1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
|
% Architectures examples: http://hal.archives-ouvertes.fr/docs/00/14/95/27/PDF/RR.pdf
\pdfminorversion=5
\pdfobjcompresslevel=2
\documentclass{ltxdoc}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage{lmodern}
\usepackage[ruled, lined,linesnumbered]{algorithm2e}
%% Use the tikz package and loading the library
%\usepackage{tikz}
%\usetikzlibrary{switching-architectures}
%% Loading only the package
\usepackage{sa-tikz}
\usepackage{calc}
\usepackage{imakeidx}
\usepackage[naturalnames]{hyperref}
\hypersetup{%
colorlinks=true,
linkcolor=blue,
filecolor=blue,
urlcolor=blue,
citecolor=blue,
pdfborder=0 0 0,
}
% dedicated commands:
\newcommand\Tikz{Ti\textit kZ}
\newcommand{\saTikZ}{S\textit{a}-\Tikz}
\def\pgfautoxrefs{1}
\input ./macros/pgfmanual-en-macros.tex
\makeatletter
\def\index@prologue{%
\section*{Index}\addcontentsline{toc}{section}{Index}
}
\makeatother
\usepackage{pgfmanual}
\pgfkeys{
/pdflinks/search key prefixes in={/tikz/,/pgf/},
/pdflinks/internal link prefix=pgfp,
/pdflinks/codeexample links=true,
/pdflinks/warnings=false,
/pdflinks/show labels=false,
}
\makeindex
\newcommand{\version}{0.6}
\newcommand{\versiondate}{September 28, 2013}
\title{\saTikZ\footnote{This package has version number \textit{v}\version\ of \versiondate; it is released under and subject to the \href{http://www.latex-project.org/lppl/}{\LaTeX\ Project Public License (LPPL)}.}}
\author{Claudio Fiandrino \\ \small\href{mailto:claudio.fiandrino@gmail.com}{\texttt{claudio.fiandrino@gmail.com}}}
\date{\versiondate}
\begin{document}
\maketitle
\tableofcontents
\section*{Introduction}
\addcontentsline{toc}{section}{Introduction}
The \saTikZ\ library helps in drawing \emph{switching-architectures}. In particular, one of its aims, is to help students to verify the correctness of their exercises. It could also help teachers in preparing lecture notes. The repository of the library is \href{https://github.com/cfiandra/Sa-TikZ}{https://github.com/cfiandra/Sa-TikZ}.
The \saTikZ\ library can be loaded in the preamble by means of:
\begin{flushleft}
\verb|\usetikzlibrary{|\bgroup\color{red!75!black}\verb|switching-architectures|\egroup\verb|}|
\end{flushleft}
and in this case you should also load manually:
\begin{flushleft}
\verb|\usepackage{|\bgroup\color{red!75!black}\verb|tikz|\egroup\verb|}|
\end{flushleft}
or by means of:
\begin{flushleft}
\verb|\usepackage{|\bgroup\color{red!75!black}\verb|sa-tikz|\egroup\verb|}|
\end{flushleft}
In both cases the libraries \bgroup\color{red!75!black}\verb|calc|\egroup{}, \bgroup\color{red!75!black}\verb|positioning|\egroup\ and \bgroup\color{red!75!black}\verb|decorations.pathreplacing|\egroup\ are loaded automatically and in the latter case also the \Tikz\ package is loaded.
The version \textit{v}\version\ provides a way to draw Clos Networks Strictly-non-Blocking (snb) and Rearrangeable (rear), Benes Networks and Banyan Networks (in particular Omega\footnote{Implementation of Omega Networks by João Gabriel Reis.} and Flip Networks); moreover, the package provides the possibility to fully customize the aspect of the drawn network: the dimensions of module, their distance and the font used are some examples. Finally, \saTikZ\ let the user to draw connections among the stages by accessing the single ports of the modules.
\section{Basic usage}
The simplest use of the package is to define a
\begin{command}{{\node}}
Basic command definition.
\end{command}
with one of the following options
\begin{key}{/tikz/clos snb}
Option for drawing a Clos Network Strictly-non-Blocking.
\end{key}
\begin{key}{/tikz/clos rear}
Option for drawing a Clos Network Rearrangeable.
\end{key}
\begin{key}{/tikz/benes}
Option for drawing a Benes Network.
\end{key}
\begin{key}{/tikz/benes complete}
Option for drawing a Benes Network with the lowest level of recursion.
