summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/xstring/xstring_doc_en.tex
blob: 44961af495b64c06cc8fa8e7d81f980efbb29772 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
% This is xtring_doc_en.tex, the manual of xstring
% Christian Tellechea 2008
%
% email : unbonpetit@gmail.com
%
% This work may be distributed and/or modified under the
% conditions of the LaTeX Project Public License, either version 1.3
% of this license or (at your option) any later version.
% The latest version of this license is in
%
%     http://www.latex-project.org/lppl.txt
%
% and version 1.3 or later is part of all distributions of LaTeX
% version 2005/12/01 or later.
%
\documentclass[a4paper,10pt]{article}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[dvips,colorlinks=true,hyperfootnotes=false,citecolor=black,filecolor=black,linkcolor=blue,urlcolor=blue,bookmarks=false,pdfauthor={Christian Tellechea},pdftitle={xstring},pdfsubject={package for strings},pdfkeywords={xstring,latex,string},pdfcreator={LaTeX}]{hyperref}
\usepackage[a4paper,dvips,margin=2cm]{geometry}
\usepackage{amsmath,amssymb,amsfonts,textcomp}
\usepackage{amssymb}
\usepackage{moreverb}
\usepackage{lmodern}
\usepackage{eurosym}
\usepackage{xstring}
\usepackage[french,english]{babel}
\makeatletter
\newcommand*\exemple{\@ifstar{\def\frontiere{|}\@xs@MakeVerb}{\def\frontiere{}\@xs@MakeVerb}}
\def\@xs@afterreadverb#1{%
	\normalexpandarg
	\tokenize\cs@resultat{#1}%
	\fullexpandarg
	\hbox to\linewidth{\hbox to0.7\linewidth{\hfil\tt#1}\quad\frontiere\cs@resultat\frontiere\hfil}\par}
\makeatother
\newcommand\guill[1]{"#1"}
\newcommand\argu[1]{$\langle$\textit{#1}$\rangle$}
\newcommand\ARGU[1]{\texttt{\{}\argu{#1}\texttt{\}}}
\newcommand\arguC[1]{\texttt{[}\argu{#1}\texttt{]}}
\newcommand\arguCC[2]{\texttt{[}\argu{#1}{,}\argu{#2}\texttt{]}}
\newcommand\texte[1]{\texttt{text}${}_{#1}$}
\newcommand\voirdeftexte{~(see \ref{deftexte})}
\newenvironment{Conditions}[1][1cm]%
{\begin{list}%
	{$\vartriangleright$}%
	{\setlength{\leftmargin}{#1}
	 \setlength{\itemsep}{0pt}
	 \setlength{\parsep}{0pt}
	 \setlength{\topsep}{2ptplus3ptminus2pt}
	}}%
{\end{list}}
\renewcommand\th{${}^\text{th}$}

\begin{document}
\setlength{\parindent}{0pt}
\begin{titlepage}
	\null\par\vfill
	\begin{center}
		\begin{minipage}{0.75\linewidth}
			\begin{center}
				\Huge\bfseries xstring\par\vspace{5pt}
				\small v\xstringversion\par\vspace{25pt}
				\normalsize User's manual
			\end{center}
		\end{minipage}
	\end{center}
	\vspace{1cm}
	\begin{center}
		Christian {\sc Tellechea}\par\small
		\href{mailto:unbonpetit@gmail.com}{\nolinkurl{unbonpetit@gmail.com}}\par\vspace{5pt}
		\xstringenglishdate
	\end{center}
	\vfill\hrulefill
	\begin{center}
		\begin{minipage}{0.85\linewidth}
			\noindent
			\hfill\textbf{\textit{Abstract}}\hfill{}\medskip\par
			This package which requires $\varepsilon-\TeX{}$ groups together macros manipulating strings, such as:
			\setlength{\parindent}{1.5em}
			\begin{itemize}
				\item[$\triangleright$] tests:
					\begin{itemize}
						\item does a string contains at least $n$ times an another?
						\item does a string starts (or ends) with another? etc.
						\item is a string an integer? A decimal?
					\end{itemize}
				\item[$\triangleright$] extractions of substrings:
					\begin{itemize}
						\item what is on the left (or the right) of the $n$\th{} occurrence of a substring;
						\item what is between the occurrences of 2 substrings;
						\item substring between 2 positions, etc.
					\end{itemize}
				\item[$\triangleright$] substitution of all, or the $n$ first occurrences of a substring for an other substring;
				\item[$\triangleright$] calculation of numbers:
					\begin{itemize}
						\item length of a string;
						\item position of the $n$\th{} occurrence of a substring;
						\item how many times a string contains a substring?
					\end{itemize}
			\end{itemize}
			\setlength{\parindent}{0pt}
			\medskip
			For programming purposes, other macros allow to use special characters (\verb|&|, \verb|~|, \verb|\|, \verb|{|, \verb|}|, \verb|_|, \verb|#|, \verb|$|, \verb|^| and \verb|%|) with the macros manipulating strings.
		\end{minipage}
	\end{center}
	\hrulefill\vfill{}
\end{titlepage}
\pagebreak
\tableofcontents
\pagebreak

This manual is a translation of the french manual. I apologize for my poor english but I did my best, and I hope that the following is comprehensible!
\section{Presentation}
\subsection{Description}
This extension\footnote{This extension does not require \LaTeX{} and can be compiled with Plain $\varepsilon$-\TeX{}.} provides macros and tests operating on strings, as other programmation languages have. They provides the usual strings operations, such as: test if a string contains another, begins or ends with another, extractions of strings, calculation of the position of a substring, of the number of occurrences, etc.\medskip

Certainly, other packages exit (for example \href{http://www.ctan.org/tex-archive/macros/latex/contrib/substr/}{\nolinkurl{substr}} and \href{http://www.ctan.org/tex-archive/macros/latex/contrib/stringstrings/}{\nolinkurl{stringstrings}}), but as well as differences on features, they do not take into account occurrences so I found them too limited and difficult to use for programming.

\subsection{Motivation}
I decided to write this package of macros because I have never really found tools in \LaTeX{} suiting my needs for strings. So, over the last few months,I wrote a few macros that I occasionally or regularly used. Their numbers have increased and become a little too dispersed in directories in my computer, so I have grouped them together in this package.

Thus, writing a coherent set of macros forces more discipline and leads to necessary improvements, which took most of the time I spent writing this package.\medskip

This package is my first one as I discoverd \LaTeX{} less than a year ago, so my main motivation was to make progress in programming with \TeX, and to tackle its specific methods.

\subsection{Operation}
\label{deftexte}
In the following, \guill{\texte{10,11,12}} means a string made of characters whose catcodes are 10, 11 or 12.
\subsubsection{Expansion of arguments}
\label{devarg}
All the arguments of the macros operating on strings\footnote{Excepted the 2 last arguments of the tests.} are supposed, after a number of times of expansion, to expand to \texte{10,11,12}. By \emph{default}, to avoid many \verb|\expandafter| and to ease the use of macros, all the arguments are fully expanded before being taken into account by the macro: for this, \verb|\fullexpandarg| is called by default.\bigskip

For example, if \verb|\macro| is a macro of this package requiring 2 arguments (text for the first and a number for the second), the following structures are equivalent:\medskip

\begin{minipage}[t]{0.35\linewidth}
	Structure with \verb|\fullexpandarg|\par\hrulefill\par
	\verb|\def\aa{some text}|\par
	\verb|\def\nn{2}|\par
	\verb|\macro{\aa}{\nn}|
\end{minipage}
\hfill
\begin{minipage}[t]{0.6\linewidth}
	Usual structure with \LaTeX{} or with \verb|\normalexpandarg|\par\hrulefill\par
	\verb|\def\aa{some text}|\par
	\verb|\def\nn{2}|\par
	\verb|\expandafter\expandafter\expandafter\macro|\par
	\verb| \expandafter\expandafter\expandafter|\par
	\verb|  {\expandafter\aa\expandafter}\expandafter{\nn}|
\end{minipage}\hfill{}\medskip

The structure on the left allow to forget the order of expansion and avoid writing many \verb|\expandafter|. On the other hand, the arguments must be purely expandable into \texte{10,11,12} containing what is expected by the macro (number or string).\medskip

However, at any time, you can find the usual order of expansion with the macro \verb|\normalexpandarg|, and use again \verb|\fullexpandarg| if you want a full expansion of the arguments.

