the code 
\begin{verbatim}
\cyclohexaneh[]{%
3==\ryl(7==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};
5==\ryl(1==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};%
4==\ryl(4==NH--SO$_{2}$--NH){4==\bzdrh{1==(yl)}}}
\end{verbatim}
giving 
\vspace*{1cm}
\begin{center}
\cyclohexaneh[]{%
3==\ryl(7==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};
5==\ryl(1==NH--SO$_{2}$){4==\bzdrh{1==(yl)}};%
4==\ryl(4==NH--SO$_{2}$--NH){4==\bzdrh{1==(yl)}}}
\end{center}
\vspace*{1cm}

The first argument in the parentheses of the 
command \verb/\ryl/ contains a string of letters 
after an intermediate delimiter ==, where 
a left linking site is shifted according to the 
length of the letter string. 
The above formula shows such an example 
as having NH--SO$_{2}$--NH. 


The following examples compare the 
``yl''-function with the \verb/\ryl/ command. 
\begin{verbatim}
\cyclohexaneh{4==\bzdrh{1==(yl)}}
\hskip2cm
\cyclohexaneh{4==\ryl(4==O){4==\bzdrh{1==(yl)}}}
\end{verbatim}

\begin{center}
\cyclohexaneh{4==\bzdrh{1==(yl)}}
\hskip2cm
\cyclohexaneh{4==\ryl(4==O){4==\bzdrh{1==(yl)}}}
\end{center}

The compound {\bfseries 21} 
on page 299 of the \XyMTeX book 
%``\XyMTeX{}---Typesetting Chemical 
%Structural Formulas'' (Addison-Wesley Publishers Japan, 1997) 
can be alternatively drawn by using 
the \verb/\ryl/ command, as shown in the code: 
\begin{verbatim}
\fiveheterov[d]{1==N;5==N}{4==NC;1==\bzdrv{1==(yl)};2D==O;%
3D==\ryl(5==N-NH){4==\bzdrh{1==(yl);2==\lmoiety{MeO};5==SO$_{2}$Cl}}}
\end{verbatim}
which typeset the following formula: 
\begin{center}
\vspace*{1cm}
\fiveheterov[d]{1==N;5==N}{4==NC;1==\bzdrv{1==(yl)};2D==O;%
3D==\ryl(5==N-NH){4==\bzdrh{1==(yl);2==\lmoiety{MeO};5==SO$_{2}$Cl}}}

\vspace*{2cm}
\end{center}

The first argument of the \verb/\ryl/ is optional; i.e., it can be 
omitted. Such an omitted case is useful to draw a methylene as 
a vertex.  For example, a methylene is represented as 
a character string ``CH$_{2}$'', as shown in the formula, 
\begin{center}
\sixheterov[d]{2==S}{5==\null;%
3==\ryl(3==CH$_{2}$){3==\sixheterov[d]{2==S}{5==(yl)}}}
\end{center}
This formula is generated by the code, 
\begin{verbatim}
\sixheterov[d]{2==S}{5==\null;%
3==\ryl(3==CH$_{2}$){3==\sixheterov[d]{2==S}{5==(yl)}}}
\end{verbatim}
where the \verb/\ryl/ command takes an optional argument 
in parentheses to draw CH$_{2}$ exciplicitly. 
Such a methylene can alternatively be represented as a simple vertex, 
as shown in the formula, 
\begin{center}
\sixheterov[d]{2==S}{5==\null;%
3==\ryl{3==\sixheterov[d]{2==S}{5==(yl)}}}
\end{center}
This formula is generated by the code, 
\begin{verbatim}
\sixheterov[d]{2==S}{5==\null;%
3==\ryl{3==\sixheterov[d]{2==S}{5==(yl)}}}
\end{verbatim}
where the \verb/\ryl/ command takes no optional argument. 

The second argument of the \verb/\ryl/ command can 
accomodate substituents other than a substituent 
generated by the ``yl'' function.  For example, 
the inner code \verb/\ryl{0A==Me;...}/ in the code, 
\begin{verbatim}
\sixheterov({bB}{eA}){3==O;5==O}{1A==Me;4Sa==\null;4Sb==\null;%
6==\pentamethylenei[a]{}{4B==OH;5B==Me;5==(yl)};%
2==\ryl{0A==Me;5==\sixheterov({eA}){3==O;5==O}{6==(yl);1B==Me;%
4Sa==\null;4Sb==\null}}}
\end{verbatim}
represents a methyl group on a vertex due to the command \verb/\ryl/. 
Thereby, we have 
\begin{center}
\vspace*{1cm}
\sixheterov({bB}{eA}){3==O;5==O}{1A==Me;4Sa==\null;4Sb==\null;%
6==\pentamethylenei[a]{}{4B==OH;5B==Me;5==(yl)};%
2==\ryl{0A==Me;5==\sixheterov({eA}){3==O;5==O}{6==(yl);1B==Me;%
4Sa==\null;4Sb==\null}}}

\vspace*{1cm}
\end{center}



\section{$\backslash$lyl command}

The command \verb/\lyl/ is the left-hand 
counterpart of the command \verb/\ryl/. 
\begin{verbatim}
\lyl(LINK){GROUP}
\end{verbatim}
The slopes of the linking bonds 
concerning the right terminal are designated by 
integers between 0 and 8: 
\begin{center}
\begin{tabular}{cc|cc|cc}
0 & $(0,1)$    & 1 & $(3,5)$  & 2 & $(1,1)$  \\
3 & $(5,3)$   & 4 & $(1,0)$  & 5 & $(5,-3)$ \\
6 & $(1,-1)$  & 7 & $(3,-5)$ & 8 & $(0,-1)$ \\
\end{tabular}
\end{center}
The slopes of the linking bonds concerning 
the left terminal are designated by 
integers between 0 and 8: 
\begin{center}
\begin{tabular}{cc|cc|cc}
0 & $(0,1)$    & 1 & $(-3,5)$  & 2 & $(-1,1)$  \\
3 & $(-5,3)$   & 4 & $(-1,0)$  & 5 & $(-5,-3)$ \\
6 & $(-1,-1)$  & 7 & $(-3,-5)$ & 8 & $(0,-1)$ \\
\end{tabular}
\end{center}

To illustrate linking bonds with various slopes, 
the code 
\begin{verbatim}
\cyclohexanev[]{%
1==\lyl(8==SO$_{2}$--HN){1==\bzdrh{5==(yl)}};%
6==\lyl(5==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};%
5==\lyl(3==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};%
4==\lyl(0==SO$_{2}$--HN){7==\bzdrh{3==(yl)}}}
\end{verbatim}
is written to give 


\vspace*{2cm}
\begin{center}
\cyclohexanev[]{%
1==\lyl(8==SO$_{2}$--HN){1==\bzdrh{5==(yl)}};%
6==\lyl(5==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};%
5==\lyl(3==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};%
4==\lyl(0==SO$_{2}$--HN){7==\bzdrh{3==(yl)}}}
\end{center}
\vspace*{2cm}

Other examples are drawn by the code 
\begin{verbatim}
\cyclohexaneh[]{%
2==\lyl(7==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};
6==\lyl(1==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};%
1==\lyl(4==NH--SO$_{2}$--HN){4==\bzdrh{4==(yl)}}}
\end{verbatim}
giving 
\vspace*{1cm}
\begin{center}
\cyclohexaneh[]{%
2==\lyl(7==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};
6==\lyl(1==SO$_{2}$--NH){4==\bzdrh{4==(yl)}};%
1==\lyl(4==NH--SO$_{2}$--NH){4==\bzdrh{4==(yl)}}}
\end{center}
\vspace*{1cm}

The first argument in the parentheses of the 
command \verb/\lyl/ contains a string of letters 
after an intermediate delimiter ==, where 
a left linking site is shifted according to the 
length of the letter string. 
The above formula shows such an example 
as having NH--SO$_{2}$--NH. 

The structural formula of adonitoxin, 
which has once been depicted in a different way 
in Chapter 15 of the \XyMTeX book 
%``\XyMTeX{}---Typesetting Chemical 
%Structural Formulas'' (Addison-Wesley Publishers Japan, 1997) 
can be obtained by the code, 
\begin{verbatim}
\steroid{{{10}}==\lmoiety{OHC};{{14}}==OH;%
{{13}}==\lmoiety{H$_{3}$C};{{16}}==OH;%
{{17}}==\fiveheterov[e]{3==O}{4D==O;1==(yl)};%
3==\lyl(3==O){8==%
\pyranose{1Sb==(yl);1Sa==H;2Sb==H;2Sa==OH;3Sb==H;3Sa==OH;4Sb==HO;%
4Sa==H;5Sb==H;5Sa==CH$_{3}$}}}
\end{verbatim}

\begin{quotation}
\vspace*{1cm}
\hspace*{4cm}
\steroid{{{10}}==\lmoiety{OHC};{{14}}==OH;%
{{13}}==\lmoiety{H$_{3}$C};{{16}}==OH;%
{{17}}==\fiveheterov[e]{3==O}{4D==O;1==(yl)};%
3==\lyl(3==O){8==%
\pyranose{1Sb==(yl);1Sa==H;2Sb==H;2Sa==OH;3Sb==H;3Sa==OH;4Sb==HO;%
4Sa==H;5Sb==H;5Sa==CH$_{3}$}}}
\end{quotation}

\vskip1cm


\section{Nested $\backslash$ryl and $\backslash$lyl commands}

Two or more \verb/\ryl/ and \verb/\lyl/ commands can be nested. 
Let us illustrate nesting processes by drawing a cyan 
dye releaser, which has once been depicted in different ways 
(see Chapters 14 and 15 of the \XyMTeX book). 
%in ``\XyMTeX{}---Typesetting Chemical 
%Structural Formulas'' (Addison-Wesley Publishers Japan, 1997)). 

