1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
|
\section{Some examples}
\subsection{Some interesting examples}
\subsubsection{Similar isosceles triangles}
The following is from the excellent site \textbf{Descartes et les Mathématiques}. I did not modify the text and I am only the author of the programming of the figures.
\url{http://debart.pagesperso-orange.fr/seconde/triangle.html}
Bibliography:
\begin{itemize}
\item Géométrie au Bac - Tangente, special issue no. 8 - Exercise 11, page 11
\item Elisabeth Busser and Gilles Cohen: 200 nouveaux problèmes du "Monde" - POLE 2007 (200 new problems of "Le Monde")
\item Affaire de logique n° 364 - Le Monde February 17, 2004
\end{itemize}
Two statements were proposed, one by the magazine \textit{Tangente} and the other by \textit{Le Monde}.
\vspace*{2cm}
\emph{Editor of the magazine "Tangente"}: \textcolor{orange}{Two similar isosceles triangles $AXB$ and $BYC$ are constructed with main vertices $X$ and $Y$, such that $A$, $B$ and $C$ are aligned and that these triangles are "indirect". Let $\alpha$ be the angle at vertex $\widehat{AXB}$ = $\widehat{BYC}$. We then construct a third isosceles triangle $XZY$ similar to the first two, with main vertex $Z$ and "indirect".
We ask to demonstrate that point $Z$ belongs to the straight line $(AC)$.}
\vspace*{2cm}
\emph{Editor of "Le Monde"}: \textcolor{orange}{We construct two similar isosceles triangles $AXB$ and $BYC$ with principal vertices $X$ and $Y$, such that $A$, $B$ and $C$ are aligned and that these triangles are "indirect". Let $\alpha$ be the angle at vertex $\widehat{AXB}$ = $\widehat{BYC}$. The point Z of the line segment $[AC]$ is equidistant from the two vertices $X$ and $Y$.\\
At what angle does he see these two vertices?}
\vspace*{2cm} The constructions and their associated codes are on the next two pages, but you can search before looking. The programming respects (it seems to me ...) my reasoning in both cases.
\subsubsection{Revised version of "Tangente"}
\begin{tkzexample}[]
\begin{tikzpicture}[scale=.8,rotate=60]
\tkzDefPoint(6,0){X} \tkzDefPoint(3,3){Y}
\tkzDefShiftPoint[X](-110:6){A} \tkzDefShiftPoint[X](-70:6){B}
\tkzDefShiftPoint[Y](-110:4.2){A'} \tkzDefShiftPoint[Y](-70:4.2){B'}
\tkzDefPointBy[translation= from A' to B ](Y) \tkzGetPoint{Y}
\tkzDefPointBy[translation= from A' to B ](B') \tkzGetPoint{C}
\tkzInterLL(A,B)(X,Y) \tkzGetPoint{O}
\tkzDefMidPoint(X,Y) \tkzGetPoint{I}
\tkzDefPointWith[orthogonal](I,Y)
\tkzInterLL(I,tkzPointResult)(A,B) \tkzGetPoint{Z}
\tkzDefCircle[circum](X,Y,B) \tkzGetPoint{O}
\tkzDrawCircle(O,X)
\tkzDrawLines[add = 0 and 1.5](A,C) \tkzDrawLines[add = 0 and 3](X,Y)
\tkzDrawSegments(A,X B,X B,Y C,Y) \tkzDrawSegments[color=red](X,Z Y,Z)
\tkzDrawPoints(A,B,C,X,Y,O,Z)
\tkzLabelPoints(A,B,C,Z) \tkzLabelPoints[above right](X,Y,O)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{"Le Monde" version}
\begin{tkzexample}[]
\begin{tikzpicture}[scale=1.25]
\tkzDefPoint(0,0){A}
\tkzDefPoint(3,0){B}
\tkzDefPoint(9,0){C}
\tkzDefPoint(1.5,2){X}
\tkzDefPoint(6,4){Y}
\tkzDefCircle[circum](X,Y,B) \tkzGetPoint{O}
\tkzDefMidPoint(X,Y) \tkzGetPoint{I}
\tkzDefPointWith[orthogonal](I,Y) \tkzGetPoint{i}
\tkzDrawLines[add = 2 and 1,color=orange](I,i)
\tkzInterLL(I,i)(A,B) \tkzGetPoint{Z}
\tkzInterLC(I,i)(O,B) \tkzGetSecondPoint{M}
\tkzDefPointWith[orthogonal](B,Z) \tkzGetPoint{b}
\tkzDrawCircle(O,B)
\tkzDrawLines[add = 0 and 2,color=orange](B,b)
\tkzDrawSegments(A,X B,X B,Y C,Y A,C X,Y)
\tkzDrawSegments[color=red](X,Z Y,Z)
\tkzDrawPoints(A,B,C,X,Y,Z,M,I)
\tkzLabelPoints(A,B,C,Z)
\tkzLabelPoints[above right](X,Y,M,I)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Triangle altitudes}
The following is again from the excellent site \textbf{Descartes et les Mathématiques} (Descartes and the Mathematics).