\subsubsection{Textual arguments}
The macros operating on strings require one or several arguments containing --~or whose expansion contains~-- \texte{10,11,12}\voirdeftexte{}, using the usual syntax \verb|{|\texte{10,11,12}\verb|}|, and for optionnal arguments \verb|[|\texte{10,11,12}\verb|]|.\medskip

The following rules shoud be observed for the expansion of textual arguments:

\begin{itemize}
	\item they can contain letters (uppercase or lowercase, accented\footnote{For a reliable operation with accented letters, the \texttt{\textbackslash fontenc} package with option \texttt{[T1]} and \texttt{\textbackslash inputenc} with appropriated option must be loaded} or not), figures, spaces, and any other character with a catcode of 10, 11 ou 12 (punctuation signs, calculation signs, parenthesis, square bracket, etc). On the other hand, the \officialeuro{} sign is not allowed.
	\item spaces are taken into account as normal characters, except if several spaces follows in which case the \LaTeX{} rule prevails and they become a single space;
	\item no special character is allowed, i.e. the 10 following characters are strictly forbiden: \verb|&|, \verb|~|, \verb|\|, \verb|{|, \verb|}|, \verb|_|, \verb|#|, \verb|$|, \verb|^| and \verb|%|.
\end{itemize}\medskip

To circumvent some of these rules and to go further in the use of the macros operating on strings, this package provides special macros that enable special characters in textual arguments. See the detailed description of this modus operandi in chapter~\ref{programmation}, page~\pageref{programmation}.

\subsubsection{Expansion of macros, optional argument}
The macros of this package are not purely expandable, i.e. they cannot be put in the argument of an \verb|\edef|. Consequently, some structures are not allowed and lead to errors when compiling. If, for example, \verb|\command{argument}| is a macro of this package operating on strings and returning a string, the following structures are not allowed:\smallskip

\hspace{0.2\linewidth}\verb|\edef\Result{\command{argument}}|\par
\qquad or this nested structure\par
\hspace{0.2\linewidth}\verb|\commandA{\commandB{\commandC{argument}}}|\smallskip

For this reason, all the macros returning a result (i.e. all excepted the tests) have an optionnal argument in last position. The syntax is \arguC{nom}, where \argu{nom} is the name of the control sequence that will receive the result of the macro: the assignment is made with an \verb|\edef| which make the result of the macro |\argu{nom} purely expandable. Of course, if an optionnal argument is present, the macro does not display anything.\medskip

Thus, this structure not allowed, already seen above:\par
\hspace{0.2\linewidth}\verb|\edef\Resultat{\commande{arguments}}|\par
\qquad is equivalent to:\par
\hspace{0.2\linewidth}\verb|\commande{argument}[\Resultat]|\medskip

And this nested one:\par
\hspace{0.2\linewidth}\verb|\commandeA{\commandeB{\commandeC{arguments}}}|\par
\qquad can be replaced by:\par
\hspace{0.2\linewidth}\verb|\commandeC{arguments}[\MaChaine]|\par
\hspace{0.2\linewidth}\verb|\commandeB{\MaChaine}[\MaChaine]|\par
\hspace{0.2\linewidth}\verb|\commandeA{\MaChaine}|

\section{The macros}
\label{listemacros}
\subsection{Presentation of macros}
In the following chapters, all the macros will be presented this plan:\smallskip

\begin{itemize}
	\item the syntax and the value of optional arguments
	\item a short description of the operation;
	\item the operation under special conditions. For each conditions considered, the operation described has priority on that (those) below;
	\item finally, several examples are given. I tried to find them most easily comprehensible and most representative of the situations met in normal use\footnote{For more examples, see the test file.}. If a doubt is possible with spaces in the result, this one will be delimited by \guill{|}, given that an empty string is represented by \guill{||}.
\end{itemize}

\subsection{The tests}
\subsubsection{IfSubStr}
\verb|\IfSubStr|\arguC{number}\ARGU{string}\ARGU{stringA}\ARGU{true}\ARGU{false}
\smallskip

The value of the optional argument \argu{number} is 1 by default.\par\smallskip

Tests if \argu{string} contains at least \argu{number} times \argu{stringA} and runs \argu{true} if so, and \argu{false} otherwise.\medskip

\begin{Conditions}
\item If \argu{number}${}\leqslant0$, runs \argu{false};
\item If \argu{string} or \argu{stringA} is empty, runs \argu{false}.
\end{Conditions}

\exemple|\IfSubStr{xstring}{tri}{true}{false}|
\exemple|\IfSubStr{xstring}{a}{true}{false}|
\exemple|\IfSubStr{a bc def }{c d}{true}{false}|
\exemple|\IfSubStr{a bc def }{cd}{true}{false}|
\exemple|\IfSubStr[2]{1a2a3a}{a}{true}{false}|
\exemple|\IfSubStr[3]{1a2a3a}{a}{true}{false}|
\exemple|\IfSubStr[4]{1a2a3a}{a}{true}{false}|

\subsubsection{IfSubStrBefore}
\verb|\IfSubStrBefore|\arguCC{number1}{number2}\ARGU{string}\ARGU{stringA}\ARGU{stringB}\ARGU{true}\ARGU{false}
\smallskip

The values of the optional arguments \argu{number1} and \argu{number2} are 1 by default.\par\smallskip

In \argu{string}, tests if the \argu{number1}\th{} occurrence of \argu{stringA} is on the left of the \argu{number2}\th{} occurrence of \argu{stringB}. Runs \argu{true} if so, and \argu{false} otherwise.\medskip

\begin{Conditions}
\item If one of the occurrences is not found, it runs \argu{false};
\item If one of the arguments \argu{string}, \argu{stringA} or \argu{stringB} is empty, runs \argu{false};
\item If one of the optional arguments is negative or zero, runs \argu{false}.
\end{Conditions}

\exemple|\IfSubStrBefore{xstring}{st}{in}{true}{false}|
\exemple|\IfSubStrBefore{xstring}{ri}{s}{true}{false}|
\exemple|\IfSubStrBefore{LaTeX}{LaT}{TeX}{true}{false}|
\exemple|\IfSubStrBefore{a bc def }{ b}{ef}{true}{false}|
\exemple|\IfSubStrBefore{a bc def }{ab}{ef}{true}{false}|
\exemple|\IfSubStrBefore[2,1]{b1b2b3}{b}{2}{true}{false}|
\exemple|\IfSubStrBefore[3,1]{b1b2b3}{b}{2}{true}{false}|
\exemple|\IfSubStrBefore[2,2]{baobab}{a}{b}{true}{false}|
\exemple|\IfSubStrBefore[2,3]{baobab}{a}{b}{true}{false}|

\subsubsection{IfSubStrBehind}

\verb|\IfSubStrBehind|\arguCC{number1}{number2}\ARGU{string}\ARGU{stringA}\ARGU{stringB}\ARGU{true}\ARGU{false}
\smallskip

The values of the optional arguments \argu{number1} and \argu{number2} are 1 by default.\par\smallskip

In \argu{string}, tests if the \argu{number1}\th{} occurrence of \argu{stringA} is on the right of the \argu{number2}\th{} occurrence of \argu{stringB}. Runs \argu{true} if so, ands \argu{false} otherwise.\medskip

\begin{Conditions}
\item If one of the occurrences is not found, it runs \argu{false};
\item If one of the arguments \argu{string}, \argu{stringA} or \argu{stringB} is empty, runs \argu{false};
\item If one of the optional arguments is negative or zero, runs \argu{false}.
\end{Conditions}