\vspace*{1cm}
\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;%
2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
5==\ryl(2==NH--SO$_{2}$){4==\bzdrh{1==(yl);%
5==\ryl(2==SO$_{2}$--NH){4==\naphdrh{1==(yl);5==OH;%
8==\lyl(4==N=N){4==\bzdrh{4==(yl);1==NO$_{2}$;5==SO$_{2}$CH$_{3}$}}}}}}}}}

\vskip3cm
First, the code
\begin{verbatim}
\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
5==\null}}
\end{verbatim}
generates a substituent: 
\begin{quotation}
\vspace*{1cm}
\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
5==\null}}

\vspace*{1cm}
\end{quotation}
in which the command \verb/\null/ is used to show a further 
substitution site. The resulting substituent is 
nested in the SUBSLIT of another \verb/\bzdrv/ command 
as shown in the code: 
\begin{verbatim}
\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;%
2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
5==\null}}}
\end{verbatim}
Thereby we have 
\begin{quotation}
\vskip1cm
\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;%
2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
5==\null}}}
\end{quotation}

\vskip1cm \noindent
The inner code \verb/5==\null/ is replaced by a further 
code of substitution: 
\begin{verbatim}
5==\ryl(2==NH--SO$_{2}$){4==\bzdrh{1==(yl);5==\null}}%
\end{verbatim}
to give a code, 
\begin{verbatim}
\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;%
2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
5==\ryl(2==NH--SO$_{2}$){4==\bzdrh{1==(yl);5==\null}}%
}}}
\end{verbatim}
This code generates the following structure (Formula A): 
\begin{quotation}
\vskip1cm
\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;%
2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
5==\ryl(2==NH--SO$_{2}$){4==\bzdrh{1==(yl);%
5==\null}}}}}
\end{quotation}

\vskip1cm
Another substituent is typeset by the code, 
\begin{verbatim}
\ryl(2==SO$_{2}$--NH){4==\naphdrh{1==(yl);5==OH;%
8==\lyl(4==N=N){4==\bzdrh{4==(yl);1==NO$_{2}$;5==SO$_{2}$CH$_{3}$}}}}
\end{verbatim}
Then, we have a substituent (Formula B): 
\begin{quotation}
\vskip1cm
\hspace*{4cm}\ryl(2==SO$_{2}$--NH){4==\naphdrh{1==(yl);5==OH;%
8==\lyl(4==N=N){4==\bzdrh{4==(yl);1==NO$_{2}$;5==SO$_{2}$CH$_{3}$}}}}
\end{quotation}

\vspace{3cm}
Finally, the inner code \verb/5==\null/ for Formula A is replaced 
by the code for Formula B 
in order to combine Formula A with Formula B. 
Then we obtain a code represented by 
\begin{verbatim}
\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;%
2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
5==\ryl(2==NH--SO$_{2}$){4==\bzdrh{1==(yl);%
5==\ryl(2==SO$_{2}$--NH){4==\naphdrh{1==(yl);5==OH;%
8==\lyl(4==N=N){4==\bzdrh{4==(yl);1==NO$_{2}$;5==SO$_{2}$CH$_{3}$}}}}}}}}}
\end{verbatim}
Thereby, we have a target formula: 

\vspace*{1cm}
\bzdrv{1==OH;5==CH$_{3}$;4==OC$_{16}$H$_{33}$;%
2==\ryl(4==NH--SO$_{2}$){4==\bzdrh{1==(yl);2==OCH$_{2}$CH$_{2}$OCH$_{3}$;%
5==\ryl(2==NH--SO$_{2}$){4==\bzdrh{1==(yl);%
5==\ryl(2==SO$_{2}$--NH){4==\naphdrh{1==(yl);5==OH;%
8==\lyl(4==N=N){4==\bzdrh{4==(yl);1==NO$_{2}$;5==SO$_{2}$CH$_{3}$}}}}}}}}}

\vskip3cm

The structural formula of adonitoxin, 
which has benn drawn by considering the steroid nucleus to be 
a mother skeleton in the preceding subsection, 
can be alternatively drawn by nesting 
a ``yl''-function and a \verb/\ryl/ command. 
In this case, the pyranose ring is regarded as a mother skeleton. 
Thus, the code 
\begin{verbatim}
\pyranose{1Sa==H;2Sb==H;2Sa==OH;3Sb==H;3Sa==OH;4Sb==HO;%
4Sa==H;5Sb==H;5Sa==CH$_{3}$;%
1Sb==\ryl(8==O){3==%
\steroid{3==(yl);{{10}}==\lmoiety{OHC};{{14}}==OH;%
{{13}}==\lmoiety{H$_{3}$C};{{16}}==OH;%
{{17}}==\fiveheterov[e]{3==O}{4D==O;1==(yl)}}}}
\end{verbatim}
typesets the following formula: 
\begin{quotation}
\vspace*{4cm}
\pyranose{1Sa==H;2Sb==H;2Sa==OH;3Sb==H;3Sa==OH;4Sb==HO;%
4Sa==H;5Sb==H;5Sa==CH$_{3}$;%
1Sb==\ryl(8==O){3==%
\steroid{3==(yl);{{10}}==\lmoiety{OHC};{{14}}==OH;%
{{13}}==\lmoiety{H$_{3}$C};{{16}}==OH;%
{{17}}==\fiveheterov[e]{3==O}{4D==O;1==(yl)}}}}
\end{quotation}

\section{$\backslash$divalenth command}

The command \verb/\divalenth/ generates a divalent skeleton 
with variable length.  
\begin{verbatim}
\divalenth{GROUP}{SUBSLIST}
\end{verbatim}
The divalent skeleton is given by 
a string of alphabets in the GROUP argument.  
The locant number in the GROUP argument is fixed to be zero. 
For example, the code 
\begin{verbatim}
\divalenth{0==NHCONH}{1==CH$_{3}$;2==CH$_{3}$}
\end{verbatim}
generates a linear formula: 
\begin{center}
\divalenth{0==NHCONH}{1==CH$_{3}$;2==CH$_{3}$}
\end{center}

4,4$^{\prime}$-Methylenedibenzoic acid can be drawn in the same line. 
The code 
\begin{verbatim}
\divalenth{0==CH$_{2}$}{1==\bzdrh{4==(yl);1==HOOC};2==\bzdrh{1==(yl);4==COOH}}
\end{verbatim}
generates 
\begin{center}
\divalenth{0==CH$_{2}$}{1==\bzdrh{4==(yl);1==HOOC};2==\bzdrh{1==(yl);4==COOH}}
\end{center}

In place of the CH$_{2}$ unit described in the preceding example, 
we introduce the O--CH$_{2}$--O unit so as to give 
4,4$^{\prime}$-methylenedioxydibenzoic acid. The structurel formula 
can be drawn to be 
\begin{center}
\divalenth{0==O--CH$_{2}$--O}%
{1==\bzdrh{4==(yl);1==HOOC};2==\bzdrh{1==(yl);4==COOH}}
\end{center}
by means of the code: 
\begin{verbatim}
\divalenth{0==O--CH$_{2}$--O}%
{1==\bzdrh{4==(yl);1==HOOC};2==\bzdrh{1==(yl);4==COOH}}
\end{verbatim}
Note that the starting point of the moiety 
generated by the code \verb/2==\bzdrh{1==(yl);4==COOH}/ is 
automatically shifted so as to accomodate the O--CH$_{2}$--O unit. 


An additional example of the use of the \verb/\divalenth/ command 
is the drawing of 
1,6$^{\prime}$-ureylenedi-2-naphthalenesulfonic acid 
\begin{quotation}
\vspace*{2cm}\hspace*{4cm}
\divalenth{0==NH--CO--NH}%
{1==\naphdrh{4==(yl);3==SO$_{3}$H};2==\naphdrv{6==(yl);2==SO$_{3}$H}}

\vspace*{2cm}
\end{quotation}
by means of the code 
\begin{verbatim}
\divalenth{0==NH--CO--NH}%
{1==\naphdrh{4==(yl);3==SO$_{3}$H};2==\naphdrv{6==(yl);2==SO$_{3}$H}}
\end{verbatim}


$p$-[2-($m$-Carboxyphenoxy)ethyl]benzoic acid is 
drawn by the code 
\begin{verbatim}
\divalenth{0==O--CH$_{2}$--CH$_{2}$}%
{1==\bzdrh{4==(yl);6==COOH};2==\bzdrh{1==(yl);4==COOH}}
\end{verbatim}
which generates a formula: 
\begin{center}
\divalenth{0==O--CH$_{2}$--CH$_{2}$}%
{1==\bzdrh{4==(yl);6==COOH};2==\bzdrh{1==(yl);4==COOH}}

\vspace*{1cm}
\end{center}
The same structure can be depicted by applying 
the ``yl''-function to the \verb/\divalenth/ command. 
The code 
\begin{verbatim}
\bzdrh{6==COOH;4==%
\divalenth{0==O--CH$_{2}$--CH$_{2}$}{1==(yl);2==\bzdrh{1==(yl);4==COOH}}}
\end{verbatim}
generates the same formula: 
\begin{center}
\bzdrh{6==COOH;4==%
\divalenth{0==O--CH$_{2}$--CH$_{2}$}{1==(yl);2==\bzdrh{1==(yl);4==COOH}}}

\vspace*{1cm}
\end{center}
This type of usage gives an equivalent function of 
the command \verb/\ryl/ or \verb/\lyl/.  Compare this with 
an example using the \verb/\ryl/ command: 
\begin{verbatim}
\bzdrh{6==COOH;4==%
\ryl(4==O--CH$_{2}$--CH$_{2}$){4==\bzdrh{1==(yl);4==COOH}}}
\end{verbatim}
This code gives the same formula: 
\begin{center}
\bzdrh{6==COOH;4==%
\ryl(4==O--CH$_{2}$--CH$_{2}$){4==\bzdrh{1==(yl);4==COOH}}}
\end{center}

\section{Remarks}

The use of \verb/\divalenth/ with a ``yl''-function has 
no means of adjusting the left-hand point of linking. 
For example, the code,  
\begin{verbatim}
\bzdrv{2==COOH;4==%
\divalenth{0==O--CH$_{2}$--CH$_{2}$}{1==(yl);2==\bzdrh{1==(yl);4==COOH}}}
\end{verbatim}
give an insufficient formula: 
\begin{center}
\bzdrv{2==COOH;4==%
\divalenth{0==O--CH$_{2}$--CH$_{2}$}{1==(yl);2==\bzdrh{1==(yl);4==COOH}}}

\vspace*{1cm}
\end{center}
where the left-hand point of linking should be shifted to 
a more appropiate direction.  On the other hand, 
the \verb/\ryl/ (or \verb/\lyl/) command can correctly 
specify the left-hand point of linking. Thus the code, 
\begin{verbatim}
\bzdrv{2==COOH;4==%
\ryl(0==O--CH$_{2}$--CH$_{2}$){4==\bzdrh{1==(yl);4==COOH}}}
\end{verbatim}
typesets a formula: 
\begin{center}
\bzdrv{2==COOH;4==%
\ryl(0==O--CH$_{2}$--CH$_{2}$){4==\bzdrh{1==(yl);4==COOH}}}

\vspace*{1cm}
\end{center}
where the code \verb/0==O--CH$_{2}$--CH$_{2}$/ specifies 
the left-hand terminal of the unit O--CH$_{2}$--CH$_{2}$ 
is linked at the upper point of the oxygen atom. 