\end{key}
\begin{key}{/tikz/banyan omega}
Option for drawing an Banyan-Omega Network.
\end{key}
\begin{key}{/tikz/banyan flip}
Option for drawing an Banyan-Omega Network with inverse shuffle exchange (Flip).
\end{key}
inside a |tikzpicture| environment:
\begin{environment}{{tikzpicture}\opt{\oarg{options}}}
\end{environment}
\subsection{Examples of Clos Networks}
The following example shows a Rearrangeable Clos Network.
\begin{codeexample}[]
\begin{tikzpicture}
\node[clos rear] {};
\end{tikzpicture}
\end{codeexample}
The following example shows a Strictly-non-Blocking Clos Network.
\begin{codeexample}[]
\begin{tikzpicture}
\node[clos snb] {};
\end{tikzpicture}
\end{codeexample}
Notice from the examples that automatically the library is able to compute the constraints that define a Clos Network to be Strictly-non-Blocking or Rearrangeable. Moreover, the network drawn is characterized by:
\begin{itemize}
\item the first stage with:
\begin{itemize}
\item a number of modules equal to 5;
\item each one with two input ports;
\end{itemize}
\item the last stage with:
\begin{itemize}
\item a number of modules equal to 5;
\item each one with two output ports.
\end{itemize}
\end{itemize}
Each module of the network is numbered according to the stage it belongs to.
\subsection{Examples of Benes Networks}
The simplest example of a Benes Network:
\begin{codeexample}[]
\begin{tikzpicture}
\node[benes] {};
\end{tikzpicture}
\end{codeexample}
is a Benes Network in which there are 8 input and output ports. To draw a Benes Network in which all modules are visible, the key |benes complete| should be used rather than the |benes| key. An example:
\begin{codeexample}[]
\begin{tikzpicture}
\node[benes complete] {};
\end{tikzpicture}
\end{codeexample}
The algorithm in which the internal connections of the |benes complete| networks are drawn is explained in detail in the appendix \ref{sec:benesconnalg}.
\subsection{Examples of Banyan Networks}
The following examples show the two Banyan Network architectures handled by the library.
\begin{minipage}{0.99\textwidth}
\tikzset{every node/.append style={scale=0.95,transform shape}}
\begin{codeexample}[]
\begin{tikzpicture}
% Omega Network on the left
\node[banyan omega] {};
\begin{scope}[xshift=7.25cm]
% Flip network on the right
\node[banyan flip]{};
\end{scope}
\end{tikzpicture}
\end{codeexample}
\tikzset{every node/.append style={scale=1,transform shape}}
\end{minipage}
\section{The options}
\subsection{Designing choices}
This subsection illustrates which are the parameters that could be customized to draw Clos, Benes and Omega Networks. In particular:
\begin{itemize}
\item Clos Networks are analysed in \ref{subsubsec:clos};
\item Benes Networks are analysed in \ref{subsubsec:benes};
\item Banyan Networks are analysed in \ref{subsubsec:banyan}.
\end{itemize}
In each part the keys will be presented and simple examples will be provided.
\subsubsection{Clos Networks}
\label{subsubsec:clos}
The two first important design parameters are the total number of input ports of the first stage and the total number of output ports of the last stage. These two parameters could be modified by means of:
\begin{key}{/tikz/N=\marg{value} (initially 10)}
This is the number of total input ports in the first stage.
\end{key}
\begin{key}{/tikz/M=\marg{value} (initially 10)}
This is the number of total output ports in the last stage.
\end{key}
Usually, a second design parameter is the number of modules present in the first and last stage. \saTikZ\ defines:
\begin{key}{/tikz/r1=\marg{value} (initially 5)}
This is the number of modules in the first stage.
\end{key}
\begin{key}{/tikz/r3=\marg{value} (initially 5)}
This is the number of modules in the last stage.