\exemple|\IfSubStrBehind{xstring}{ri}{xs}{true}{false}|
\exemple|\IfSubStrBehind{xstring}{s}{i}{true}{false}|
\exemple|\IfSubStrBehind{LaTeX}{TeX}{LaT}{true}{false}|
\exemple|\IfSubStrBehind{a bc def }{ d}{a}{true}{false}|
\exemple|\IfSubStrBehind{a bc def }{cd}{a b}{true}{false}|
\exemple|\IfSubStrBehind[2,1]{b1b2b3}{b}{2}{true}{false}|
\exemple|\IfSubStrBehind[3,1]{b1b2b3}{b}{2}{true}{false}|
\exemple|\IfSubStrBehind[2,2]{baobab}{b}{a}{true}{false}|
\exemple|\IfSubStrBehind[2,3]{baobab}{b}{a}{true}{false}|

\subsubsection{IfBeginWith}

\verb|\IfBeginWith|\ARGU{string}\ARGU{stringA}\ARGU{true}\ARGU{false}
\smallskip

Tests if \argu{string} begins with \argu{stringA}, and runs \argu{true} if so, and \argu{false} otherwise.\medskip

\begin{Conditions}
\item If \argu{string} or \argu{stringA} is empty, runs \argu{false}.
\end{Conditions}

\exemple|\IfBeginWith{xstring}{xst}{true}{false}|
\exemple|\IfBeginWith{LaTeX}{a}{true}{false}|
\exemple|\IfBeginWith{a bc def }{a b}{true}{false}|
\exemple|\IfBeginWith{a bc def }{ab}{true}{false}|

\subsubsection{IfEndWith}

\verb|\IfEndWith|\ARGU{string}\ARGU{stringA}\ARGU{Behind}\ARGU{false}
\smallskip

Tests if \argu{string} ends with \argu{stringA}, and runs \argu{true} if so, and \argu{false} otherwise.\medskip

\begin{Conditions}
\item If \argu{string} or \argu{stringA} is empty, runs \argu{false}.
\end{Conditions}

\exemple|\IfEndWith{xstring}{ring}{true}{false}|
\exemple|\IfEndWith{LaTeX}{a}{true}{false}|
\exemple|\IfEndWith{a bc def }{ef }{true}{false}|
\exemple|\IfEndWith{a bc def }{ef}{true}{false}|

\subsubsection{IfInteger}

\verb|\IfInteger|\ARGU{number}\ARGU{true}\ARGU{false}
\smallskip

Tests if \argu{nombre} is an integer, and runs \argu{true} if so, and \argu{false} otherwise.\smallskip

If test is false because unexpected characters, the control sequence \verb|\@xs@afterinteger| contains the illegal part of \argu{number}.\medskip

\exemple|\IfInteger{13}{true}{false}|
\exemple|\IfInteger{-219}{true}{false}|
\exemple|\IfInteger{+9}{true}{false}|
\exemple|\IfInteger{3.14}{true}{false}|
\exemple|\IfInteger{0}{true}{false}|
\exemple|\IfInteger{49a}{true}{false}|
\exemple|\IfInteger{+}{true}{false}|
\exemple|\IfInteger{-}{true}{false}|
\exemple|\IfInteger{0000}{true}{false}|

\subsubsection{IfDecimal}


\verb|\IfInteger|\ARGU{number}\ARGU{true}\ARGU{false}
\smallskip

Tests if \argu{number} is a decimal, and runs \argu{true} if so, and \argu{false} otherwise.\smallskip

Counters \verb|\integerpart| and \verb|\decimalpart| contain the integer part and decimal part of \argu{number}.

If test is false because unexpected characters, the control sequence \verb|\@xs@afterdecimal| contains the illegal part of \argu{number}, whereas if test is false because decimal part is empty after decimal separator, it contains ''X``.\medskip

\begin{Conditions}
	\item Decimal separator can be a dot or a comma;
	\item If what is on the right of decimal separator (if it exists) is empty, the test is false;
	\item If what is on the left of decimal separator (if it exists) is empty, the integer part is assumed to be 0;
\end{Conditions}

\exemple|\IfDecimal{3.14}{vrai}{faux}|
\exemple|\IfDecimal{3,14}{vrai}{faux}|
\exemple|\IfDecimal{-0.5}{vrai}{faux}|
\exemple|\IfDecimal{.7}{vrai}{faux}|
\exemple|\IfDecimal{,9}{vrai}{faux}|
\exemple|\IfDecimal{1..2}{vrai}{faux}|
\exemple|\IfDecimal{+6}{vrai}{faux}|
\exemple|\IfDecimal{-15}{vrai}{faux}|
\exemple|\IfDecimal{1.}{vrai}{faux}|
\exemple|\IfDecimal{2,}{vrai}{faux}|
\exemple|\IfDecimal{.}{vrai}{faux}|
\exemple|\IfDecimal{,}{vrai}{faux}|
\exemple|\IfDecimal{+}{vrai}{faux}|
\exemple|\IfDecimal{-}{vrai}{faux}|

\subsection{Extraction of substrings}
\subsubsection{StrBefore}

\verb|\StrBefore|\arguC{number}\ARGU{string}\ARGU{stringA}\arguC{name}
\smallskip

The value of the optional argument \argu{number} is 1 by default.\par\smallskip

In \argu{string}, returns what is leftwards the \argu{number}\th{} occurrence of \argu{stringA}.\medskip

\begin{Conditions}
\item If \argu{string} or \argu{stringA} is empty, an empty string is returned;
\item If \argu{number}${}<1$ then the macro behaves as if \argu{number}${}=1$;
\item If the occurrence is not found, an empty string is returned.
\end{Conditions}

\exemple*|\StrBefore{xstring}{tri}|
\exemple*|\StrBefore{LaTeX}{e}|
\exemple*|\StrBefore{LaTeX}{p}|
\exemple*|\StrBefore{LaTeX}{L}|
\exemple*|\StrBefore{a bc def }{def}|
\exemple*|\StrBefore{a bc def }{cd}|
\exemple*|\StrBefore[1]{1b2b3}{b}|
\exemple*|\StrBefore[2]{1b2b3}{b}|

\subsubsection{StrBehind}

\verb|\StrBehind|\arguC{number}\ARGU{string}\ARGU{stringA}\arguC{name}
\smallskip

The value of the optional argument \argu{number} is 1 by default.\par\smallskip

In \argu{string}, returns what is rightwards the \argu{number}\th{} occurrence of \argu{stringA}.\medskip

\begin{Conditions}
\item If \argu{string} or \argu{stringA} is empty, an empty string is returned;
\item If \argu{number}${}<1$ then the macro behaves as if \argu{number}${}=1$;
\item If the occurrence is not found, an empty string is returned.
\end{Conditions}


\exemple*|\StrBehind{xstring}{tri}|
\exemple*|\StrBehind{LaTeX}{e}|
\exemple*|\StrBehind{LaTeX}{p}|
\exemple*|\StrBehind{LaTeX}{X}|
\exemple*|\StrBehind{a bc def }{bc}|
\exemple*|\StrBehind{a bc def }{cd}|
\exemple*|\StrBehind[1]{1b2b3}{b}|
\exemple*|\StrBehind[2]{1b2b3}{b}|
\exemple*|\StrBehind[3]{1b2b3}{b}|

\subsubsection{StrBetween}

\verb|\StrBetween|\arguCC{number1}{number2}\ARGU{string}\ARGU{stringA}\ARGU{stringB}\arguC{name}
\smallskip

The values of the optional arguments \argu{number1} and \argu{number2} are 1 by default.\par\smallskip

In \argu{string}, returns the substring between\footnote{In a strict sense, i.e. \emph{without} the strings \argu{stringA} and \argu{stringB}} the \argu{number1}\th{} occurrence of \argu{stringA} and \argu{number2}\th{} occurrence of \argu{stringB}.\medskip

\begin{Conditions}
\item If the occurrences are not in this order ---~\argu{stringA} \emph{followed by} \argu{stringB}~--- in \argu{string}, an empty string is returned;
\item If one of the 2 occurrences doesn't exist in \argu{string}, an empty string is returned;
\item  If one of the optional arguments \argu{number1} ou \argu{number2} is negative or zero, an empty string is returned.
\end{Conditions}