\url{http://debart.pagesperso-orange.fr/geoplan/geometrie_triangle.html}
The three altitudes of a triangle intersect at the same H-point.
\begin{tkzexample}[latex=7cm]
\begin{tikzpicture}[scale=.8]
\tkzDefPoint(0,0){C}
\tkzDefPoint(7,0){B}
\tkzDefPoint(5,6){A}
\tkzDrawPolygon(A,B,C)
\tkzDefMidPoint(C,B)
\tkzGetPoint{I}
\tkzDrawArc(I,B)(C)
\tkzInterLC(A,C)(I,B)
\tkzGetSecondPoint{B'}
\tkzInterLC(A,B)(I,B)
\tkzGetFirstPoint{C'}
\tkzInterLL(B,B')(C,C')
\tkzGetPoint{H}
\tkzInterLL(A,H)(C,B)
\tkzGetPoint{A'}
\tkzDefCircle[circum](A,B',C')
\tkzGetPoint{O}
\tkzDrawCircle[color=red](O,A)
\tkzDrawSegments[color=orange](B,B' C,C' A,A')
\tkzMarkRightAngles(C,B',B B,C',C C,A',A)
\tkzDrawPoints(A,B,C,A',B',C',H)
\tkzLabelPoints(A,B,C,A',B',C',H)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Altitudes - other construction}
\begin{tkzexample}[latex=7cm]
\begin{tikzpicture}[scale=.75]
\tkzDefPoint(0,0){A}
\tkzDefPoint(8,0){B}
\tkzDefPoint(3.5,10){C}
\tkzDefMidPoint(A,B)
\tkzGetPoint{O}
\tkzDefPointBy[projection=onto A--B](C)
\tkzGetPoint{P}
\tkzInterLC(C,A)(O,A)
\tkzGetSecondPoint{M}
\tkzInterLC(C,B)(O,A)
\tkzGetFirstPoint{N}
\tkzInterLL(B,M)(A,N)
\tkzGetPoint{I}
\tkzDrawCircle[diameter](A,B)
\tkzDrawSegments(C,A C,B A,B B,M A,N)
\tkzMarkRightAngles[fill=brown!20](A,M,B A,N,B A,P,C)
\tkzDrawSegment[style=dashed,color=orange](C,P)
\tkzLabelPoints(O,A,B,P)
\tkzLabelPoint[left](M){$M$}
\tkzLabelPoint[right](N){$N$}
\tkzLabelPoint[above](C){$C$}
\tkzLabelPoint[above right](I){$I$}
\tkzDrawPoints[color=red](M,N,P,I)
\tkzDrawPoints[color=brown](O,A,B,C)
\end{tikzpicture}
\end{tkzexample}
\subsection{Different authors}
\subsubsection{ Square root of the integers}
How to get $1$, $\sqrt{2}$, $\sqrt{3}$ with a rule and a compass.