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\chapter{Ring Fusion}

\section{Ring Fusion on Carbocyclic Compounds}
\subsection{Designation of Fused Bonds}

A unit to be fused is written in the BONDLIST of a command with 
a bond specifier (a lowercase or uppercase alphabet). 
For example, the code 
\begin{verbatim}
\hanthracenev[{A\sixfusev{}{}{d}}]{}
\end{verbatim}
gives a perhydroanthracene with a fused six-membered ring 
at the bond `a' of the perhydroanthracene nucleus: 
\begin{quotation}
\vskip1cm
\hanthracenev[{A\sixfusev{}{}{d}}]{}
\end{quotation}
The letter `A' of the code 
\verb/{A\sixfusev{}{}{d}}/ is a bond specifier that represents 
the older terminal of the bond `a' of the 
perhydroanthracene nucleus 
(For the designation of the bonds of perhydroanthracene, 
see Chapter 5 of the \XyMTeX book.%
%``\XyMTeX{}---Typesetting Chemical 
%Structural Formulas'' (Addison-Wesley Publishers Japan, 1997).%
\footnote{% 
The word `older' or `younger' is concerned with the order of numbering 
of vertices.  For a six-membered ring, the numbering 
1---2---3---4---5---6---1 shows that 
the terminal 1 of the 
bond `a' (1---2) is youger, while the terminal 2 of the bond 
`a' is older.  It should be noted that the terminal 6 of the 
bond `f' (6---1) is youger, while the terminal 1 of the bond 
`f' is older.} 
Note that the younger 
terminal of the bond `a' is designated by the letter `a'. 
On the other hand, 
the code \verb/\sixfusev{}{}{d}/ of \verb/{A\sixfusev{}{}{d}}/ 
in the BONDLIST represents the fused six-membered ring 
with the bond `d' omitted.  The letter `d' indicates 
that the fusing point of the unit is the youger terminal 
of the omitted bond `d'.  If the the fusing point of the unit 
is the other (older) terminal, the 
corresponding uppercase letter `D' should be used. 

Accordingly, the same formula can be drawn by the 
code exchanging uppercase and lowercase letters, 
\begin{verbatim}
\hanthracenev[{a\sixfusev{}{}{D}}]{}
\end{verbatim}
Thereby, we have 
\begin{quotation}
\vskip1cm
\hanthracenev[{a\sixfusev{}{}{D}}]{}
\end{quotation}

Two or more rings can be fused.  For example, 
the code 
\begin{verbatim}
\hanthracenev[{A\sixfusev{}{}{d}}{C\sixfusev{}{}{f}}]{}
\end{verbatim}
generates a formula with two fused rings at the 
bonds `a' and `c' of a perhydroanthracene nucleus. 
\begin{quotation}
\vskip1cm
\hanthracenev[{A\sixfusev{}{}{d}}{C\sixfusev{}{}{f}}]{}

\vskip1cm
\end{quotation}

The BONDLIST can accomodates usual bond specifiers without 
a fusing unit in order to designate inner double bonds. 
For example, the code 
\begin{verbatim}
\hanthracenev[aco{A\sixfusev[a]{}{}{d}}]{}
\end{verbatim}
gives a hydroanthracene that have inner double bonds 
as well as a fused six-membered ring:  
\begin{quotation}
\vskip1cm
\hanthracenev[aco{A\sixfusev[a]{}{}{d}}]{}
\end{quotation}
Note that the command \verb/\sixfusev/ can take 
an optional argument to designate inner double bonds, 
as shown by the code \verb/\sixfusev[a]{}{}{d}/. 

In order to specify substituents in addition, 
we can use the SUBSLIST of the command \verb/\hanthracenev/ as well 
as the one of the command \verb/\sixfusev/.  For example, the code
\begin{verbatim}
\hanthracenev[aco{A\sixfusev[a]{}{1==F;2==Cl}{d}}]{5==OH;6==HO}
\end{verbatim}
gives a hydroanthracene having additional substituents: 
\begin{quotation}
\vspace*{1cm}
\hanthracenev[aco{A\sixfusev[a]{}{1==F;2==Cl}{d}}]{5==OH;6==HO}
\end{quotation}

The compound {\bfseries 13} on page 294 
(Chapter IV-4) of the \XyMTeX book 
%``\XyMTeX{}---Typesetting Chemical 
%Structural Formulas'' (Addison-Wesley Publishers Japan, 1997) 
can alternatively be drawn by applying the 
present technique.  Thus, the code 
\begin{verbatim}
\hanthracenev[achjop{b\sixfusev{}{2==R}{E}}]{%
1==OCH$_{3}$;4==OH;{10}D==O;%
9==\lyl(8==C\rlap{O}){4==CH$_{3}$O}}
\end{verbatim}
gives the following formula: 
\begin{quotation}
\hanthracenev[achjop{b\sixfusev{}{2==R}{E}}]{%
1==OCH$_{3}$;4==OH;{10}D==O;%
9==\lyl(8==C\rlap{O}){4==CH$_{3}$O}}
\end{quotation}


\section{Ring Fusion on Heterocyclic Compounds}

The methodology of ring fusion for heterocyclic compounds 
is the same as described for carbocyclic compounds. 
Thus, a unit to be fused is written in the BONDLIST of 
a command with a bond specifier (a lowercase or uppercase alphabet). 
For example, the code 
\begin{verbatim}
\nonaheterov[begj{b\sixfusev[ac]{}{}{e}}]{1==N}{1==H}
\end{verbatim}
gives the structural formula of carbazole: 
\begin{quotation}
\nonaheterov[begj{b\sixfusev[ac]{}{}{e}}]{1==N}{1==H}
\end{quotation}
which is depicted by attaching a six-membered ring 
(\verb/\sixfusev[ac]{}{}{e}}/) 
to the bond `b' of an indole nucleus.    

Let us consider the substitution of a carbon atom 
with a nitrogen atom at one of the fused positions  
in the above compound, as shown by the following formula: 
\begin{quotation}
\nonaheterov[begj{b\sixfusev[ac]{6==\null}{}{e}}]{1==N;3==N}{1==H}
\end{quotation}
This formula is obtained by writing the code: 
\begin{verbatim}
\nonaheterov[begj{b\sixfusev[ac]{6==\null}{}{e}}]{1==N;3==N}{1==H}
\end{verbatim}
where the code \verb/6==\null/ in the ATOMLIST of 
\verb/\sixfusev/ (for the fused six-membered ring) 
and the code \verb/3==N/ in the ATOMLIST of 
\verb/\nonaheterov/ produces the nitrogen 
atom at the fused position. 
The specification of the nitrogen atom 
is also available by exchanging \verb/\null/ and \verb/N/. 
Thus the code  
\begin{verbatim}
\nonaheterov[begj{b\sixfusev[ac]{6==N}{}{e}}]{1==N;3==\null}{1==H}
\end{verbatim}
gives the same structural formula: 
\begin{quotation}
\nonaheterov[begj{b\sixfusev[ac]{6==N}{}{e}}]{1==N;3==\null}{1==H}
\end{quotation}

The ring fusion at the bond `a' of perhydroindole 
is represented by the code 
\begin{verbatim}
\nonaheterov[{a\sixfusev{6==\null}{}{f}}]{1==N}{}
\end{verbatim}
which gives a heterocycle: 
\begin{quotation}
\nonaheterov[{a\sixfusev{6==\null}{}{f}}]{1==N}{}
\end{quotation}



Benz[{\itshape h}]isoquinoline, 
\begin{quotation}
\vspace*{1cm}
\decaheterovt[acfhk{h\sixfusev[df]{}{}{B}}]{2==N}{}
\end{quotation}
can be typset by the code, 
\begin{verbatim}
\decaheterovt[acfhk{h\sixfusev[df]{}{}{B}}]{2==N}{}
\end{verbatim}
in which the bond specifier `h' corresponds to 
the {\itshape h} of the IUPAC name. 
Note that the IUPAC name regards the structure as 
an isoquinoline (drawn by \verb/\decaheterovt/) fused by a benzo moiety. 
The same structure 
can be drawn by the alternative code: 
\begin{verbatim}
\decaheterov[acfhk{a\sixfusev[bf]{1==N}{}{D}}]{}{}
\end{verbatim}
which regards the structure as a naphthalene (drawn by 
\verb/\decaheterov/) with 
a fused heterocycle.  Thereby, we have 
 \begin{quotation}
\vspace*{1cm}
\decaheterov[acfhk{a\sixfusev[bf]{1==N}{}{D}}]{}{}
\end{quotation}

\section{Neted Ring Fusion}

The \verb/\sixfusev/ command is capable of 
accomodating another \verb/\sixfusev/ command in 
a nested fashion.  By this technique, 
the carbazole structure can take a further 
fused ring so as to produce the structural formula 
of 7{\itshape H}-pyrazino[2,3-{\itshape c}]carbaozole. 
Thus, the code, 
\begin{verbatim}
\nonaheterov[begj{b\sixfusev[%
ac{a\sixfusev[bf]{6==N;3==N}{}{D}}]{}{}{e}}]{1==N}{1==H}
\end{verbatim}
gives the structural formula of the fused heterocycle: 
\begin{quotation}
\vspace*{1cm}
\nonaheterov[begj{b\sixfusev[%
ac{a\sixfusev[bf]{6==N;3==N}{}{D}}]{}{}{e}}]{1==N}{1==H}
\end{quotation}
which is depicted by attaching a six-membered ring 
(\verb/\sixfusev[ac]{}{}{e}}/) 
to the bond `b' of an indole nucleus.    