\exemple*|\StrBetween{xstring}{xs}{ng}|
\exemple*|\StrBetween{xstring}{i}{n}|
\exemple*|\StrBetween{xstring}{a}{tring}|
\exemple*|\StrBetween{a bc def }{a}{d}|
\exemple*|\StrBetween{a bc def }{a }{f}|
\exemple*|\StrBetween{a1b1a2b2a3b3}{a}{b}|
\exemple*|\StrBetween[2,3]{a1b1a2b2a3b3}{a}{b}|
\exemple*|\StrBetween[1,3]{a1b1a2b2a3b3}{a}{b}|
\exemple*|\StrBetween[3,1]{a1b1a2b2a3b3}{a}{b}|
\exemple*|\StrBetween[3,2]{abracadabra}{a}{bra}|

\subsubsection{StrSubstitute}

\verb|\StrSubstitute|\arguC{number}\ARGU{string}\ARGU{stringA}\ARGU{stringB}\arguC{name}
\smallskip

The value of the optional argument \argu{number} is 1 by default.\par\smallskip

In \argu{string}, substitute the \argu{number} first occurrences of \argu{stringA} for \argu{stringB}, except if \argu{number}${}=0$ in which case \emph{all} the occurrences are substituted.

\begin{Conditions}
\item If \argu{string} is empty, an empty string is returned;
\item If \argu{stringA} is empty or doesn't exist in \argu{string}, the macro is ineffective;
\item If \argu{number} is greater than the number of occurrences of \argu{stringA}, then all the occurrences are substituted;
\item If \argu{number}${}<0$ the macro behaves as if \argu{number}${}=0$;
\item If \argu{stringB} is empty, the occurrences of \argu{stringA}, if they exist, are deleted.
\end{Conditions}

\exemple|\StrSubstitute{xstring}{i}{a}|
\exemple|\StrSubstitute{abracadabra}{a}{o}|
\exemple|\StrSubstitute{abracadabra}{br}{TeX}|
\exemple|\StrSubstitute{LaTeX}{m}{n}|
\exemple|\StrSubstitute{a bc def }{ }{M}|
\exemple|\StrSubstitute{a bc def }{ab}{AB}|
\exemple|\StrSubstitute[1]{a1a2a3}{a}{B}|
\exemple|\StrSubstitute[2]{a1a2a3}{a}{B}|
\exemple|\StrSubstitute[3]{a1a2a3}{a}{B}|
\exemple|\StrSubstitute[4]{a1a2a3}{a}{B}|

\subsubsection{StrDel}

\verb|\StrDel|\arguC{number}\ARGU{string}\ARGU{stringA}\arguC{name}
\smallskip

The value of the optional argument \argu{number} is 1 by default.\par\smallskip

Delete the \argu{number} first occurrences of \argu{stringA} in \argu{string}, except if \argu{number}${}=0$ in which case \emph{all} the occurrences are deleted.\medskip

\begin{Conditions}
\item If \argu{string} is empty, an empty string is returned;
\item If \argu{stringA} is empty or doesn't exist in \argu{string}, the macro is ineffective;
\item If \argu{number} greater then the number of occurrences of \argu{stringA}, then all the occurrences are deleted;
\item If \argu{number}${}<0$ the macro behaves as if \argu{number}${}=0$;
\end{Conditions}

\exemple|\StrDel{abracadabra}{a}|
\exemple|\StrDel[1]{abracadabra}{a}|
\exemple|\StrDel[4]{abracadabra}{a}|
\exemple|\StrDel[9]{abracadabra}{a}|
\exemple|\StrDel{a bc def }{ }|

\subsubsection{StrGobbleLeft}

\verb|\StrGobbleLeft|\ARGU{string}\ARGU{number}\arguC{name}
\smallskip

In \argu{string}, delete the \argu{number} fisrt characters on the left.\medskip

\begin{Conditions}
\item If \argu{string} is empty, an empty string is returned;
\item If \argu{number}${}\leqslant0$, no character is deleted;
\item If \argu{number}${}\geqslant{}$\argu{lengthString}, all the characters are deleted.
\end{Conditions}

\exemple*|\StrGobbleLeft{xstring}{2}|
\exemple*|\StrGobbleLeft{xstring}{9}|
\exemple*|\StrGobbleLeft{LaTeX}{4}|
\exemple*|\StrGobbleLeft{LaTeX}{-2}|
\exemple*|\StrGobbleLeft{a bc def }{4}|

\subsubsection{StrLeft}

\verb|\StrLeft|\ARGU{string}\ARGU{number}\arguC{name}
\smallskip

In \argu{string}, returns the \argu{number} fisrt characters on the left.\medskip

\begin{Conditions}
\item If \argu{string} is empty, an empty string is returned;
\item If \argu{number}${}\leqslant0$, no character is returned;
\item If \argu{number}${}\geqslant{}$\argu{lengthString}, all the characters are returned.
\end{Conditions}

\exemple*|\StrLeft{xstring}{2}|
\exemple*|\StrLeft{xstring}{9}|
\exemple*|\StrLeft{LaTeX}{4}|
\exemple*|\StrLeft{LaTeX}{-2}|
\exemple*|\StrLeft{a bc def }{5}|

\subsubsection{StrGobbleRight}

\verb|\StrGobbleRight|\ARGU{string}\ARGU{number}\arguC{name}
\smallskip

In \argu{string}, delete the \argu{number} last characters on the right.\medskip

\exemple*|\StrGobbleRight{xstring}{2}|
\exemple*|\StrGobbleRight{xstring}{9}|
\exemple*|\StrGobbleRight{LaTeX}{4}|
\exemple*|\StrGobbleRight{LaTeX}{-2}|
\exemple*|\StrGobbleRight{a bc def }{4}|

\subsubsection{StrRight}

\verb|\StrRight|\ARGU{string}\ARGU{number}\arguC{name}
\smallskip

In \argu{string}, returns the \argu{number} last characters on the right.\medskip

\exemple*|\StrRight{xstring}{2}|
\exemple*|\StrRight{xstring}{9}|
\exemple*|\StrRight{LaTeX}{4}|
\exemple*|\StrRight{LaTeX}{-2}|
\exemple*|\StrRight{a bc def }{5}|

\subsubsection{StrChar}

\verb|\StrChar|\ARGU{string}\ARGU{number}\arguC{name}
\smallskip

Returns the character at the position \argu{number} in \argu{string}.\medskip

\begin{Conditions}
\item If \argu{string} is empty, no caracter is returned;
\item If \argu{number}${}\leqslant0$ or if \argu{number}${}>{}$\argu{lengthString}, no character is returned.
\end{Conditions}

\exemple|\StrChar{xstring}{4}|
\exemple*|\StrChar{xstring}{9}|
\exemple*|\StrChar{xstring}{-5}|
\exemple|\StrChar{a bc def }{6}|

\subsubsection{StrMid}

\verb|\StrMid|\ARGU{string}\ARGU{numberA}\ARGU{numberB}\arguC{name}
\smallskip

In \argu{string}, returns the substring between\footnote{In the broad sense, i.e. that the strings characters of the \guill{border} are returned.} the positions \argu{numberA} and \argu{numberB}.\medskip

\begin{Conditions}
\item If \argu{string} is empty, an empty string is returned;
\item If \argu{numberA}${}>{}$\argu{numberB}, an empty string is returned;
\item If \argu{numberA}${}<1$ and \argu{numberB}${}<1$ an empty string is returned;
\item If \argu{numberA}${}>{}$\argu{lengthString} et \argu{numberB}${}>{}$\argu{lengthString}, an empty string is returned;
\item If \argu{numberA}${}<1$, the macro behaves as if \argu{numberA}${}=1$;
\item If \argu{numberB}${}>{}$\argu{lengthString}, the macro behaves as if \argu{numberB}${}={}$\argu{lengthString}.
\end{Conditions}

\exemple|\StrMid{xstring}{2}{5}|
\exemple|\StrMid{xstring}{-4}{2}|
\exemple*|\StrMid{xstring}{5}{1}|
\exemple|\StrMid{xstring}{6}{15}|
\exemple|\StrMid{xstring}{3}{3}|
\exemple*|\StrMid{a bc def }{2}{7}|

\subsection{Number results}
\subsubsection{StrLen}

\verb|\StrLen|\ARGU{string}\arguC{name}
\smallskip

Return the length of \argu{string}.