\begin{tkzexample}[latex=7cm,small]
\begin{tikzpicture}[scale=1.5]
\tkzDefPoint(0,0){O}
\tkzDefPoint(1,0){a0}
\tkzDrawSegment[blue](O,a0)
\foreach \i [count=\j] in {0,...,10}{%
\tkzDefPointWith[orthogonal normed](a\i,O)
\tkzGetPoint{a\j}
\tkzDrawPolySeg[color=blue](a\i,a\j,O)}
\end{tikzpicture}
\end{tkzexample}
\subsubsection{About right triangle}
We have a segment $[AB]$ and we want to determine a point $C$ such that $AC=8$~cm and $ABC$ is a right triangle in $B$.
\begin{tkzexample}[latex=7cm]
\begin{tikzpicture}[scale=.5]
\tkzDefPoint["$A$" left](2,1){A}
\tkzDefPoint(6,4){B}
\tkzDrawSegment(A,B)
\tkzDrawPoint[color=red](A)
\tkzDrawPoint[color=red](B)
\tkzDefPointWith[orthogonal,K=-1](B,A)
\tkzDrawLine[add = .5 and .5](B,tkzPointResult)
\tkzInterLC[R](B,tkzPointResult)(A,8 cm)
\tkzGetPoints{C}{J}
\tkzDrawPoint[color=red](C)
\tkzCompass(A,C)
\tkzMarkRightAngle(A,B,C)
\tkzDrawLine[color=gray,style=dashed](A,C)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Archimedes}
This is an ancient problem proved by the great Greek mathematician Archimedes .
The figure below shows a semicircle, with diameter $AB$. A tangent line is drawn and touches the semicircle at $B$. An other tangent line at a point, $C$, on the semicircle is drawn. We project the point $C$ on the line segment $[AB]$ on a point $D$. The two tangent lines intersect at the point $T$.
Prove that the line $(AT)$ bisects $(CD)$
\begin{tkzexample}[]
\begin{tikzpicture}[scale=1.25]
\tkzDefPoint(0,0){A}\tkzDefPoint(6,0){D}
\tkzDefPoint(8,0){B}\tkzDefPoint(4,0){I}
\tkzDefLine[orthogonal=through D](A,D)
\tkzInterLC[R](D,tkzPointResult)(I,4 cm) \tkzGetFirstPoint{C}
\tkzDefLine[orthogonal=through C](I,C) \tkzGetPoint{c}
\tkzDefLine[orthogonal=through B](A,B) \tkzGetPoint{b}
\tkzInterLL(C,c)(B,b) \tkzGetPoint{T}
\tkzInterLL(A,T)(C,D) \tkzGetPoint{P}
\tkzDrawArc(I,B)(A)
\tkzDrawSegments(A,B A,T C,D I,C) \tkzDrawSegment[color=orange](I,C)
\tkzDrawLine[add = 1 and 0](C,T) \tkzDrawLine[add = 0 and 1](B,T)
\tkzMarkRightAngle(I,C,T)
\tkzDrawPoints(A,B,I,D,C,T)
\tkzLabelPoints(A,B,I,D) \tkzLabelPoints[above right](C,T)
\tkzMarkSegment[pos=.25,mark=s|](C,D) \tkzMarkSegment[pos=.75,mark=s|](C,D)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Example: Dimitris Kapeta}
You need in this example to use \tkzname{mkpos=.2} with \tkzcname{tkzMarkAngle} because the measure of $ \widehat{CAM}$ is too small.