The structural formula of 
pyrido[1$^{\prime}$,2$^{\prime}$:1,2]imidazo[4,5-{\itshape b}]quinoxaline, 
\begin{center}
\nonaheterov[adh%
{b\sixfusev[ac]{6==\null}{}{e}}%
{f\sixfusev[ace]{}{}{b}}]{1==N;3==N;4==N;7==N}{}
\end{center}
is generated by the code, 
\begin{verbatim}
\nonaheterov[adh%
{b\sixfusev[ac]{6==\null}{}{e}}%
{f\sixfusev[ace]{}{}{b}}]{1==N;3==N;4==N;7==N}{}
\end{verbatim}
Since this code is intended to contain no nested ring fusion, 
the order of structure construction is different 
from that of the IUPAC name. 

The IUPAC name, 
pyrido[1$^{\prime}$,2$^{\prime}$:1,2]imidazo[4,5-{\itshape b}]quinoxaline, 
corresponds to a quinaxaline with a fused five-membered ring (an imidazo 
moiety) which is in turn fused by a six-membered ring (a pyrido moiety). 
The order of constructing the IUPAC name is realized in the code 
with nested ring fusion, 
\begin{verbatim}
\decaheterov[acegi%
{b\fivefusev[a{b\sixfusev[ac]{6==\null}{}{e}}]{1==N;3==N}{}{d}}]
{1==N;4==N}{}
\end{verbatim}
which produces the same structure, 
\begin{center}
\decaheterov[acegi%
{b\fivefusev[a{b\sixfusev[ac]{6==\null}{}{e}}]{1==N;3==N}{}{d}}]
{1==N;4==N}{}
\end{center}

Note that the indicators `1$^{\prime}$,2$^{\prime}$' and `1,2'of 
the locant [1$^{\prime}$,2$^{\prime}$:1,2] in the IUPAC name 
correspond respectively to the 
bond specifiers , `E' and `b', appeared in  the code, 
\verb/{b\sixfusev[ac]{6==\null}{}{E}}/. 
On the other hand, the indicators, 
`4,5' and `{\itshape b}' of of the locant [4,5-{\itshape b}] 
are respectively associated with 
the specifiers, `d' and `b',  appeared in the code, 
\verb/{b\fivefusev[...]{1==N;3==N}{}{d}}/.

An alkaloid with a coryanthe skeleton 
(R. T. Brown and C. L. Chapple, {\itshape Chem. Commun.}, 
1973, 887) can be typeset by the code with nested fusion, 
\begin{verbatim}
\nonaheterov[begj{b\sixfusev[%
{c\sixfusev{1==\null}{3SB==H;3SA==Et;%
4GA==H;%
4B==\dimethylenei[a]{}{1==(yl);2W==OMe;1W==MeOCO}}{F}}]%
{3==N}{4GB==H;2B==COOMe}{e}}]{1==N}{1==H}
\end{verbatim}
where a six-five ring drawn by the command \verb/\nonaheterov/ 
is regarded as a mother skeleton. Thus, we have 
\begin{quotation}
\nonaheterov[begj{b\sixfusev[%
{c\sixfusev{1==\null}{3SB==H;3SA==Et;%
4GA==H;%
4B==\dimethylenei[a]{}{1==(yl);2W==OMe;1W==MeOCO}}{F}}]%
{3==N}{4GB==H;2B==COOMe}{e}}]{1==N}{1==H}
\vspace*{2cm}
\end{quotation}
For the command \verb/\dimethylenei/, see the chapter at issue. 

When a six-six ring drawn by the command \verb/\decaheterovb/ 
is regarded as a mother skeleton, as shown in the code with 
another nested ring fusion, 
\begin{verbatim}
\decaheterovb[f{f\fivefusev[d{d\sixfusev[df]{}{}{b}}]%
{1==N}{1==H}{b}}]{8a==N}{9B==H;2SA==Et;2SB==H;8B==COOMe;%
3GA==H;%
3B==\dimethylenei[a]{}{1==(yl);2W==OMe;1W==MeOCO}}
\end{verbatim}
we find another way of drawing the same structural formula, 
\begin{center}
\decaheterovb[f{f\fivefusev[d{d\sixfusev[df]{}{}{b}}]%
{1==N}{1==H}{b}}]{8a==N}{9B==H;2SA==Et;2SB==H;8B==COOMe;%
3GA==H;%
3B==\dimethylenei[a]{}{1==(yl);2W==OMe;1W==MeOCO}}

\vspace*{1cm}
\end{center}

The following example shows a code with complicated 
nested structure: 
\begin{verbatim}
\cyclohexanev[%
{a\sixfusev[{b\sixfusev[{c\sixfusev[{c\sixfusev[%
{d\sixfusev[{d\sixfusev[{d\sixfusev[%
{e\sixfusev[{e\sixfusev[{e\sixfusev[{e\sixfusev[%
{f\sixfusev[{f\sixfusev[]{}{}{C}}]{}{}{C}}%
]{}{}{B}}]{}{}{B}}]{}{}{B}}]{}{}{B}}%
]{}{}{A}}]{}{}{A}}]{}{}{A}}]{}{}{F}}%
]{}{}{F}}]{}{}{E}}]{}{}{D}}%
{c\sixfusev[{d\sixfusev[{e\sixfusev[{e\sixfusev[%
{f\sixfusev[{f\sixfusev[{f\sixfusev[%
{a\sixfusev[{a\sixfusev[{a\sixfusev[{a\sixfusev[%
{b\sixfusev[{b\sixfusev[]{}{}{E}}]{}{}{E}}%
]{}{}{D}}]{}{}{D}}]{}{}{D}}]{}{}{D}}%
]{}{}{C}}]{}{}{C}}]{}{}{C}}]{}{}{B}}%
]{}{}{B}}]{}{}{A}}]{}{}{F}}%
{e\sixfusev[{f\sixfusev[{a\sixfusev[{a\sixfusev[%
{b\sixfusev[{b\sixfusev[{b\sixfusev[%
{c\sixfusev[{c\sixfusev[{c\sixfusev[{c\sixfusev[%
{d\sixfusev[{d\sixfusev[]{}{}{A}}]{}{}{A}}%
]{}{}{F}}]{}{}{F}}]{}{}{F}}]{}{}{F}}%
]{}{}{E}}]{}{}{E}}]{}{}{E}}]{}{}{D}}%
]{}{}{D}}]{}{}{C}}]{}{}{B}}%
]{}
\end{verbatim}
This code generates a multiply fused formula: 

\clearpage

\begin{center}
\vspace*{8cm}
\cyclohexanev[%
{a\sixfusev[{b\sixfusev[{c\sixfusev[{c\sixfusev[%
{d\sixfusev[{d\sixfusev[{d\sixfusev[%
{e\sixfusev[{e\sixfusev[{e\sixfusev[{e\sixfusev[%
{f\sixfusev[{f\sixfusev[]{}{}{C}}]{}{}{C}}%
]{}{}{B}}]{}{}{B}}]{}{}{B}}]{}{}{B}}%
]{}{}{A}}]{}{}{A}}]{}{}{A}}%
]{}{}{F}}%
]{}{}{F}}]{}{}{E}}]{}{}{D}}%
{c\sixfusev[{d\sixfusev[{e\sixfusev[{e\sixfusev[%
{f\sixfusev[{f\sixfusev[{f\sixfusev[%
{a\sixfusev[{a\sixfusev[{a\sixfusev[{a\sixfusev[%
{b\sixfusev[{b\sixfusev[]{}{}{E}}]{}{}{E}}%
]{}{}{D}}]{}{}{D}}]{}{}{D}}]{}{}{D}}%
]{}{}{C}}]{}{}{C}}]{}{}{C}}%
]{}{}{B}}%
]{}{}{B}}]{}{}{A}}]{}{}{F}}%
{e\sixfusev[{f\sixfusev[{a\sixfusev[{a\sixfusev[%
{b\sixfusev[{b\sixfusev[{b\sixfusev[%
{c\sixfusev[{c\sixfusev[{c\sixfusev[{c\sixfusev[%
{d\sixfusev[{d\sixfusev[]{}{}{A}}]{}{}{A}}%
]{}{}{F}}]{}{}{F}}]{}{}{F}}]{}{}{F}}%
]{}{}{E}}]{}{}{E}}]{}{}{E}}%
]{}{}{D}}%
]{}{}{D}}]{}{}{C}}]{}{}{B}}%
]{}
\end{center}



\clearpage



\section{Remarks}

\subsection{OPT Arguments}

It should be noted that the OPT arguments of 
such commands as \verb/\bzdrv/, \verb/\naphdrv/, 
and \verb/\anthracenev/ cannot be used 
for the ring-fusion technique. In place of the OPT argument, 
the BONDLIST argument of the corresponding general 
command, e.g. \verb/\cyclohexanev/ or \verb/\sixheterov/ 
correspoding to \verb/\bzdrv/, 
should be used for the purpose of ring fusion. . 
For example, a bezene ring of the formula,  
\begin{center}
\vspace*{1cm}
\cyclohexanev[ace{a\sixfusev{}{}{D}}]{}
\end{center}
should be drawn by using the \verb/\cyclohexanev/ command, 
as shown in the code: 
\begin{verbatim}
\cyclohexanev[ace{a\sixfusev{}{}{D}}]{}
\end{verbatim}

\subsection{\protect\XyMTeX{} Warning}

An incorrect result due to 
a wrong specification of a fused bond is 
notified by a \XyMTeX{} warning. 
For example, the code, 
\begin{verbatim}
\hanthracenev[{a\sixfusev{}{}{d}}]{}
\end{verbatim}
gives a formula of wrong fusion: 
\begin{center}
\vspace*{2cm}
\hanthracenev[{a\sixfusev{}{}{d}}]{}
\end{center}
According to this wrong situation, 
a \XyMTeX{} warning appears in a display or in a log file, e.g.,  
\begin{verbatim}
 XyMTeX Warning: Mismatched fusion at bond `a, i, or other' 
 on input line 1904
\end{verbatim}
There are two ways to correct the wrong fusion and, 
as a result, to avoid such a \XyMTeX{} warning. 
First, the code 
\begin{verbatim}
\hanthracenev[{A\sixfusev{}{}{d}}]{}
\end{verbatim}
in which the acceptor bond specifier `a' is changed into `A',  
gives a correct result, as found in the top example of 
this chapter.  Alternatively, 
the donor bond specifier `d' can be changed into `D'.  
Thus, the code, 
\begin{verbatim}
\hanthracenev[{a\sixfusev{}{}{D}}]{}
\end{verbatim}
also typesets the second formula with correct fusion. 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\chapter{Fusing Units}

The commands described in this chapter are stored in 
the {\sf fusering} package (file name: fusering.sty). 