\exemple|\StrLen{xstring}|
\exemple|\StrLen{A}|
\exemple|\StrLen{a bc def }|

\subsubsection{StrCount}

\verb|\StrCount|\ARGU{string}\ARGU{stringA}\arguC{name}
\smallskip

Counts how many times \argu{stringA} is contained in \argu{string}.\par\medskip

\begin{Conditions}
\item If one at least of the arguments \argu{string} or \argu{stringA} is empty, the macro return 0.
\end{Conditions}

\exemple|\StrCount{abracadabra}{a}|
\exemple|\StrCount{abracadabra}{bra}|
\exemple|\StrCount{abracadabra}{tic}|
\exemple|\StrCount{aaaaaa}{aa}|

\subsubsection{StrPosition}

\verb|\StrPosition|\arguC{number}\ARGU{string}\ARGU{stringA}\arguC{name}
\smallskip

The value of the optional argument \argu{number} is 1 by default.\par\smallskip

In \argu{string}, returns the position of the \argu{number}\th{} occurrence of \argu{stringA}.\medskip

\begin{Conditions}
\item If \argu{number} is greater than the number of occurrences of \argu{stringA}, then the macro returns 0;
\item If \argu{string} doesn't contain \argu{stringA}, then the macro returns 0.
\end{Conditions}
\medskip

\exemple|\StrPosition{xstring}{ring}|
\exemple|\StrPosition[4]{abracadabra}{a}|
\exemple|\StrPosition[2]{abracadabra}{bra}|
\exemple|\StrPosition[9]{abracadabra}{a}|
\exemple|\StrPosition{abracadabra}{z}|
\exemple|\StrPosition{a bc def }{d}|
\exemple|\StrPosition[3]{aaaaaa}{aa}|

\section{Using the macros for programming purposes}
\label{programmation}
\subsection{Verbatimize to a control sequence}
The macro \verb|\verbtocs| allow to read the content of a \guill{verb} argument containing special characters: \verb|&|, \verb|~|, \verb|\|, \verb|{|, \verb|}|, \verb|_|, \verb|#|, \verb|$|, \verb|^| et \verb|%|. The catcodes of \guill{normal} characters are left unchanged while special characters take a catcode 12. Then, these characters are assigned to a control sequence. The syntax is:\medskip

\hfill\verb|\verbtocs|\ARGU{name}|\argu{characters}|\hfill{}
\smallskip

\argu{name} is the name of the control sequence receiving, with an \verb|\edef|, the \argu{characters}. Consequently, \argu{name} contains \texte{10,11,12}\voirdeftexte.\medskip

By default, the character delimiting the verb content is \guill{|}. Obviously, this character cannot be both delimiting and being contained into what it delimits. If you need to verbatimize characters containing \guill{|}, you can change at any time the character delimiting the verb content with the macro:\par\medskip
\hfill\verb|\setverbdelim|\ARGU{character}\hfill{}\smallskip

Any \argu{character} with a catcode 11 or 12 can be used\footnote{Several characters can be used, but the syntax of \texttt{\textbackslash verbtocs} becomes less readable ! For this reason, a warning occurs when the argument of \texttt{\textbackslash setverbdelim} contains more than a single character.}. For example, after \verb|\setverbdelim{=}|, a verb argument look like this: \verb|=|\argu{characters}\verb|=|.\medskip

About verb arguments, keep in mind that:
\begin{itemize}
	\item all the characters before |\argu{characters}| are ignored;
	\item inside the verb argument, all the spaces are taken into account, even if they are consecutive.
\end{itemize}
\medskip

Example:\par\medskip
\begin{minipage}[r]{0.6\linewidth}
	\hfill
	\begin{boxedverbatim}
		\verbtocs{\result}  |a   & b{ c% d$ e \f|
		\result
	\end{boxedverbatim}
	\hspace*{0.3cm}
\end{minipage}%
\begin{minipage}[r]{0.3\linewidth}
	\verbtocs{\result}  |a   & b{ c% d$ e \f|
	\result
\end{minipage}

\subsection{Tokenization of a text to a control sequence}

The reverse process of what has been seen above is to transform a \texte{10,11,12} into control sequences. This is done by the macro:\medskip

\hfill\verb|\tokenize|\ARGU{name}\ARGU{control sequence}\hfill{}
\smallskip

\argu{control sequence} is fully expanded if \verb|\fullexpandarg| has been called (see page~\pageref{devarg}), and is not expanded if \verb|\normalexpandarg| has benn called. In both cases, the expansion must be \texte{10,11,12}. Then, this \texte{10,11,12} is converted into tokens and assigned with a \verb|\def| to the control sequence \argu{name}.\medskip

Example:\par\medskip
\begin{minipage}[r]{0.6\linewidth}
	\hfill
	\begin{boxedverbatim}
		\verbtocs{\text}|\textbf{a} $\frac{1}{2}$|
		text: \text
		\tokenize{\result}{\text}
		\par
		result: \result
	\end{boxedverbatim}
	\hspace*{0.3cm}
\end{minipage}%
\begin{minipage}[r]{0.3\linewidth}
	\raggedright
	\verbtocs{\text}
	  |\textbf{a} $\frac{1}{2}$|
	text: \text
	\tokenize{\result}{\text}
	\par
	result: \result
\end{minipage}
\medskip

Obviously, the control sequence \verb|\result| can be called at the last line since the control sequences it contains are defined.

\subsection{Expansion of a control sequence before verbatimize}
\subsubsection{The scancs macro}
It is possible to expand $n$ times a control sequence before converting this expansion into text. This is done by the macro:\medskip

\hfill\verb|\scancs|\arguC{number}\ARGU{name}\ARGU{control sequence}\hfill{}
\smallskip

\argu{number}${}=1$ by default and represents the number of times \argu{control sequence} will be expanded before being converted in characters with catcodes 12 (or 10 for spaces). These characters are then assigned to \argu{name}.

\subsubsection{Mind the catcodes !}
Let's take a simple example where \argu{control sequence} expands to text:\par\medskip
\begin{minipage}[r]{0.6\linewidth}
	\hfill
	\begin{boxedverbatim}
		\def\test{a b1 d}
		\scancs{\result}{\test}
		\resultat
	\end{boxedverbatim}
	\hspace{0.3cm}
\end{minipage}%
\begin{minipage}[r]{0.3\linewidth}
	\def\test{a b1 d}
	\scancs{\result}{\test}
	\result
\end{minipage}
\medskip

But mind the catcodes !