Another possiblity is to use \tkzcname{tkzFillAngle}.
\begin{tkzexample}[]
\begin{tikzpicture}[scale=1.25]
\tkzDefPoint(0,0){O}
\tkzDefPoint(2.5,0){N}
\tkzDefPoint(-4.2,0.5){M}
\tkzDefPointBy[rotation=center O angle 30](N)
\tkzGetPoint{B}
\tkzDefPointBy[rotation=center O angle -50](N)
\tkzGetPoint{A}
\tkzInterLC(M,B)(O,N) \tkzGetFirstPoint{C}
\tkzInterLC(M,A)(O,N) \tkzGetSecondPoint{A'}
\tkzMarkAngle[mkpos=.2, size=0.5](A,C,B)
\tkzMarkAngle[mkpos=.2, size=0.5](A,M,C)
\tkzDrawSegments(A,C M,A M,B)
\tkzDrawCircle(O,N)
\tkzLabelCircle[above left](O,N)(120){$\mathcal{C}$}
\tkzMarkAngle[mkpos=.2, size=1.2](C,A,M)
\tkzDrawPoints(O, A, B, M, B, C)
\tkzLabelPoints[right](O,A,B)
\tkzLabelPoints[above left](M,C)
\tkzLabelPoint[below left](A'){$A'$}
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Example 1: John Kitzmiller }
Prove that $\bigtriangleup LKJ$ is equilateral.
\begin{tkzexample}[vbox,small]
\begin{tikzpicture}[scale=2]
\tkzDefPoint[label=below left:A](0,0){A}
\tkzDefPoint[label=below right:B](6,0){B}
\tkzDefTriangle[equilateral](A,B) \tkzGetPoint{C}
\tkzMarkSegments[mark=|](A,B A,C B,C)
\tkzDefBarycentricPoint(A=1,B=2) \tkzGetPoint{C'}
\tkzDefBarycentricPoint(A=2,C=1) \tkzGetPoint{B'}
\tkzDefBarycentricPoint(C=2,B=1) \tkzGetPoint{A'}
\tkzInterLL(A,A')(C,C') \tkzGetPoint{J}
\tkzInterLL(C,C')(B,B') \tkzGetPoint{K}
\tkzInterLL(B,B')(A,A') \tkzGetPoint{L}
\tkzLabelPoint[above](C){C}
\tkzDrawPolygon(A,B,C) \tkzDrawSegments(A,J B,L C,K)
\tkzMarkAngles[size=1 cm](J,A,C K,C,B L,B,A)
\tkzMarkAngles[thick,size=1 cm](A,C,J C,B,K B,A,L)
\tkzMarkAngles[opacity=.5](A,C,J C,B,K B,A,L)
\tkzFillAngles[fill= orange,size=1 cm,opacity=.3](J,A,C K,C,B L,B,A)
\tkzFillAngles[fill=orange, opacity=.3,thick,size=1,](A,C,J C,B,K B,A,L)
\tkzFillAngles[fill=green, size=1, opacity=.5](A,C,J C,B,K B,A,L)
\tkzFillPolygon[color=yellow, opacity=.2](J,A,C)
\tkzFillPolygon[color=yellow, opacity=.2](K,B,C)
\tkzFillPolygon[color=yellow, opacity=.2](L,A,B)
\tkzDrawSegments[line width=3pt,color=cyan,opacity=0.4](A,J C,K B,L)
\tkzDrawSegments[line width=3pt,color=red,opacity=0.4](A,L B,K C,J)
\tkzMarkSegments[mark=o](J,K K,L L,J)
\tkzLabelPoint[right](J){J}
\tkzLabelPoint[below](K){K}
\tkzLabelPoint[above left](L){L}
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Example 2: John Kitzmiller }
Prove that $\dfrac{AC}{CE}=\dfrac{BD}{DF}$.
Another interesting example from John, you can see how to use some extra options like \tkzname{decoration} and \tkzname{postaction} from \TIKZ\ with \tkzname{tkz-euclide}.