\section{Six-membered Fusing Units}
\subsection{Vertical Units of Normal and Inverse Types}
In \XyMTeX{} version 1.01, we can use \verb/\sixunitv/ 
and \verb/\fiveunitv/ as building blocks, where 
one or more bonds can be omitted. 
In the present version, we prepare 
such commands as \verb/\sixfusev/ an \verb/\sixfusevi/, 
producing building blocks with only one deleted bond. 
These commands can be used in the BONDLIST of another 
command so as to give a fused structural formula, 
as described in the preceding chapter.  
The commands \verb/\sixfusev/ and \verb/\sixfusevi/ have formats 
represented by 
\begin{verbatim}
\sixfusev[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
\sixfusevi[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
\end{verbatim}
where the argument FUSE is an alphabetical character (a--f) 
or the uppercase counterpart (A--F), 
each of which is a bond specifier representing one bond to be omitted. 
A lowercase character (a--f) represents the younger terminal of 
the omitted bond. 
The corresponding uppercase character (A--F) designates 
the other terminal of the bond to be omitted. 
The other arguments have the same formats as described 
in the general conventions (see \XyMTeX book). 
The locant numbers and the bond specifiers of 
the command \verb/\sixfusev/ correspond to 
those of the command \verb/\sixheterov/ (see \XyMTeX book). 
The command \verb/\sixfusevi/ is the inverse counterpart 
of \verb/\sixfusev/ and corresponds to the command \verb/\sixheterovi/. 
Moreover, the BONDLIST is capbable of 
accormodating the ring-fusion function described 
in the preseding chapter, 
the ATOMLIST can accomodate the spiro-ring function 
described afterward, and 
the SUBSLIST serves a method producing subsituents (``yl''-function) 
describe previously. 

For example, the last argument `F' of the \verb/\sixfusev/ 
appearing in the code, 
\begin{verbatim}
\sixfusev[]{1==\null}%
{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}
\end{verbatim}
results in the deletion of the bond `f' between atom no.~6 (youger 
teminal) and  atom no.~1 (older terminal) from a hexagon, 
typesetting the following building block: 
\begin{center}
\sixfusev[]{1==\null}{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}

\vspace*{3cm}
\end{center}
where the reference point for superposition is 
the older terminal (i.e. atom no.~1) of the bond `f'. 
The code \verb/1==\null/ gives a vacancy at the position of atom no.~1. 
When the building block is used in the BONDLIST of 
the \verb/\decaheterov/, as shown in the code, 
\begin{verbatim}
\decaheterov[fhk%
{c\sixfusev[]{1==\null}%
{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}}]{3==N}{6==CH$_3$O;7==CH$_3$O}
\end{verbatim}
we have the following structure, 
\begin{center}
\decaheterov[fhk%
{c\sixfusev[]{1==\null}%
{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}}]{3==N}{6==CH$_3$O;7==CH$_3$O}
\vspace*{2cm}
\end{center}

The last argument `F' of the \verb/\sixfusev/ 
can be changed into `f', as found in the code, 
\begin{verbatim}
\decaheterovi[fhk%
{a\sixfusev[]{1==\null}%
{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{f}}]{2==N}{6==CH$_3$O;7==CH$_3$O}
\end{verbatim}
where we use \verb/\decaheterovi/ in place of 
\verb/\decaheterov/ for drawing the bicyclic mother skeleton. 
Thereby, we have the following structure, 
\begin{center}
\decaheterovi[fhk%
{a\sixfusev[]{1==\null}%
{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{f}}]{2==N}{6==CH$_3$O;7==CH$_3$O}
\vspace*{2cm}
\end{center}

The vertically opposite formula can be drawn by the combination of 
\verb/\sixfusevi/ and \verb/\decaheterovi/ with no other changes 
of designation (in comparison with the first code of this 
section), i.e. 
\begin{verbatim}
\decaheterovi[fhk%
{c\sixfusevi[]{1==\null}%
{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}}]{3==N}{6==CH$_3$O;7==CH$_3$O}
\end{verbatim}
Thereby we have 
\begin{center}
\vspace*{2cm}
\decaheterovi[fhk%
{c\sixfusevi[]{1==\null}%
{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}}]{3==N}{6==CH$_3$O;7==CH$_3$O}
\end{center}

\subsection{Horizontal Units of Normal and Inverse Types}

For drawing horizontal fusing units, 
we can use the commands \verb/\sixfuseh/ and \verb/\sixfusehi/, 
which are represented by 
\begin{verbatim}
\sixfuseh[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
\sixfusehi[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
\end{verbatim}

The horizontal formula of normal type related to the tricyclic 
formulas described in the preceding subsection 
can be drawn by the combination of 
\verb/\sixfuseh/ and \verb/\decaheteroh/ with few changes 
of designation (CH$_{3}$O to OCH$_{3}$), i.e. 
\begin{verbatim}
\decaheteroh[fhk%
{c\sixfuseh[]{1==\null}%
{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}}]{3==N}{6==OCH$_3$;7==OCH$_3$}
\end{verbatim}
which typsets the following structure, 
\begin{center}
\vspace*{1cm}
\decaheteroh[fhk%
{c\sixfuseh[]{1==\null}%
{3==C$_2$H$_5$;4==CH$_2$COOC$_2$H$_5$}{F}}]{3==N}{6==OCH$_3$;7==OCH$_3$}
\end{center}

The horizontally opposite formula can be drawn by the combination of 
\verb/\sixfusehi/ and \verb/\decaheterohi/ with 
slight changes concerning the handedness of subsitutents, i.e. 
\begin{verbatim}
\decaheterohi[fhk%
{c\sixfusehi[]{1==\null}%
{3==C$_2$H$_5$;4==C$_2$H$_5$OCOCH$_2$}{F}}]{3==N}{6==OCH$_3$;7==OCH$_3$}
\end{verbatim}
Thereby we have 
\begin{center}
\vspace*{1cm}
\decaheterohi[fhk%
{c\sixfusehi[]{1==\null}%
{3==C$_2$H$_5$;4==C$_2$H$_5$OCOCH$_2$}{F}}]{3==N}{6==OCH$_3$;7==OCH$_3$}
\end{center}

\section{Five-membered Fusing Units}
\subsection{Vertical Units of Normal and Inverse Types}
To obtain a vertical five-membered building block, 
we can use \verb/\fivefusev/ and \verb/\fivefusevi/: 
\begin{verbatim}
\fivefusev[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
\fivefusevi[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
\end{verbatim}
where the argument FUSE is an alphabetical character (a--e) 
or the uppercase counterpart (A--E), 
each of which is a bond specifier representing one bond to be omitted. 
The other specifications have the same formats 
as found in the preceding section. 

The following example (left) gives the use of the \verb/\fivefusevi/ 
command by itself, where its SUBSLIST contains some substituents: 
\begin{verbatim}
\fivefusevi{4==O}{2D==;3D==O}{E} \hskip 3cm
\fivefusevi{4==O}{1GA==H;5GB==H;2D==;3D==O}{E}
\end{verbatim}
\begin{center}
%\vspace*{1cm}
\fivefusevi{4==O}{2D==;3D==O}{E} \hskip 3cm
\fivefusevi{4==O}{1GA==H;5GB==H;2D==;3D==O}{E}

\vspace*{2cm}
\end{center}
To show hydrogen substitution at the fused positions, we 
add the designation of \verb/1GA==H;5GB==H/ to the 
SUBSLIST of the \verb/\fivefusevi/ command (right above). 
Then, the latter code is written in the BONDLIST of 
a command \verb/\decalinev/, as found in the code:
\begin{verbatim}
\decalinev[h{c\fivefusevi{4==O}{1GA==H;5GB==H;2D==;3D==O}{E}}]%
{6D==O;5A==;0FB==;0GA==H}
\end{verbatim}
Thereby, we obtain 
\begin{center}
\decalinev[h{c\fivefusevi{4==O}{1GA==H;5GB==H;2D==;3D==O}{E}}]%
{6D==O;5A==;0FB==;0GA==H}

\vspace*{1cm}
\end{center}

Fusing units such as \verb/\fivefusev/ 
can be multiply nested in itself and in other types of fusing units. 
The following example shows such a trebly-nested case.  
\begin{verbatim}
\decaheterovi[AB%
{b\fivefusev[{a\sixfusev[ce%
{c\sixfusev{3==O}{4D==O;5SB==HO;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]%
{2==N}{}{D}}]{1==N}{}
\end{verbatim}
\begin{quotation}
\decaheterovi[AB%
{b\fivefusev[{a\sixfusev[ce%
{c\sixfusev{3==O}{4D==O;5SB==HO;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]%
{2==N}{}{D}}]{1==N}{}

\vspace*{2cm}
\end{quotation}

When all of the commands in the above code are 
changed into the inverse counterparts 
(\verb/\decaheterovi/ to \verb/\decaheterov/;
\verb/\fivefusev/ and \verb/\fivefusevi/; and 
\verb/\sixfusev/ to \verb/\sixfusevi/),  
the code is transformed into another code, 
\begin{verbatim}
\decaheterov[AB%
{b\fivefusevi[{a\sixfusevi[ce%
{c\sixfusevi{3==O}{4D==O;5SB==HO;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]%
{2==N}{}{D}}]{1==N}{}
\end{verbatim}
Thereby, we can obtain the formula of vertically inverse type. 
\begin{quotation}
\vspace*{2cm}
\decaheterov[AB%
{b\fivefusevi[{a\sixfusevi[ce%
{c\sixfusevi{3==O}{4D==O;5SB==HO;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]%
{2==N}{}{D}}]{1==N}{}
\end{quotation}

\subsection{Horizontal Units of Normal and Inverse Types}
Horizontal five-membered building block are 
obtained by using \verb/\fivefuseh/ and \verb/\fivefusehi/: 
\begin{verbatim}
\fivefuseh[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
\fivefusehi[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
\end{verbatim}
where the argument FUSE is an alphabetical character (a--e) 
or the uppercase counterpart (A--E), 
each of which is a bond specifier representing one bond to be omitted. 
The other specifications have the same formats 
as found in the preceding section. 