In this example, \verb|\scancs{\result}{\test}| is not equivalent to \verb|\edef\result{\test}|.\medskip

Indeed, with \verb|\scancs{\resultat}{\test}|, \verb|\result| contains \texte{10,12} and expands to:\par
\hfill\verb|a|${}_{12}$\ \verb*| |${}_{10}$\ \verb|b|${}_{12}$\ \verb|1|${}_{12}$\ \verb*| |${}_{10}$\ \verb|d|${}_{12}$\hfill{}
\medskip

With \verb|\edef\resultat{\test}|, \verb|\resultat| contains \texte{10,11,12}, i.e. characters whose catcodes are 11 (the letters), 12 (the figure 1) and 10 (the spaces). It expands to:\par
\hfill\verb|a|${}_{11}$\ \verb*| |${}_{10}$\ \verb|b|${}_{11}$\ \verb|1|${}_{12}$\ \verb*| |${}_{10}$\ \verb|d|${}_{11}$\hfill{}

\subsubsection{Several expansions}
If necessary, the number of expansions can be controled with the optional argument.
In the following example, when \verb|\scancs| is called the first time, \verb|\c| is expanded 3 times and gives "\verb|1|${}_{12}$\ \verb*| |${}_{10}$\ \verb|z|${}_{11}$\ \verb*| |${}_{10}$\ \verb|3|${}_{12}$" which is converted into "\verb|1|${}_{12}$\ \verb*| |${}_{10}$\ \verb|z|${}_{12}$\ \verb*| |${}_{10}$\ \verb|3|${}_{12}$".\smallskip

On the other hand, if after $n$ expansions, the result is a control sequence, this control sequence is transformed into characters with catcodes 12.
In the example above, when \verb|\scancs| is called the second time, \verb|\scancs[2]{\resultat}{\c}| expands \verb|\c| 2 times: this gives the control sequence \fbox{\texttt{\textbackslash a}} which is converted into "\verb|\|${}_{12}$~\verb|a|${}_{12}$".\medskip

This example show all the "depths" of expansion, from 3 to 0:\par\medskip
\begin{minipage}[r]{0.6\linewidth}
	\hfill
	\begin{boxedverbatim}
		\def\a{1 z 3}
		\def\b{\a}
		\def\c{\b}
		\scancs[3]{\result}{\c}
		\result\par
		\scancs[2]{\result}{\c}
		\result\par
		\scancs[1]{\result}{\c}
		\result\par
		\scancs[0]{\result}{\c}
		\result
	\end{boxedverbatim}
	\hspace{0.3cm}
\end{minipage}%
\begin{minipage}[r]{0.3\linewidth}
	\def\a{1 z 3}
	\def\b{\a}
	\def\c{\b}
	\scancs[3]{\result}{\c}
	\result\par
	\scancs[2]{\result}{\c}
	\result\par
	\scancs[1]{\result}{\c}
	\result\par
	\scancs[0]{\result}{\c}
	\result
\end{minipage}
\medskip

Obviously, it is necessary to ensure that the expansion to the desired depth is possible.

\subsubsection{Expansion of several control sequences}
In normal use, the third argument \argu{control sequence} (or one of its expansions) must contain a single control sequence that will be expanded. If this third argument or one of its expansion contains several control sequences, compilation stops with an error message asking you to use the starred version. This starred version, more difficult to use allows to expand \argu{number} times \emph{all} the control sequences contained in the third argument. Let's see this with this example:\par\medskip
\begin{minipage}[r]{0.6\linewidth}
	\hfill
	\begin{boxedverbatim}
		\def\a{LaTeX}
		\def\b{is powerful}
		\scancs*[1]{\result}{\a \b}
		\result\par
		\scancs*[2]{\result}{\a\space\b}
		\result
	\end{boxedverbatim}
	\hspace{0.3cm}
\end{minipage}%
\begin{minipage}[r]{0.3\linewidth}
	\def\a{LaTeX}
	\def\b{is powerful}
	\scancs*[1]{\result}{\a \b}
	\result\par
	\scancs*[2]{\result}{\a\space\b}
	\result
\end{minipage}
\medskip

First of all, a warning message has been sent to log: "if third argument or its expansion have braces or spaces, they will be removed when scanned! Use starred \verb|\scancs*| macro with care". Let's see what it means\ldots\medskip

In the first result, a space is missing between the words \guill{LaTeX} and \guill{is}, though a space was present in the code between the 2 control sequences \verb|\a| and \verb|\b|. Indeed, \TeX{} ignores spaces that follow control sequences. Consequently, \verb|{\a \b}| is read as \verb|{\a\b}|, whatever be the number of spaces in the code between \verb|\a| and \verb|\b|. To obtain a space between \guill{LaTeX} and \guill{is}, we could have used the control sequence \verb|\space| whose expansion is a space, and write for the third argument: \verb|{\a\space\b}|. We could also have modified the defintion of \verb|\a| with a space after the word "LaTeX" like this: \verb|\def\a{LaTeX }|.\medskip

However, it is necessary to be carfull when expanding control sequences more than one time: if a control sequence is expanded $n$ times and gives \texte{10,11,12}, the next expansion gobbles spaces. The second result shows that the second expansion gobbled all the spaces and consequently, \verb|\result| contains \guill{LaTeXispowerful}!\medskip

Moreover, it's also the meaning of the warning message, if the $n$\th{} expansion of a control sequence contains braces, they will be gobbled, like spaces.\medskip

Finaly, when using \verb|\scancs| a space is inserted after each control sequence. Indeed, \verb|\detokenize| (an $\varepsilon$-\TeX{} command) called by \verb|\scancs| inserts a space after each control sequence. There is no way to avoid this.

\subsubsection{Examples}
In the following example, control sequences are expanded 2 times: \verb|\d| gives \verb|\b|, and \verb|\b| gives\\\verb|\textbf{a}\textit{b}|. Notice that a space is inserted after each control sequence.\par\medskip
\begin{minipage}[r]{0.6\linewidth}
	\hfill
	\begin{boxedverbatim}
		\def\a{\textbf{a}\textit{b}}
		\def\b{\a}
		\def\c{\b}
		\def\d{\c}
		\scancs*[2]{\result}{\d\b}
		\result
	\end{boxedverbatim}
	\hspace{0.3cm}
\end{minipage}%
\begin{minipage}[r]{0.3\linewidth}
	\def\a{\textbf{a}\textit{b}}
	\def\b{\a}
	\def\c{\b}
	\def\d{\c}
	\scancs*[2]{\result}{\d\b}
	\result
\end{minipage}
\medskip

This is an example that shows the deletion of braces during the next expansion:\par\medskip
\begin{minipage}[r]{0.6\linewidth}
	\hfill
	\begin{boxedverbatim}
		\def\a{1{2}}
		\def\b{\a}
		\scancs*[1]{\result}{\b{A}}
		\result\par
		\scancs*[2]{\result}{\b{A}}
		\result\par
		\scancs*[3]{\result}{\b{A}}
		\result\par
	\end{boxedverbatim}
	\hspace{0.3cm}
\end{minipage}%
\begin{minipage}[r]{0.3\linewidth}
		\def\a{1{2}}
		\def\b{\a}
		\scancs*[1]{\result}{\b{A}}
		\result\par
		\scancs*[2]{\result}{\b{A}}
		\result\par
		\scancs*[3]{\result}{\b{A}}
		\result\par
\end{minipage}
\medskip

Finaly, here is an  example where we take advantage of the space inserted after each sequence control to find the $n$\th{} control sequence in the expansion of a control sequence.\medskip

In the example above, we find the fourth control sequence in \verb|\myCS| whose expansion is:\par\medskip
\hfill\verb|\a xy{3 2}\b7\c123 {m}\d{8}\e|\hfill{}
\medskip

Obviously, we expect: \verb|\d|\par\medskip
\begin{minipage}[r]{0.6\linewidth}
	\hfill
	\begin{boxedverbatim}
		\verbtocs{\antislash}|\|
		\newcommand\findcs[2]{%
		 \scancs[1]{\theCS}{#2}%
		 \tokenize{\theCS}{\theCS}%
		 \scancs[1]{\theCS}{\theCS}%
		 \StrBehind[#1]{\theCS}{\antislash}[\theCS]%
		 \StrBefore{\theCS}{ }[\theCS]%
		 \edef\theCS{\antislash\theCS}}
		\verbtocs{\myCS}|\a xy{3 2}\b7\c123 {m}\d{8}\e|
		% here, \myCS contains text
		\findcs{4}{\myCS}
		\theCS\par
		\def\myCS{\a xy{3 2}\b7\c123 {m}\d{8}\e}
		% here, \myCS contains control sequences
		\findcs{4}{\myCS}
		\theCS
	\end{boxedverbatim}
	\hspace{0.3cm}
\end{minipage}%
\begin{minipage}[r]{0.3\linewidth}
		\verbtocs{\antislash}|\|
		\newcommand\findcs[2]{%
			\scancs[1]{\theCS}{#2}%
			\tokenize{\theCS}{\theCS}%
			\scancs[1]{\theCS}{\theCS}%
			\StrBehind[#1]{\theCS}{\antislash}[\theCS]%
			\StrBefore{\theCS}{ }[\theCS]%
			\edef\theCS{\antislash\theCS}}
		\verbtocs{\myCS}|\a xy{3 2}\b7\c123 {m}\d{8}\e|
		% here, \myCS contains text
		\findcs{4}{\myCS}
		\theCS\par
		\def\myCS{\a xy{3 2}\b7\c123 {m}\d{8}\e}
		% here, \myCS contains control sequences
		\findcs{4}{\myCS}
		\theCS
\end{minipage}