\begin{tkzexample}[vbox,small]
\begin{tikzpicture}[scale=2,decoration={markings,
mark=at position 3cm with {\arrow[scale=2]{>}}}]
\tkzDefPoints{0/0/E, 6/0/F, 0/1.8/P, 6/1.8/Q, 0/3/R, 6/3/S}
\tkzDrawLines[postaction={decorate}](E,F P,Q R,S)
\tkzDefPoints{3.5/3/A, 5/3/B}
\tkzDrawSegments(E,A F,B)
\tkzInterLL(E,A)(P,Q) \tkzGetPoint{C}
\tkzInterLL(B,F)(P,Q) \tkzGetPoint{D}
\tkzLabelPoints[above right](A,B)
\tkzLabelPoints[below](E,F)
\tkzLabelPoints[above left](C)
\tkzDrawSegments[style=dashed](A,F)
\tkzInterLL(A,F)(P,Q) \tkzGetPoint{G}
\tkzLabelPoints[above right](D,G)
\tkzDrawSegments[color=teal, line width=3pt, opacity=0.4](A,C A,G)
\tkzDrawSegments[color=magenta, line width=3pt, opacity=0.4](C,E G,F)
\tkzDrawSegments[color=teal, line width=3pt, opacity=0.4](B,D)
\tkzDrawSegments[color=magenta, line width=3pt, opacity=0.4](D,F)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Example 3: John Kitzmiller }
Prove that $\dfrac{BC}{CD}=\dfrac{AB}{AD} \qquad$ (Angle Bisector).
\begin{tkzexample}[vbox,small]
\begin{tikzpicture}[scale=2]
\tkzDefPoints{0/0/B, 5/0/D} \tkzDefPoint(70:3){A}
\tkzDrawPolygon(B,D,A)
\tkzDefLine[bisector](B,A,D) \tkzGetPoint{a}
\tkzInterLL(A,a)(B,D) \tkzGetPoint{C}
\tkzDefLine[parallel=through B](A,C) \tkzGetPoint{b}
\tkzInterLL(A,D)(B,b) \tkzGetPoint{P}
\begin{scope}[decoration={markings,
mark=at position .5 with {\arrow[scale=2]{>}}}]
\tkzDrawSegments[postaction={decorate},dashed](C,A P,B)
\end{scope}
\tkzDrawSegment(A,C) \tkzDrawSegment[style=dashed](A,P)
\tkzLabelPoints[below](B,C,D) \tkzLabelPoints[above](A,P)
\tkzDrawSegments[color=magenta, line width=3pt, opacity=0.4](B,C P,A)
\tkzDrawSegments[color=teal, line width=3pt, opacity=0.4](C,D A,D)
\tkzDrawSegments[color=magenta, line width=3pt, opacity=0.4](A,B)
\tkzMarkAngles[size=3mm](B,A,C C,A,D)
\tkzMarkAngles[size=3mm](B,A,C A,B,P)
\tkzMarkAngles[size=3mm](B,P,A C,A,D)
\tkzMarkAngles[size=3mm](B,A,C A,B,P B,P,A C,A,D)
\tkzFillAngles[fill=green, opacity=0.5](B,A,C A,B,P)
\tkzFillAngles[fill=yellow, opacity=0.3](B,P,A C,A,D)
\tkzFillAngles[fill=green, opacity=0.6](B,A,C A,B,P B,P,A C,A,D)
\tkzLabelAngle[pos=1](B,A,C){1} \tkzLabelAngle[pos=1](C,A,D){2}
\tkzLabelAngle[pos=1](A,B,P){3} \tkzLabelAngle[pos=1](B,P,A){4}
\tkzMarkSegments[mark=|](A,B A,P)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Example 4: author John Kitzmiller }
Prove that $\overline{AG}\cong\overline{EF} \qquad$ (Detour).