\end{key}
The two design parameters provide the number of ports of each module:
\[m_1=\dfrac{N}{r_1} \hspace*{2cm} m_3=\dfrac{M}{r_3} \]
Some examples considering |N|=9, |r1|=3, |M|=9 and |r3|=3.
\begin{codeexample}[]
\begin{tikzpicture}
\node[N=9,r1=3,M=9,r3=3,clos rear] {};
\end{tikzpicture}
\end{codeexample}
\begin{codeexample}[]
\begin{tikzpicture}
\node[N=9,r1=3,M=9,r3=3,clos snb] {};
\end{tikzpicture}
\end{codeexample}
Notice a very important thing: the type of the architecture should be loaded \emph{after} all the design choices in case they have been set in the \cs{node}; indeed, if you do not respect this constraint you will end up with an architecture with default values. For example:
\begin{codeexample}[]
\begin{tikzpicture}
\node[clos rear,N=9,r1=3,M=9,r3=3] {};
\end{tikzpicture}
\end{codeexample}
\subsubsection{Benes Networks}
\label{subsubsec:benes}
Benes Networks are Clos Rearrangeable Networks composed of $2 \times 2$ modules, so as design choice it just possible to select which is the number of input/output ports:
\begin{key}{/tikz/P=\marg{value} (initially 8)}
This is the number of total input/output ports in the first/third stage.
\end{key}
Notice that |P| could assume values
\[P=2^p \qquad p=2,3,4,\ldots\]
and the user is responsible to correctly set this parameter.
For low values of $p$ there are no problems in visualizing the network, but as $p$ increases the user should take care of the modules' dimension and the modules' separation (vertical and horizontal): they could be customized as explained in the subsection \ref{subsec:customization}. Actually, for |benes complete| networks, the number of $p$ is crucial: when it is above 7, thus for networks bigger than $128\times 128$, PGF can not properly work due to internal limitations.
Notice that actually, for |P|=4 the |benes| network and the |benes complete| network are indistinguishable:
\begin{codeexample}[]
\begin{tikzpicture}
\tikzset{module size=0.5cm,
pin length factor=0.5,
module ysep=1}
\node[P=4,benes] {};
\begin{scope}[xshift=6cm]
\node[module xsep=2.5,P=4,benes complete]{};
\end{scope}
\end{tikzpicture}
\end{codeexample}
Here is an example of Benes Network with |P|=16:
\begin{codeexample}[]
\begin{tikzpicture}
\node[P=16,benes] {};
\end{tikzpicture}
\end{codeexample}
It holds the same concept already said for Clos Networks: set the parameter |P| before declaring the \cs{node} be a Benes Network.
\subsubsection{Banyan Networks}
\label{subsubsec:banyan}
Banyan Networks are architectures based on Benes Networks: they have particular interconnections properties. As well as Benes Networks, only the number of inputs and outputs ports can be selected and it is |P|.
\saTikZ is able to represent Omega and Flip Banyan Networks. An example of $4\times 4$ |banyan omega| network:
\begin{codeexample}[]
\begin{tikzpicture}
\node[P=4,banyan omega] {};
\end{tikzpicture}
\end{codeexample}
An example of $4\times 4$ |banyan flip| network:
\begin{codeexample}[]
\begin{tikzpicture}
\node[P=4,banyan flip] {};
\end{tikzpicture}
\end{codeexample}
\subsection{Output customization}
\label{subsec:customization}
This subsection focuses on how to customize the aspect of the networks.
\begin{key}{/tikz/module size=\marg{value} (initially 1cm)}
This option allows to set the module dimension.
\end{key}
\begin{key}{/tikz/module ysep=\marg{value} (initially 1.5)}
This option allows to set the vertical module distance factor.
\end{key}
\begin{key}{/tikz/module xsep=\marg{value} (initially 3)}
This option allows to set the horizontal module distance factor.
\end{key}
\begin{key}{/tikz/module label opacity=\marg{value} (initially 1)}
This option allows to mask the module label when the \meta{value} is set to 0.
\end{key}
\begin{key}{/tikz/pin length factor=\marg{value} (initially 1)}
This option allows to reduce/increase the length of the pins drawn in input/output. Use a \meta{value} [0,1] to reduce the length or, viceversa, a \meta{value} greater than 1 to increase the length.
\end{key}
\begin{key}{/tikz/module font=\marg{font commands} (default \cs{normalfont})}
This option sets the font used for module labels. The \meta{font commands} that could be used are those ones related to the font size (i.e. \cs{Large}) and font shape (i.e \cs{itshape}).
\end{key}
\begin{key}{/tikz/connections disabled=\mchoice{true,false} (default false)}
This option, not active by default |connections disabled/.default=false|, allows to remove the connections between the stages when it is set to \opt{true}. Beware: this option is valid only for |clos snb|, |clos rear|, |benes| and |benes complete| networks, but it does not holds for the architectures explained in section \ref{sec:dida}.
