1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
|
<?xml version="1.0"?>
<!--This OMDoc document is generated from an sTeX-encoded one via LaTeXML, you may want to reconsider editing it.-->
<omdoc xmlns:omdoc="http://omdoc.org/ns" xmlns="http://omdoc.org/ns" xmlns:m="http://www.w3.org/1998/Math/MathML" xmlns:stex="http://kwarc.info/ns/sTeX" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:cc="http://creativecommons.org/ns" xmlns:om="http://www.openmath.org/OpenMath">
<omdoc:omgroup layout="sectioning" xml:id="sec.differentiable" about="#sec.differentiable" stex:srcref="differentiable.tex#textrange(from=1;0,to=12;13)">
<omdoc:metadata xml:id="sec.differentiable.metadata1" about="#sec.differentiable.metadata1" stex:srcref="differentiable.tex#textrange(from=1;0,to=11;12)">
<dc:title xml:id="sec.differentiable.metadata1.title1" about="#sec.differentiable.metadata1.title1" stex:srcref="differentiable.tex#textrange(from=1;0,to=12;13)">Differentiable Functions</dc:title>
</omdoc:metadata>
<theory xml:id="differentiable" about="#differentiable" stex:srcref="differentiable.tex#textrange(from=2;0,to=11;12)">
<imports from="../../../slides/extcds/omstd/arith1.omdoc#arith1"/>
<imports from="../../../slides/extcds/omstd/relation1.omdoc#relation1"/>
<omdoc:imports from="./continuous.omdoc#continuous" xml:id="differentiable.imports1" about="#differentiable.imports1" stex:srcref="differentiable.tex#textrange(from=3;0,to=3;37)"/>
<omdoc:symbol name="difffunctions" xml:id="difffunctions.sym" about="#difffunctions.sym" stex:srcref="differentiable.tex#textrange(from=4;1,to=4;48)"/>
<omdoc:notation cd="differentiable" name="difffunctions">
<omdoc:prototype>
<om:OMA>
<om:OMS cd="differentiable" cr="fun" name="difffunctions"/>
<omdoc:expr name="arg1"/>
<omdoc:expr name="arg2"/>
</om:OMA>
</omdoc:prototype>
<omdoc:rendering>
<m:mrow>
<m:msup>
<m:mi mathvariant="script">C</m:mi>
<m:mn>1</m:mn>
</m:msup>
<m:mo>⁢</m:mo>
<m:mfenced open="(" close=")">
<m:mrow>
<render name="arg1"/>
<m:mo>,</m:mo>
<render name="arg2"/>
</m:mrow>
</m:mfenced>
</m:mrow>
</omdoc:rendering>
</omdoc:notation>
<omdoc:symbol name="differentiable" xml:id="differentiable.def.sym" about="#differentiable.def.sym" stex:srcref="differentiable.tex#textrange(from=6;1,to=10;16)"/>
<omdoc:definition for="differentiable" xml:id="differentiable.definition4" about="#differentiable.definition4" stex:srcref="differentiable.tex#textrange(from=6;1,to=10;16)">
<omdoc:CMP xml:id="differentiable.definition4.CMP1" about="#differentiable.definition4.CMP1" stex:srcref="differentiable.tex#textrange(from=6;1,to=10;16)">
<p xmlns="http://www.w3.org/1999/xhtml" style="" class="p" id="differentiable.definition4.CMP1.p1">A function <om:OMOBJ><om:OMA><om:OMS cd="functions" name="fun"/><om:OMV name="f"/><om:OMS cd="reals" name="RealNumbers"/><om:OMS cd="reals" name="RealNumbers"/></om:OMA></om:OMOBJ> is called <omdoc:idx xml:id="differentiable.definition4.CMP1.p1.idx2" about="#differentiable.definition4.CMP1.p1.idx2" stex:srcref="differentiable.tex#textrange(from=6;4,to=7;78)"><omdoc:idt xml:id="differentiable.definition4.CMP1.p1.idx2.idt1" about="#differentiable.definition4.CMP1.p1.idx2.idt1" stex:srcref="differentiable.tex#textrange(from=6;4,to=7;78)"><omdoc:term cd="differentiable" name="differentiable" role="definiendum" xml:id="differentiable.definition4.CMP1.p1.idx2.idt1.term1" about="#differentiable.definition4.CMP1.p1.idx2.idt1.term1" stex:srcref="differentiable.tex#textrange(from=6;4,to=7;78)">differentiable</omdoc:term></omdoc:idt><omdoc:ide index="default" xml:id="differentiable.definition4.CMP1.p1.idx2.ide2" about="#differentiable.definition4.CMP1.p1.idx2.ide2" stex:srcref="differentiable.tex#textrange(from=6;4,to=7;78)"><omdoc:idp>differentiable</omdoc:idp></omdoc:ide></omdoc:idx> at
<om:OMOBJ><om:OMA><om:OMS cd="functions" name="inset"/><om:OMV name="x"/><om:OMS cd="reals" name="RealNumbers"/></om:OMA></om:OMOBJ>, iff for all <om:OMOBJ><om:OMA><om:OMS cd="relation1" name="gt"/><om:OMV name="ϵ"/><om:OMI>0</om:OMI></om:OMA></om:OMOBJ> there is a <om:OMOBJ><om:OMA><om:OMS cd="relation1" name="gt"/><om:OMV name="δ"/><om:OMI>0</om:OMI></om:OMA></om:OMOBJ>, such that
<om:OMOBJ><om:OMA><om:OMS cd="relation1" name="lt"/><om:OMA><om:OMS cd="reals" name="rfrac"/><om:OMA><om:OMS cd="reals" name="absval"/><om:OMA><om:OMS cd="arith1" name="minus"/><om:OMA><om:OMS cd="arith1" name="times"/><om:OMV name="f"/><om:OMV name="x"/></om:OMA><om:OMA><om:OMS cd="arith1" name="times"/><om:OMV name="f"/><om:OMV name="y"/></om:OMA></om:OMA></om:OMA><om:OMA><om:OMS cd="reals" name="absval"/><om:OMA><om:OMS cd="arith1" name="minus"/><om:OMV name="x"/><om:OMV name="y"/></om:OMA></om:OMA></om:OMA><om:OMV name="ϵ"/></om:OMA></om:OMOBJ> for all <om:OMOBJ><om:OMA><om:OMS cd="relation1" name="lt"/><om:OMA><om:OMS cd="reals" name="absval"/><om:OMA><om:OMS cd="arith1" name="minus"/><om:OMV name="x"/><om:OMV name="y"/></om:OMA></om:OMA><om:OMV name="δ"/></om:OMA></om:OMOBJ>.</p>
</omdoc:CMP>
</omdoc:definition>
</theory>
</omdoc:omgroup>
</omdoc>
|