\begin{tkzexample}[vbox,small]
\begin{tikzpicture}[scale=2]
\tkzDefPoint(0,3){A} \tkzDefPoint(6,3){E} \tkzDefPoint(1.35,3){B}
\tkzDefPoint(4.65,3){D} \tkzDefPoint(1,1){G} \tkzDefPoint(5,5){F}
\tkzDefMidPoint(A,E) \tkzGetPoint{C}
\tkzFillPolygon[yellow, opacity=0.4](B,G,C)
\tkzFillPolygon[yellow, opacity=0.4](D,F,C)
\tkzFillPolygon[blue, opacity=0.3](A,B,G)
\tkzFillPolygon[blue, opacity=0.3](E,D,F)
\tkzMarkAngles[size=0.5 cm](B,G,A D,F,E)
\tkzMarkAngles[size=0.5 cm](B,C,G D,C,F)
\tkzMarkAngles[size=0.5 cm](G,B,C F,D,C)
\tkzMarkAngles[size=0.5 cm](A,B,G E,D,F)
\tkzFillAngles[size=0.5 cm,fill=green](B,G,A D,F,E)
\tkzFillAngles[size=0.5 cm,fill=orange](B,C,G D,C,F)
\tkzFillAngles[size=0.5 cm,fill=yellow](G,B,C F,D,C)
\tkzFillAngles[size=0.5 cm,fill=red](A,B,G E,D,F)
\tkzMarkSegments[mark=|](B,C D,C) \tkzMarkSegments[mark=s||](G,C F,C)
\tkzMarkSegments[mark=o](A,G E,F) \tkzMarkSegments[mark=s](B,G D,F)
\tkzDrawSegment[color=red](A,E)
\tkzDrawSegment[color=blue](F,G)
\tkzDrawSegments(A,G G,B E,F F,D)
\tkzLabelPoints[below](C,D,E,G) \tkzLabelPoints[above](A,B,F)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Example 1: from Indonesia}
\begin{tkzexample}[vbox,small]
\begin{tikzpicture}[scale=3]
\tkzDefPoints{0/0/A,2/0/B}
\tkzDefSquare(A,B) \tkzGetPoints{C}{D}
\tkzDefPointBy[rotation=center D angle 45](C)\tkzGetPoint{G}
\tkzDefSquare(G,D)\tkzGetPoints{E}{F}
\tkzInterLL(B,C)(E,F)\tkzGetPoint{H}
\tkzFillPolygon[gray!10](D,E,H,C,D)
\tkzDrawPolygon(A,...,D)\tkzDrawPolygon(D,...,G)
\tkzDrawSegment(B,E)
\tkzMarkSegments[mark=|,size=3pt,color=gray](A,B B,C C,D D,A E,F F,G G,D D,E)
\tkzMarkSegments[mark=||,size=3pt,color=gray](B,E E,H)
\tkzLabelPoints[left](A,D)
\tkzLabelPoints[right](B,C,F,H)
\tkzLabelPoints[above](G)\tkzLabelPoints[below](E)
\tkzMarkRightAngles(D,A,B D,G,F)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Example 2: from Indonesia}
\begin{tkzexample}[vbox,small]
\begin{tikzpicture}[pol/.style={fill=brown!40,opacity=.5},
seg/.style={tkzdotted,color=gray},
hidden pt/.style={fill=gray!40},
mra/.style={color=gray!70,tkzdotted,/tkzrightangle/size=.2},
scale=3]
\tkzSetUpPoint[size=2]
\tkzDefPoints{0/0/A,2.5/0/B,1.33/0.75/D,0/2.5/E,2.5/2.5/F}
\tkzDefLine[parallel=through D](A,B) \tkzGetPoint{I1}
\tkzDefLine[parallel=through B](A,D) \tkzGetPoint{I2}
\tkzInterLL(D,I1)(B,I2) \tkzGetPoint{C}
\tkzDefLine[parallel=through E](A,D) \tkzGetPoint{I3}