The example given for \verb/\fivefusevi/ is 
changed into the one using the horizontal counterpart \verb/\fivefusehi/: 
\begin{verbatim}
\decalineh[h{c\fivefusehi{4==O}{1GA==H;5GB==H;2D==;3D==O}{E}}]{5A==;6D==O}
\end{verbatim}
\begin{center}
\vspace*{1cm}
\decalineh[h{c\fivefusehi{4==O}{1GA==H;5GB==H;2D==;3D==O}{E}}]{5A==;6D==O}
\end{center}
Note that no changes of other designation are necessary except that 
\verb/\decalineh/ and \verb/\fivefusehi/ are used 
in place of the vertical counterpart described above. 

The multiply nested example described above for drawing 
a structure of vertical type can be changed into 
the corresponding one of horizontal type, 
if all of the commmands are changed into horizontal types 
(\verb/\decaheterovi/ to \verb/\decaheterohi/;
\verb/\fivefusev/ to \verb/\fivefuseh/; and 
\verb/\sixfusev/ to \verb/\sixfuseh/). 

\begin{verbatim}
\decaheterohi[AB%
{b\fivefuseh[{a\sixfuseh[ce%
{c\sixfuseh{3==O}{4D==O;5SB==OH;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]%
{2==N}{}{D}}]{1==N}{}
\end{verbatim}
\begin{quotation}
\vspace*{2cm}\hspace*{4cm}
\decaheterohi[AB%
{b\fivefuseh[{a\sixfuseh[ce%
{c\sixfuseh{3==O}{4D==O;5SB==OH;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]%
{2==N}{}{D}}]{1==N}{}
\end{quotation}

When all the commands in the above code are 
changed into the inverse counterparts 
(\verb/\decaheterohi/ to \verb/\decaheteroh/;
\verb/\fivefuseh/ and \verb/\fivefusehi/; and 
\verb/\sixfuseh/ to \verb/\sixfusehi/),  
the code is transformed into another code, 
\begin{verbatim}
\decaheteroh[AB%
{b\fivefusehi[{a\sixfusehi[ce%
{c\sixfusehi{3==O}{4D==O;5SB==HO;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]%
{2==N}{}{D}}]{1==N}{}
\end{verbatim}
Thereby, we can obtain the formula of horizontally inverse type. 
\begin{quotation}
\vspace*{2cm}\hspace*{4cm}
\decaheteroh[AB%
{b\fivefusehi[{a\sixfusehi[ce%
{c\sixfusehi{3==O}{4D==O;5SB==HO;5SA==Et}{F}}]{1==\null}{2D==O}{f}}]%
{2==N}{}{D}}]{1==N}{}
\end{quotation}

\section{Four-membered Fusing Units}

To obtain a four-membered building block, 
we can use \verb/\fourfuse/: 
\begin{verbatim}
\fourfuse[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
\end{verbatim}
where the argument FUSE is an alphabetical character (a--d) 
or the uppercase counterpart (A--D), 
each of which is a bond specifier representing one bond to be omitted. 
The assignment of characters (a to d) and locants (1 to 4) 
for the command \verb/\fourhetero/ is applied 
in the same way to this case. 
The other specifications have the same formats 
as those of the command \verb/\fourhetero/. 

For example, the code, 
\begin{verbatim}
\sixheterov[{e\fourfuse{}{}{b}}]{}{}
\sixheterov[{b\fourfuse{}{}{d}}]{}{}
\sixheteroh[{b\fourfuse{}{}{a}}]{}{}
\sixheteroh[{e\fourfuse{}{}{c}}]{}{}
\end{verbatim}
produces the following structural formulas. 
\begin{center}
\sixheterov[{e\fourfuse{}{}{b}}]{}{}
\sixheterov[{b\fourfuse{}{}{d}}]{}{}
\sixheteroh[{b\fourfuse{}{}{a}}]{}{}
\sixheteroh[{e\fourfuse{}{}{c}}]{}{}
\end{center}

A hetero atom at a fused position is designated in the ATOMLIST 
of \verb/\fourfuse/, which is associated the code \verb/\null/ 
in the ATOMLIST of a command for drawing a mother skeleton. 
For example, the code 
\begin{verbatim}
\sixheterov[{e\fourfuse{3==N}{}{b}}]{6==\null}{}
\sixheterov[{b\fourfuse{4==N}{}{d}}]{2==\null}{}
\sixheteroh[{b\fourfuse{2==N}{}{a}}]{3==\null}{}
\sixheteroh[{e\fourfuse{3==N}{}{c}}]{5==\null}{}
\end{verbatim}
produces the following structural formulas. 
\begin{center}
\sixheterov[{e\fourfuse{3==N}{}{b}}]{6==\null}{}
\sixheterov[{b\fourfuse{4==N}{}{d}}]{2==\null}{}
\sixheteroh[{b\fourfuse{2==N}{}{a}}]{3==\null}{}
\sixheteroh[{e\fourfuse{3==N}{}{c}}]{5==\null}{}
\end{center}

Penicillin G can be drawn by using the \verb/\fourfuse/ command 
in the code, 
\begin{verbatim}
\fiveheterovi[{d\fourfuse{2==\null}{1D==O;4Su==PhCH$_{2}$CONH;4Sd==H}{b}}]%
{1==S;4==N}{2Sa==CH$_{3}$;2Sb==CH$_{3}$;3SA==COOH;3SB==H;5GA==H}
\end{verbatim}
which typeset the following formula: 
\begin{center}
\fiveheterovi[{d\fourfuse{2==\null}{1D==O;4Su==PhCH$_{2}$CONH;4Sd==H}{b}}]%
{1==S;4==N}{2Sa==CH$_{3}$;2Sb==CH$_{3}$;3SA==COOH;3SB==H;5GA==H}
\end{center}

\section{Three-membered Fusing Units}
\subsection{Vertical Units of Normal and Inverse Types}
To obtain three-membered building blocks of 
vertical type, we can use \verb/\threefusev/ and \verb/\threefusevi/: 
\begin{verbatim}
\threefusev[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
\threefusevi[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
\end{verbatim}
where the argument FUSE is an alphabetical character (a--c) 
or the uppercase counterpart (A--C), 
each of which is a bond specifier representing one bond to be omitted. 
The assignment of characters (a to c) and locants (1 to 3) 
for the command \verb/\threeheterov/ or \verb/\threeheterovi/ is applied 
in the same way to this case. 
The other specifications have the same formats 
as those of the command \verb/\threeheterov/ or \verb/\threeheterovi/. 

For example, the code using \verb/\threefusev/, 
\begin{verbatim}
\sixheteroh[{a\threefusev{}{}{a}}]{}{}
\sixheteroh[{e\threefusev{}{}{b}}]{}{}
\sixheteroh[{c\threefusev{}{}{c}}]{}{}
\end{verbatim}
produces the following structural formulas. 
\begin{center}
\sixheteroh[{a\threefusev{}{}{a}}]{}{}
\sixheteroh[{e\threefusev{}{}{b}}]{}{}
\sixheteroh[{c\threefusev{}{}{c}}]{}{}
\end{center}
The use of the inverse type is shown in the code, 
\begin{verbatim}
\sixheteroh[{F\threefusevi{}{}{a}}]{}{}
\sixheteroh[{B\threefusevi{}{}{b}}]{}{}
\sixheteroh[{D\threefusevi{}{}{c}}]{}{}
\end{verbatim}
which produces the following structural formulas. 
\begin{center}
\sixheteroh[{F\threefusevi{}{}{a}}]{}{}
\sixheteroh[{B\threefusevi{}{}{b}}]{}{}
\sixheteroh[{D\threefusevi{}{}{c}}]{}{}
\end{center}

Hetero-atoms at fused positions can be typeset by designating 
ATOMLISTs. For example, the code, 
\begin{verbatim}
\sixheteroh[{a\threefusev{1==N}{}{a}}]{1==\null}{}
\sixheteroh[{e\threefusev{2==N}{}{b}}]{5==\null}{}
\sixheteroh[{c\threefusev{3==N}{}{c}}]{3==\null}{}
\end{verbatim}
produces the following structural formulas. 
\begin{center}
\sixheteroh[{a\threefusev{1==N}{}{a}}]{1==\null}{}
\sixheteroh[{e\threefusev{2==N}{}{b}}]{5==\null}{}
\sixheteroh[{c\threefusev{3==N}{}{c}}]{3==\null}{}
\end{center}

\subsection{Horizontal Units of Normal and Inverse Types}
Three-membered building blocks of 
horizontal type can be obtained by using 
\verb/\threefuseh/ and \verb/\threefusehi/: 
\begin{verbatim}
\threefuseh[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
\threefusehi[BONDLIST]{ATOMLIST}{SUBSLIST}{FUSE}
\end{verbatim}
where the argument FUSE is an alphabetical character (a--c) 
or the uppercase counterpart (A--C), 
each of which is a bond specifier representing one bond to be omitted. 
The assignment of characters (a to c) and locants (1 to 3) 
for the command \verb/\threeheteroh/ or \verb/\threeheterohi/ is applied 
in the same way to this case. 
The other specifications have the same formats 
as those of the command \verb/\threeheteroh/ or \verb/\threeheterohi/. 