\subsection{Inside the definition of a macro}
Some difficulties arise inside the definition of a macro, i.e. between braces following a \verb|\def\macro| or a\\\verb|\newcommand\macro|.\medskip

It is forbidden to use the command \verb|\verb| inside the definition of a macro. For the same reasons:\par\medskip
\hfill\textbf{Do not use \texttt{\textbackslash verbtocs} inside the definition of a macro}.\hfill{}\medskip

But then, how to manipulate special characters and "verbatimize" inside the définition of macros ?\bigskip

The \verb|\detokenize| primitive of $\varepsilon$-\TeX can be used but it has limitations:
\begin{itemize}
	\item braces must be balanced;
	\item consecutive spaces make a single space;
	\item the \verb|%| sign is not allowed;
	\item a space is inserted after each control sequence;
	\item \verb|#| signs become  \verb|##|.
\end{itemize}
\medskip

It is better to use \verb|\scancs| and define \emph{outside the definition of the macros} control sequences containing special characters with \verb|\verbtocs|. It is also possible to use \verb|\tokenize| to transform the final result (which is generaly \texte{10,11,12}) into control sequences. See example using these macros at the end of this manual, page~\pageref{exemples}.\medskip

In the following teaching example\footnote{It is possible to make much more simple using \texttt{\textbackslash detokenize}. The macro becomes:\par\texttt{\textbackslash newcommand\textbackslash bracearg[1]\{\textbackslash detokenize\{\{\#1\}\}\}}}, the macro \verb|\bracearg| adds braces to its argument. To make this possible, 2 control sequences \verb|\Ob| and \verb|\Cb| containing "\verb|{|" and "\verb|}|" are defined outside the definition of \verb|\bracearg|, and expanded inside it:\par\medskip
\begin{minipage}[r]{0.6\linewidth}
	\hfill
	\begin{boxedverbatim}
		\verbtocs{\Ob}|{|
		\verbtocs{\Cb}|}|
		\newcommand\bracearg[1]{%
		    \def\text{#1}%
		    \scancs*{\result}{\Ob\text\Cb}%
		    \result}
		\bracearg{xstring}\par
		\bracearg{\a}
	\end{boxedverbatim}
	\hspace{0.3cm}
\end{minipage}%
\begin{minipage}[r]{0.3\linewidth}
	\verbtocs{\Ob}|{|
	\verbtocs{\Cb}|}|
	\newcommand\bracearg[1]{%
		\def\text{#1}%
		\scancs*{\result}{\Ob\text\Cb}%
		\result}
	\bracearg{xstring}\par
	\bracearg{\a}
\end{minipage}

\subsection{Starred macros}
As \verb|\scancs| returns \texte{10,12}\voirdeftexte, some unexpected results occur with the macros seen at chapter~\ref{listemacros} because they care the catcodes of the characters of their arguments.\medskip

This is an example of such malfunctioning:\par\medskip
\begin{minipage}[r]{0.6\linewidth}
	\hfill
	\begin{boxedverbatim}
		\verbtocs{\mytext}|a b c|
		\IfSubStr{\mytext}{b}{true}{false}
		\par
		\edef\onecs{x y z}
		\scancs[1]\mycs\onecs
		\IfSubStr{\mycs}{y}{true}{false}
	\end{boxedverbatim}
	\hspace{0.3cm}
\end{minipage}%
\begin{minipage}[r]{0.3\linewidth}
	\verbtocs{\mytext}|a b c|
	\IfSubStr{\mytext}{b}{true}{false}
	\par
	\edef\onecs{x y z}
	\scancs[1]\mycs\onecs
	\IfSubStr{\mycs}{y}{true}{false}
\end{minipage}
\medskip

The first test is "true" since catcodes of non special characters are left unchanged by \verb|\verbtocs|: indeed, \verb|\mytext| contains "\verb|a|${}_{11}$\ \verb*| |${}_{10}$\ \verb|b|${}_{11}$\ \verb*| |${}_{10}$\ \verb|c|${}_{11}$" which does contain the second argument "\verb|b|${}_{11}$".\medskip

With the second test, since \verb|\scancs| returns \texte{10,12}, it is false. \verb|\mycs| contains "\verb|x|${}_{12}$\ \verb*| |${}_{10}$\ \verb|y|${}_{12}$\ \verb*| |${}_{10}$\ \verb|z|${}_{12}$" which does not contains the second argument ""\verb|y|${}_{11}$".\bigskip

To avoid this annoyance due unmatching catcodes, it is possible to make macros of chapter~\ref{listemacros} compatible with \verb|\scancs|: they all have a starred version that converts textual arguments into \texte{10,12}, i.e. characters whose catcodes are 10 ou 12:\par\medskip
\begin{minipage}[r]{0.6\linewidth}
	\hfill
	\begin{boxedverbatim}
		\edef\onecs{x y z}
		\scancs[1]\mycs\onecs
		\IfSubStr*{\mycs}{y}{true}{false}
	\end{boxedverbatim}
	\hspace{0.3cm}
\end{minipage}%
\begin{minipage}[r]{0.3\linewidth}
	\edef\onecs{x y z}
	\scancs[1]\mycs\onecs
	\IfSubStr*{\mycs}{y}{true}{false}
\end{minipage}

\subsection{Examples}
\label{exemples}
Here are some very simple examples involving the macros of this package in programming purposes.

\subsubsection{Example 1}
We want to substitute the 2 first \verb|\textit| by \verb|\textbf| in the control sequence \verb|\myCS| winch contains \par\smallskip
\hfill\verb|\textit{A}\textit{B}\textit{C}|\hfill{}
\medskip

We expect: \textbf{A}\textbf{B}\textit{C}\medskip

\begin{minipage}[r]{0.6\linewidth}
	\hfill
	\begin{boxedverbatim}
		\def\myCS{\textit{A}\textit{B}\textit{C}}
		\scancs[1]{\text}{\myCS}
		\StrSubstitute*[2]{\text}{textit}{textbf}[\text]
		\tokenize{\myCS}{\text}
		\myCS
	\end{boxedverbatim}
 \hspace*{0.3cm}
\end{minipage}%
\begin{minipage}[r]{0.3\linewidth}
	\def\myCS{\textit{A}\textit{B}\textit{C}}
	\scancs[1]{\text}{\myCS}
	\StrSubstitute*[2]{\text}{textit}{textbf}[\text]
	\tokenize{\myCS}{\text}
	\myCS
\end{minipage}

\subsubsection{Example 2}
Let's try to write a macro \verb|\tofrac| that transforms an argument of this type \guill{a/b} into \guill{$\frac{a}{b}$}:\par\medskip
\begin{minipage}[r]{0.6\linewidth}
	\hfill
	\begin{boxedverbatim}
		\verbtocs{\csfrac}|\frac|%
		\verbtocs{\Ob}|{|%
		\verbtocs{\Cb}|}|%
		\newcommand\tofrac[1]{%
		  \scancs[0]{\myfrac}{#1}%
		  \StrBefore{\myfrac}{/}[\num]%
		  \StrBehind{\myfrac}{/}[\den]%
		  \tokenize\myfrac{\csfrac\Ob\num\Cb\Ob\den\Cb}%
		  $\myfrac$}
		\tofrac{15/9}
		\tofrac{u_{n+1}/u_n}
		\tofrac{a^m/a^n}
		\tofrac{x+\sqrt{x}/\sqrt{x^2+x+1}}
	\end{boxedverbatim}
 \hspace*{0.3cm}
\end{minipage}%
\begin{minipage}[r]{0.3\linewidth}
	\verbtocs{\csfrac}|\frac|%
	\verbtocs{\Ob}|{|%
	\verbtocs{\Cb}|}|%
	\newcommand\tofrac[1]{%
		\scancs[0]{\myfrac}{#1}%
		\StrBefore{\myfrac}{/}[\num]%
		\StrBehind{\myfrac}{/}[\den]%
		\tokenize\myfrac{\csfrac\Ob\num\Cb\Ob\den\Cb}%
		$\myfrac$}
	\tofrac{15/9}
	\tofrac{u_{n+1}/u_n}
	\tofrac{a^m/a^n}
	\tofrac{x+\sqrt{x}/\sqrt{x^2+x+1}}
\end{minipage}