\tkzDefLine[parallel=through D](A,E) \tkzGetPoint{I4}
\tkzInterLL(E,I3)(D,I4) \tkzGetPoint{H}
\tkzDefLine[parallel=through F](E,H) \tkzGetPoint{I5}
\tkzDefLine[parallel=through H](E,F) \tkzGetPoint{I6}
\tkzInterLL(F,I5)(H,I6) \tkzGetPoint{G}
\tkzDefMidPoint(G,H) \tkzGetPoint{P}
\tkzDefMidPoint(G,C) \tkzGetPoint{Q}
\tkzDefMidPoint(B,C) \tkzGetPoint{R}
\tkzDefMidPoint(A,B) \tkzGetPoint{S}
\tkzDefMidPoint(A,E) \tkzGetPoint{T}
\tkzDefMidPoint(E,H) \tkzGetPoint{U}
\tkzDefMidPoint(A,D) \tkzGetPoint{M}
\tkzDefMidPoint(D,C) \tkzGetPoint{N}
\tkzInterLL(B,D)(S,R) \tkzGetPoint{L}
\tkzInterLL(H,F)(U,P) \tkzGetPoint{K}
\tkzDefLine[parallel=through K](D,H) \tkzGetPoint{I7}
\tkzInterLL(K,I7)(B,D) \tkzGetPoint{O}
\tkzFillPolygon[pol](P,Q,R,S,T,U)
\tkzDrawSegments[seg](K,O K,L P,Q R,S T,U
C,D H,D A,D M,N B,D)
\tkzDrawSegments(E,H B,C G,F G,H G,C Q,R S,T U,P H,F)
\tkzDrawPolygon(A,B,F,E)
\tkzDrawPoints(A,B,C,E,F,G,H,P,Q,R,S,T,U,K)
\tkzDrawPoints[hidden pt](M,N,O,D)
\tkzMarkRightAngle[mra](L,O,K)
\tkzMarkSegments[mark=|,size=1pt,thick,color=gray](A,S B,S B,R C,R
Q,C Q,G G,P H,P
E,U H,U E,T A,T)
\tkzLabelAngle[pos=.3](K,L,O){$\alpha$}
\tkzLabelPoints[below](O,A,S,B)
\tkzLabelPoints[above](H,P,G)
\tkzLabelPoints[left](T,E)
\tkzLabelPoints[right](C,Q)
\tkzLabelPoints[above left](U,D,M)
\tkzLabelPoints[above right](L,N)
\tkzLabelPoints[below right](F,R)
\tkzLabelPoints[below left](K)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{Three circles}
\begin{tkzexample}[vbox,small]
\begin{tikzpicture}[scale=1.5]
\tkzDefPoints{0/0/A,8/0/B,0/4/a,8/4/b,8/8/c}
\tkzDefTriangle[equilateral](A,B) \tkzGetPoint{C}
\tkzDrawPolygon(A,B,C)
\tkzDefSquare(A,B) \tkzGetPoints{D}{E}
\tkzClipBB
\tkzDefMidPoint(A,B) \tkzGetPoint{M}
\tkzDefMidPoint(B,C) \tkzGetPoint{N}
\tkzDefMidPoint(A,C) \tkzGetPoint{P}
\tkzDrawSemiCircle[gray,dashed](M,B)
\tkzDrawSemiCircle[gray,dashed](A,M)
\tkzDrawSemiCircle[gray,dashed](A,B)
\tkzDrawCircle[gray,dashed](B,A)
\tkzInterLL(A,N)(M,a) \tkzGetPoint{Ia}
\tkzDefPointBy[projection = onto A--B](Ia)
\tkzGetPoint{ha}
\tkzDrawCircle[gray](Ia,ha)
\tkzInterLL(B,P)(M,b) \tkzGetPoint{Ib}
\tkzDefPointBy[projection = onto A--B](Ib)
\tkzGetPoint{hb}
\tkzDrawCircle[gray](Ib,hb)
\tkzInterLL(A,c)(M,C) \tkzGetPoint{Ic}
\tkzDefPointBy[projection = onto A--C](Ic)
\tkzGetPoint{hc}
\tkzDrawCircle[gray](Ic,hc)
\tkzInterLL(A,Ia)(B,Ib) \tkzGetPoint{G}