For example, the code using \verb/\threefuseh/, 
\begin{verbatim}
\sixheterov[{F\threefuseh{}{}{a}}]{}{}
\sixheterov[{B\threefuseh{}{}{b}}]{}{}
\sixheterov[{D\threefuseh{}{}{c}}]{}{}
\end{verbatim}
produces the following structural formulas. 
\begin{center}
\sixheterov[{F\threefuseh{}{}{a}}]{}{}
\sixheterov[{B\threefuseh{}{}{b}}]{}{}
\sixheterov[{D\threefuseh{}{}{c}}]{}{}
\end{center}
The use of the inverse type is shown in the code, 
\begin{verbatim}
\sixheterov[{a\threefusehi{}{}{a}}]{}{}
\sixheterov[{e\threefusehi{}{}{b}}]{}{}
\sixheterov[{c\threefusehi{}{}{c}}]{}{}
\end{verbatim}
which produces the following structural formulas. 
\begin{center}
\sixheterov[{a\threefusehi{}{}{a}}]{}{}
\sixheterov[{e\threefusehi{}{}{b}}]{}{}
\sixheterov[{c\threefusehi{}{}{c}}]{}{}
\end{center}

Hetero-atoms at fused positions can be typeset by designating 
ATOMLISTs. For example, the code, 
\begin{verbatim}
\sixheterov[{F\threefuseh{1==N}{}{a}}]{1==\null}{}
\sixheterov[{B\threefuseh{2==N}{}{b}}]{3==\null}{}
\sixheterov[{D\threefuseh{3==N}{}{c}}]{5==\null}{}
\end{verbatim}
produces the following structural formulas. 
\begin{center}
\sixheterov[{F\threefuseh{1==N}{}{a}}]{1==\null}{}
\sixheterov[{B\threefuseh{2==N}{}{b}}]{3==\null}{}
\sixheterov[{D\threefuseh{3==N}{}{c}}]{5==\null}{}
\end{center}

An aziridine derivative, 
\begin{center}
\sixheterov[{B\threefuseh{1==N}{1==COOC$_{2}$H$_{5}$}{b}}]{}{}
\end{center}
can be drawn by the code, 
\begin{verbatim}
\sixheterov[{B\threefuseh{1==N}{1==COOC$_{2}$H$_{5}$}{b}}]{}{}
\end{verbatim}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\chapter{Spiro Rings}
\section{General Conventions for Spiro-Ring Attachment}

There are several ways for naming spiro compounds 
in the light of the IUPAC nomenclature. 
Rule A-41.4 allows us to use such a name as 
spiro[cyclopentane-1,1$^{\prime}$-indene] 
for representing the following structure: 
\begin{center}
\vspace*{1cm}
\nonaheterovi[begj]{1s==\fiveheterov{}{1==(yl)}}{}
\end{center}
The same structure is named indene-1-spiro-1$^{\prime}$-cyclohexane 
in terms of Rule A-42.1. 
Spiro[5.5]undecane, the name due to Rule A-41.1 and A-41.2, 
is alternatively referred to as 
cyclohexanespirocyclohexane in terms of Rule A-42.1:   
\begin{center}
\vspace*{1cm}
\sixheterov[]{1s==\sixheterov[]{}{4==(yl)}}{}
\end{center}
where the `cyclohexanespiro' shows the replacement of a 
carbon atom in a cyclohexne by another cyclohexane ring. 
These rules essentially have the same methodology as the 
IUPAC replacement nomenclature, e.g., 
oxacyclohexane (more formally, oxane or tetrahydropyran) 
for the formula 
\begin{center}
\sixheterov[]{1==O}{}
\end{center}
generated by the code, 
\begin{verbatim}
\sixheterov[]{1==O}{}
\end{verbatim}
where the prefix `oxa' shows the replacement of a 
carbon atom with an oxygen atom.  
Obviously, the prefix `cyclohexanespiro' of the name 
`cyclohexanespirocyclohexane' is akin to 
the prefix `oxa' of the name `oxacyclohexane' or `oxane' 
from the viewpoint of the construction of names.   
Since the unit due to the latter prefix is designated by 
the \verb/1==O/ involved in the ATOMLIST, 
the former prefix can be treated in the same way. 
Hence, spiro compounds are drawn as follows: 
\begin{enumerate}
\item 
\XyMTeX{} regards a spiro ring 
as a unit for the IUPAC replacement nomenclature, 
which is generated from an appropriate structure by ``yl''-function. 
\item the code of the unit due to the ``yl''-function is added to 
the ATOMLIST of a mother skeleton. 
\end{enumerate}

Spiro[5.5]undecane is regarded as `cyclohexana'-cyclohexane 
(more formally, `cyclohexanespiro'-cyclo\-hexane), 
as found in the code, 
\begin{verbatim}
\sixheterov[]{1s==\sixheterov[]{}{4==(yl)}}{}
\end{verbatim}
where the code 
\verb/\sixheterov[]{}{4==(yl)}/ produced by the ``yl''-function 
corresponds to the suffix `cyclohexana' and 
is written in the ATOMLIST of the outer \verb/sixheterov/ command. 
Thereby, we can obtain 
\begin{center}
\vspace*{1cm}
\sixheterov[]{1s==\sixheterov[]{}{4==(yl)}}{}
\end{center}

Note that the atom modifier `s' in the code 
\verb/1s==\sixheterov[]{}{4==(yl)}/ represents no 
hetero-atom at the spiro position. 
When a hetero-atom is present at the spiro position, 
an atom modifier `h' is used in place of `s'. 
For example, the code 
\begin{verbatim}
\sixheterov[]{1h==\sixheterov[]{4==N}{4==(yl)}}{}
\end{verbatim}
typeset the following formula: 
\begin{center}
\vspace*{1cm}
\sixheterov[]{1h==\sixheterov[]{4==N}{4==(yl)}}{}
\end{center}

It should be noted that the absence of such atom 
modifiers represents a usual replacement by 
a hetero atom, as found in the formula of 
oxane shown above or in the one of 
thiacyclohexane (tetrahydrothiane): 
\begin{center}
\sixheterov[]{1==S}{}
\end{center}
generated by the code, 
\begin{verbatim}
\sixheterov[]{1==S}{}
\end{verbatim}

\section{Several Examples}

Spiro[cyclopentane-1,1$^{\prime}$-indene] described above 
can be drawn in two ways: 
\begin{center}
\vspace*{1cm}
\nonaheterovi[begj]{1s==\fiveheterov{}{1==(yl)}}{}
\fiveheterov{1s==\nonaheterovi[begj]{}{1==(yl)}}{}

\vspace*{1cm}
\end{center}
where we use two different codes: 
\begin{verbatim}
\nonaheterovi[begj]{1s==\fiveheterov{}{1==(yl)}}{}
\fiveheterov{1s==\nonaheterovi[begj]{}{1==(yl)}}{}
\end{verbatim}
which correspond to 
`cyclohexane-1-spiro-1$^{\prime}$-indene' and 
`indene-1-spiro-1$^{\prime}$-cyclohexane' (formal), 
respectively.   

A spiro dienone
\begin{center}
\vspace*{1cm}
\sixheterov[be]{%
1s==\fiveheterov{4==N}{1==(yl);3SB==H;3SA==COOCH$_{2}$Ph;%
4==PhCH$_{2}$OCO;5D==O}}{4D==O}
\end{center}
can be drawn by writing a code, 
\begin{verbatim}
\sixheterov[be]{%
1s==\fiveheterov{4==N}{1==(yl);3SB==H;3SA==COOCH$_{2}$Ph;%
4==PhCH$_{2}$OCO;5D==O}}{4D==O}
\end{verbatim}

1-Azaspiro[5.5]undecene 
which is the skeleton present in histrionicotoxin 
(Tetrahedron Lett., 1981, {\bf 22}, 2247) 
\begin{center}
\sixheterov[]{1==N;6s==\cyclohexanev[a]{3==(yl)}}{1==CH$_{2}$Ph}
\end{center}
can be drawn by the code, 
\begin{verbatim}
\sixheterov[]{1==N;6s==\cyclohexanev[a]{3==(yl)}}{1==CH$_{2}$Ph}
\end{verbatim}

The following example shows a case 
to which both ring fusion and spiro attachment are applied. 
The code, 
\begin{verbatim}
\decaheterov[fhk%
{g\fivefusev{1==O;4==O}{}{b}}%
]{1s==\cyclohexanev[be]{1D==O;4==(yl)}}{}
\end{verbatim}
gives the following formula: 
\begin{center}
\vspace*{2cm}
\decaheterov[fhk%
{g\fivefusev{1==O;4==O}{}{b}}%
]{1s==\cyclohexanev[be]{1D==O;4==(yl)}}{}
\end{center}

A 1,3-dioxolane derivative 
\begin{center}
\fiveheterov{2==O;5==O;%
1s==\trimethylenei{}{3==(yl);1W==PhSO$_{2}$;3W==R}}{}%
\end{center}
can be drawn by the code, 
\begin{verbatim}
\fiveheterov{2==O;5==O;1s==\trimethylenei{}{3==(yl);1W==PhSO$_{2}$;3W==R}}{}%
\end{verbatim}
The same compound is also drawn by usual techniques 
as follows: 
\begin{verbatim}
\fiveheterov{2==O;5==O}{1Sb==\dimethylenei{}{2==(yl);1W==PhSO$_{2}$};1Sa==R}
\end{verbatim}
\begin{center}
\fiveheterov{2==O;5==O}{1Sb==\dimethylenei{}{2==(yl);1W==PhSO$_{2}$};1Sa==R}
\end{center}

\begin{verbatim}
\fiveheterov{2==O;5==O}{1G==\dimethylenei{}{2==(yl);1W==PhSO$_{2}$};1F==R}
\end{verbatim}
\begin{center}
\fiveheterov{2==O;5==O}{1G==\dimethylenei{}{2==(yl);1W==PhSO$_{2}$};1F==R}
\end{center}