\subsubsection{Example 3}
In a control sequence \verb|\text|, let's try to write in bold the first word that follows the word "new". In this example, \verb|\text| contains:\par\medskip
\hfill\verb|Try the new package xstring !|\hfill{}\bigskip
\setverbdelim{|}

\begin{minipage}[r]{0.6\linewidth}
	\hfill
	\begin{boxedverbatim}
		\def\text{Try the new package xstring !}
		\def\word{new}
		\StrBehind[1]{\text}{\word}[\name]
		\IfBeginWith{\name}{ }%
		  {\StrGobbleLeft{\name}{1}[\name]}%
		  {}%
		\StrBefore{\name}{ }[\name]
		\verbtocs{\before}|\textbf{|
		\verbtocs{\after}|}|
		\StrSubstitute[1]%
		  {\text}{\name}{\before\name\after}[\text]
		\tokenize{\text}{\text}
		\text
	\end{boxedverbatim}
	\hspace*{0.3cm}
\end{minipage}%
\begin{minipage}[r]{0.3\linewidth}
		\def\text{Try the new package xstring !}
		\def\word{new}
		\StrBehind[1]{\text}{\word}[\name]
		\IfBeginWith{\name}{ }%
			{\StrGobbleLeft{\name}{1}[\name]}%
			{}%
		\StrBefore{\name}{ }[\name]
		\verbtocs{\before}|\textbf{|
		\verbtocs{\after}|}|
		\StrSubstitute[1]%
			{\text}{\name}{\before\name\after}[\text]
		\tokenize{\text}{\text}
		\text
\end{minipage}

\subsubsection{Example 4}
A control sequence \verb|\myCS| défined with an \verb|\edef| contains control sequences with their possible arguments. How to reverse the order of the 2 first control sequences? In this example, \verb|\myCS| contains:\par\medskip
\hfill\verb|\textbf{A}\textit{B}\texttt{C}|\hfill{}\bigskip

We expect a final result containing \verb|\textit{B}\textbf{A}\texttt{C}| and displaying \textit{B}\textbf{A}\texttt{C}\medskip

\begin{minipage}[r]{0.6\linewidth}
	\hfill
	\begin{boxedverbatim}
		\def\myCS{\textbf{A}\textit{B}\texttt{C}}
		\scancs[1]{\text}{\myCS}
		\verbtocs{\antislash}|\|
		\StrBefore[3]{\text}{\antislash}[\firsttwo]
		\StrBehind{\text}{\firsttwo}[\others]
		\StrBefore[2]{\firsttwo}{\antislash}[\avant]
		\StrBehind{\firsttwo}{\avant}[\apres]%
		\tokenize{\myCS}{\apres\avant\others}%
		result: \myCS
	\end{boxedverbatim}
	\hspace*{0.3cm}
\end{minipage}%
\begin{minipage}[r]{0.3\linewidth}
	\def\myCS{\textbf{A}\textit{B}\texttt{C}}
	\scancs[1]{\text}{\myCS}
	\verbtocs{\antislash}|\|
	\StrBefore[3]{\text}{\antislash}[\firsttwo]
	\StrBehind{\text}{\firsttwo}[\others]
	\StrBefore[2]{\firsttwo}{\antislash}[\avant]
	\StrBehind{\firsttwo}{\avant}[\apres]%
	\tokenize{\myCS}{\apres\avant\others}%
	result: \myCS
\end{minipage}

\subsubsection{Example 5}
A control sequence \verb|\myCS| defined with an \verb|\edef| contains control sequences and "groups" between braces. Let's try to find the $n$\th{} group, i.e. what is between the $n$\th{} pair of balanced braces. In this example, \verb|\myCS| contains:\par\medskip
\hfill\verb|\a{1\b{2}}\c{3}\d{4\e{5}\f{6{7}}}|\hfill{}\medskip

\begin{minipage}[r]{0.6\linewidth}
	\hfill
	\begin{boxedverbatim}
		\newcount\occurr
		\newcount\nbgroup
		\newcommand\findgroup[2]{%
		  \scancs[1]{\text}{#2}%
		  \occurr=0
		  \nbgroup=0
		  \def\findthegroup{%
		    \StrBehind{\text}{\Obr}[\remain]%
		    \advance\occurr by 1% next "{"
		    \StrBefore[\the\occurr]{\remain}{\Cbr}[\group]%
		    \StrCount{\group}{\Obr}[\nbA]%
		    \StrCount{\group}{\Cbr}[\nbB]%
		    \ifnum\nbA=\nbB% balanced braces ?
		      \advance\nbgroup by 1
		      \ifnum\nbgroup<#1% not the good group ?
		        \StrBehind{\text}{\group}[\text]%
		        \occurr=0% initialise \text & \occur
		        \findthegroup% do it again
		      \fi
		    \else% unbalanced braces ?
		      % look for next "}"
		      \findthegroup
		    \fi}
		  \findthegroup
		  \group}

		\verbtocs{\Obr}|{|
		\verbtocs{\Cbr}|}|
		\def\myCS{\a{1\b{2}}\c{3}\d{4\e{5}\f{6{7}}}}

		group 1: \findgroup{1}{\myCS}\par
		group 2: \findgroup{2}{\myCS}\par
		group 3: \findgroup{3}{\myCS}
	\end{boxedverbatim}
	\hspace*{0.3cm}
\end{minipage}%
\begin{minipage}[r]{0.3\linewidth}
		\newcount\occurr
		\newcount\nbgroup
		\newcommand\findgroup[2]{%
		  \scancs[1]{\text}{#2}%
		  \occurr=0
		  \nbgroup=0
		  \def\findthegroup{%
		    \StrBehind{\text}{\Obr}[\remain]%
		    \advance\occurr by 1% next "{"
		    \StrBefore[\the\occurr]{\remain}{\Cbr}[\group]%
		    \StrCount{\group}{\Obr}[\nbA]%
		    \StrCount{\group}{\Cbr}[\nbB]%
		    \ifnum\nbA=\nbB% balanced braces ?
		      \advance\nbgroup by 1
		      \ifnum\nbgroup<#1% if it's not the sought group
		        \StrBehind{\text}{\group}[\text]%
		        \occurr=0% initialization of \text & \occur
		        \findthegroup% do it again
		      \fi
		    \else% unbalanced braces ?
		      % look for next "}"
		      \findthegroup
		    \fi}
		  \findthegroup
		  \group}

		\verbtocs{\Obr}|{|
		\verbtocs{\Cbr}|}|
		\def\myCS{\a{1\b{2}}\c{3}\d{4\e{5}\f{6{7}}}}

		groupe 1: \findgroup{1}{\myCS}\par
		groupe 2: \findgroup{2}{\myCS}\par
		groupe 3: \findgroup{3}{\myCS}
\end{minipage}
\medskip

Notice that 2 counters, 2 tests and a double recursion are necessary to find the group: one of each to find what "\verb|}|" delimits the end of the current group, and the others to know the number of the group being read.\bigskip\bigskip

\begin{center}
$\star$

$\star$\quad$\star$
\end{center}
\bigskip\bigskip

That's all, I hope you will find this package useful !\par
Please, send me an email if you find a bug or if you have any idea of improvement\ldots\medskip

Christian Tellechea
\end{document}