\tkzDrawCircle[gray,dashed](G,Ia)
\tkzDrawPolySeg(A,E,D,B)
\tkzDrawPoints(A,B,C)
\tkzDrawPoints(G,Ia,Ib,Ic)
\tkzDrawSegments[gray,dashed](C,M A,N B,P M,a M,b A,a a,b b,B A,D Ia,ha)
\end{tikzpicture}
\end{tkzexample}
\subsubsection{"The" Circle of APOLLONIUS}
\begin{tkzexample}[vbox,small]
\begin{tikzpicture}[scale=.5]
\tkzDefPoints{0/0/A,6/0/B,0.8/4/C}
\tkzDefTriangleCenter[euler](A,B,C) \tkzGetPoint{N}
\tkzDefTriangleCenter[circum](A,B,C) \tkzGetPoint{O}
\tkzDefTriangleCenter[lemoine](A,B,C) \tkzGetPoint{K}
\tkzDefTriangleCenter[spieker](A,B,C) \tkzGetPoint{Sp}
\tkzDefExCircle(A,B,C) \tkzGetPoint{Jb}
\tkzDefExCircle(C,A,B) \tkzGetPoint{Ja}
\tkzDefExCircle(B,C,A) \tkzGetPoint{Jc}
\tkzDefPointBy[projection=onto B--C ](Jc) \tkzGetPoint{Xc}
\tkzDefPointBy[projection=onto B--C ](Jb) \tkzGetPoint{Xb}
\tkzDefPointBy[projection=onto A--B ](Ja) \tkzGetPoint{Za}
\tkzDefPointBy[projection=onto A--B ](Jb) \tkzGetPoint{Zb}
\tkzDefLine[parallel=through Xc](A,C) \tkzGetPoint{X'c}
\tkzDefLine[parallel=through Xb](A,B) \tkzGetPoint{X'b}
\tkzDefLine[parallel=through Za](C,A) \tkzGetPoint{Z'a}
\tkzDefLine[parallel=through Zb](C,B) \tkzGetPoint{Z'b}
\tkzInterLL(Xc,X'c)(A,B) \tkzGetPoint{B'}
\tkzInterLL(Xb,X'b)(A,C) \tkzGetPoint{C'}
\tkzInterLL(Za,Z'a)(C,B) \tkzGetPoint{A''}
\tkzInterLL(Zb,Z'b)(C,A) \tkzGetPoint{B''}
\tkzDefPointBy[reflection= over Jc--Jb](B') \tkzGetPoint{Ca}
\tkzDefPointBy[reflection= over Jc--Jb](C') \tkzGetPoint{Ba}
\tkzDefPointBy[reflection= over Ja--Jb](A'')\tkzGetPoint{Bc}
\tkzDefPointBy[reflection= over Ja--Jb](B'')\tkzGetPoint{Ac}
\tkzDefCircle[circum](Ac,Ca,Ba) \tkzGetPoint{Q}
\tkzDrawCircle[circum](Ac,Ca,Ba)
\tkzDefPointWith[linear,K=1.1](Q,Ac) \tkzGetPoint{nAc}
\tkzClipCircle[through](Q,nAc)
\tkzDrawLines[add=1.5 and 1.5,dashed](A,B B,C A,C)
\tkzDrawPolygon[color=blue](A,B,C)
\tkzDrawPolygon[dashed,color=blue](Ja,Jb,Jc)
\tkzDrawCircles[ex](A,B,C B,C,A C,A,B)
\tkzDrawLines[add=0 and 0,dashed](Ca,Bc B,Za A,Ba B',C')
\tkzDrawLine[add=1 and 1,dashed](Xb,Xc)
\tkzDrawLine[add=7 and 3,blue](O,K)
\tkzDrawLine[add=8 and 15,red](N,Sp)
\tkzDrawLines[add=10 and 10](K,O N,Sp)
\tkzDrawSegments(Ba,Ca Bc,Ac)
\tkzDrawPoints(A,B,C,N,Ja,Jb,Jc,Xb,Xc,B',C',Za,Zb,Ba,Ca,Bc,Ac,Q,Sp,K,O)
\tkzLabelPoints(A,B,C,N,Ja,Jb,Jc,Xb,Xc,B',C',Za,Zb,Ba,Ca,Bc,Ac,Q,Sp)
\tkzLabelPoints[above](K,O)
\end{tikzpicture}
\end{tkzexample}
\endinput
|