1,2,3,4-Tetrahydroquinoline-4-spiro-4$^{\prime}$-piperidine, 
\begin{quotation}
\vspace*{2cm}
\decaheterovi[fhk]{1==N;4s==\sixheterov[]{1==N}{4==(yl);1==H}}{1==H}
\end{quotation}
can be drawn by writing a code, 
\begin{verbatim}
\decaheterovi[fhk]{1==N;4s==\sixheterov[]{1==N}{4==(yl);1==H}}{1==H}
\end{verbatim}

3,3$^{\prime}$-Spirobi[3{\it H}-indole], 
\begin{quotation}
\vspace*{1cm}
\nonaheterovi[begj]{3==N;%
1s==\fiveheterov[bd{b\sixfusev[ac]{}{}{e}}]{4==N}{1==(yl)}}{}
\end{quotation}
is typeset by the code, 
\begin{verbatim}
\nonaheterovi[begj]{3==N;%
1s==\fiveheterov[bd{b\sixfusev[ac]{}{}{e}}]{4==N}{1==(yl)}}{}
\end{verbatim}

The code, 
\begin{verbatim}
\sixheterov[]{1s==\fiveheterov{2==O;5==O}{1==(yl)}}{%
5==\threeheteroh{1==O}{3Sb==Me$_{3}$Si;3==(yl)}}
\end{verbatim}
typesets the following structure: 
\begin{center}
\vspace*{1cm}
\sixheterov[]{1s==\fiveheterov{2==O;5==O}{1==(yl)}}{%
5==\threeheteroh{1==O}{3Sb==Me$_{3}$Si;3==(yl)}}
\end{center}

A spiro intermediate during spiro annelation 
(T.\ S.\ T.\ Wang, {\em Tetrahedron Lett.}, 1975, 1637), 
\begin{quotation}
\vspace*{1cm}
\nonaheterov[aA]{1==N;%
3s==\decaheterovb[B]{8==N}{5==(yl);8==\dimethylenei{}{1D==O;1==(yl)}}}{}
\end{quotation}
can be drawn by the code, 
\begin{verbatim}
\nonaheterov[aA]{1==N;%
3s==\decaheterovb[B]{8==N}{5==(yl);8==\dimethylenei{}{1D==O;1==(yl)}}}{}
\end{verbatim}

A lactone intermediate containing a protected ketone 
(A. Grieco and M. Nishizawa, {\em Chem. Commun.}, 1976, 582), 
\begin{center}
\decaheterov[h{c\fivefusevi{4==O}{1GA==H;5GB==H;2B==;3D==O}{E}}]{%
6s==\fiveheterovi{1==O;3==O}{2==(yl)}}{5A==;{10}B==;9A==H}

\vspace*{1cm}
\end{center}
is drawn by the code, 
\begin{verbatim}
\decaheterov[h{c\fivefusevi{4==O}{1GA==H;5GB==H;2B==;3D==O}{E}}]{%
6s==\fiveheterovi{1==O;3==O}{2==(yl)}}{5A==;{10}B==;9A==H}
\end{verbatim}

\section{Multi-Spiro Derivatives}

Multi-sipro derivatives are drawn by nesting spiro function. 
For example, cyclohexanespirocyclopentane-3$^{\prime}$-%
spirocyclohexane (Rule A-42.4), 
\begin{center}
\sixheteroh[]{4s==\fiveheterov{%
2s==\sixheteroh[]{}{1==(yl)}}{5==(yl)}}{}
\end{center}
is typeset by the code, 
\begin{verbatim}
\sixheteroh[]{4s==\fiveheterov{%
2s==\sixheteroh[]{}{1==(yl)}}{5==(yl)}}{}
\end{verbatim}
When \verb/\fiveheterov/ is a mother skeleton, 
such a nested command is unnecessary: 
\begin{verbatim}
\fiveheterov{2s==\sixheteroh[]{}{1==(yl)};%
5s==\sixheteroh[]{}{4==(yl)}}{}
\end{verbatim}
\begin{center}
\fiveheterov{2s==\sixheteroh[]{}{1==(yl)};%
5s==\sixheteroh[]{}{4==(yl)}}{}
\end{center}

The name (Rule A-42.4), 
fluorene-9-spiro-1$^{\prime}$-cyclohexane-4$^{\prime}$-%
spiro-1$^{\prime}$-indene, corresponds to the code,  
\begin{verbatim}
\nonaheterovi[begj{b\sixfusev[ac]{}{}{E}}]{%
1s==\sixheterov[]{1s==\nonaheterov[begj]{}{1==(yl)}}{4==(yl)}}{}
\end{verbatim}
which gives 
\begin{quotation}
\vspace*{2cm}
\nonaheterovi[begj{b\sixfusev[ac]{}{}{E}}]{%
1s==\sixheterov[]{1s==\nonaheterov[begj]{}{1==(yl)}}{4==(yl)}}{}
\end{quotation}


\section{Atom Replacement}

The ATOMLIST of each command is capable of 
accommodating a group if a sufficient space is available. 
For example, compare two codes, 
\begin{verbatim}
\sixheteroh{4==NCOOEt}{}
\hskip 2cm
\sixheteroh{4==N}{4==COOEt}
\end{verbatim}
generating formulas equivalent chemically to each other: 
\begin{center}
\sixheteroh{4==NCOOEt}{}
\hskip 2cm
\sixheteroh{4==N}{4==COOEt}
\end{center}
Note that the former example uses an ATOMLIST and 
the latter uses an SUBSLIST for describing substituents. 

Even when no such space is available, the use of 
a command, \verb/\upnobond/ or \verb/\downnobond/, 
give a solution (see \XyMTeX book pages 259--260).  
Compare the following formulas, 
\begin{center}
\sixheterov{4==\downnobond{N}{COOEt}}{}
\sixheterov{4==N}{4==COOEt}
\sixheterov{1==\upnobond{N}{COOEt}}{}
\sixheterov{1==N}{1==COOEt}
\end{center}
generated by the code, 
\begin{verbatim}
\sixheterov{4==\downnobond{N}{COOEt}}{}
\sixheterov{4==N}{4==COOEt}
\sixheterov{1==\upnobond{N}{COOEt}}{}
\sixheterov{1==N}{1==COOEt}
\end{verbatim}

These examples show that a substituent (e.g. NCOOEt) can 
be regarded as a component for atom replacement using a ATOMLIST. 
This methodology can be applied to a case in which 
such a substituent is generated by the ``yl''-function or 
by such a linking command as \verb/\ryl/ or \verb/\lyl/. 
The following example shows the use the \verb/\ryl/ command 
in the ATOMLIST of \verb/\sixheteroh/. 
\begin{verbatim}
\sixheteroh{4h==\ryl(4==NCOO){4==\bzdrh{1==(yl)}}}{}
\hskip2cm
\sixheterov{3h==\ryl(4==NCOO){4==\bzdrh{1==(yl)}}}{}
\hskip2cm
\sixheterov{4h==\ryl(0==N){8==\bzdrv{1==(yl)}}}{}
\end{verbatim}
\begin{center}
\sixheteroh{4h==\ryl(4==NCOO){4==\bzdrh{1==(yl)}}}{}
\hskip2cm
\sixheterov{3h==\ryl(4==NCOO){4==\bzdrh{1==(yl)}}}{}
\hskip2cm
\sixheterov{4h==\ryl(0==N){8==\bzdrv{1==(yl)}}}{}

\vspace*{1cm}
\end{center}

A bond bewtween a COO unit and a phenyl group is frequently  
omitted. For this purpose,  we use command \verb/\ayl/ 
defined as 
\begin{verbatim}
\makeatletter
\def\ayl{\@ifnextchar({\@ayl@}{\@ayl@(10,40)}}
\def\@ayl@(#1,#2)#3{%
\begingroup\yl@xdiff=0 \yl@ydiff=0%
\kern#1\unitlength\raise#2\unitlength\hbox to0pt{#3\hss}%
\endgroup}
\makeatother
\end{verbatim}
Thereby, we have the following examples. 
\begin{verbatim}
\sixheteroh{4==NCOO\ayl{\bzdrh{1==(yl)}}}{}
\hskip2cm
\sixheterov{3==NCOO\ayl{\bzdrh{1==(yl)}}}{}
\hskip2cm
\sixheterov{4==\downnobond{N}{COO\ayl{\bzdrh{1==(yl)}}}}{}
\end{verbatim}
\begin{center}
\sixheteroh{4==NCOO\ayl{\bzdrh{1==(yl)}}}{}
\hskip2cm
\sixheterov{3==NCOO\ayl{\bzdrh{1==(yl)}}}{}
\hskip2cm
\sixheterov{4==\downnobond{N}{COO\ayl{\bzdrh{1==(yl)}}}}{}
\end{center}

\begin{verbatim}
\tetramethylene[a]{3==\downnobond{N}{COO\ayl{\bzdrh{1==(yl)}}}}{}
\hskip2cm
\tetramethylene[a]{3==N}{3==COO\ayl{\bzdrh{1==(yl)}}}
\end{verbatim}
\begin{center}
\tetramethylene[a]{3==\downnobond{N}{COO\ayl{\bzdrh{1==(yl)}}}}{}
\hskip2cm
\tetramethylene[a]{3==N}{3==COO\ayl{\bzdrh{1==(yl)}}}
\end{center}


\endinput


\begin{verbatim}
\end{verbatim}
\begin{center}
\end{center}


\begin{verbatim}
\end{verbatim}
\begin{quotation}
\end{quotation}