\end{key}
The following example shows a Rearrangeable Clos Network with some options customized. Notice that the |module label opacity| should be given as parameter of the desired network.
\begin{codeexample}[]
\begin{tikzpicture}[N=9,r1=3,M=9,r3=3]
\node[module size=0.5cm,pin length factor=0.5,
module ysep=1, module xsep=1.25,
clos rear={module label opacity=0}] {};
\end{tikzpicture}
\end{codeexample}
The options could also be introduced with the standard \Tikz\ syntax:
\begin{command}{{\tikzset}\marg{options}}
Command that process the various \meta{options}: they should be provided separated by commas.
\end{command}
Therefore, the previous example could be modified into:
\begin{codeexample}[]
\tikzset{module size=0.5cm,pin length factor=0.5,
module ysep=1, module xsep=1.25,}
\begin{tikzpicture}[N=9,r1=3,M=9,r3=3]
\node[clos rear={module label opacity=0}] {};
\end{tikzpicture}
\end{codeexample}
It is also possible to declare \opt{styles} to set some options for later use: this helps to keep the code clean especially when the same options are re-used several times; an example:
\begin{codeexample}[code only]
\tikzset{module size definition/.style={
module size=0.75cm,
pin length factor=0.75,
module xsep=2,
module ysep=2,
}
}
\tikzset{module size definition,
P=16,
}
\begin{tikzpicture}
\node[benes] {};
\end{tikzpicture}
\end{codeexample}
Here is a Benes Network $4 \times 4$ with an extremely large font size for the module labels with the connections disabled:
\begin{codeexample}[]
\tikzset{my style/.style={
module size=0.75cm,
pin length factor=0.75,
module xsep=2,
}
}
\tikzset{my style, P=4,
module font=\huge\slshape,
connections disabled=true
}
\begin{tikzpicture}
\node[benes complete] {};
\end{tikzpicture}
\end{codeexample}
Consider the following $16 \times 16$ Omega Network:
\begin{codeexample}[]
\tikzset{module size=0.6cm,pin length factor=0.6,
module ysep=0.65, module xsep=3.5,}
\begin{tikzpicture}[P=32]
\node[banyan omega] {};
\end{tikzpicture}
\end{codeexample}
\pagebreak
An example of Benes Network $32 \times 32$:
\begin{codeexample}[]
\tikzset{module size=0.6cm,pin length factor=0.6,
module ysep=0.9, module xsep=1.7,}
\begin{tikzpicture}[P=32]
\node[benes] {};
\end{tikzpicture}
\end{codeexample}
\pagebreak
and its complete form:
\begin{codeexample}[]
\tikzset{module size=0.6cm,pin length factor=0.6,
module ysep=1, module xsep=2.275}
\begin{tikzpicture}[P=32]
\node[benes complete={module label opacity=0}] {};
\end{tikzpicture}
\end{codeexample}
\section{Advanced usage}
This section presents some more advanced examples. More in detail, it is described how to add elements to the basic architecture; elements can be:
\begin{itemize}
\item labels for the input and output ports;
\item paths interconnecting input and output ports.
\end{itemize}
\subsection{Identifying front input/output ports}
In this subsection it is shown how to reference the front input and output ports for the first and last stage. Each front input port could be accessed by means of:
\begin{flushleft}
\verb|r1-|\bgroup\color{red!75!black}\verb|module number|\egroup\verb|-|\bgroup\color{red!75!black}\verb|front input|\egroup\verb|-|\bgroup\color{red!75!black}\verb|port number|\egroup; example: \verb|r1-1-front input-1|;
\end{flushleft}
Each front output port could be accessed by means of:
\begin{flushleft}
\verb|r3-|\bgroup\color{red!75!black}\verb|module number|\egroup\verb|-|\bgroup\color{red!75!black}\verb|front output|\egroup\verb|-|\bgroup\color{red!75!black}\verb|port number|\egroup; example: \verb|r3-1-front output-1|;
\end{flushleft}
Noticed that the first stage is always 1, but the last stage may be different from 3 in case the |benes complete| network is drawn. Errors will occur in case the last stage number is not correct and the user is responsible for the correct setting.
A simple example with a Rearrangeable Clos network of 4 input and output ports; the first stage and the last one have both 2 modules.
\begin{codeexample}[]
\begin{tikzpicture}[module xsep=2]
\node[N=4,r1=2,M=4,r3=2,clos rear={module label opacity=0}] {};
\foreach \name
in {r1-1-front input-1,r1-1-front input-2,
r1-2-front input-1,r1-2-front input-2}
\node[left] at (\name) {\scriptsize{\texttt{\name}}};
\foreach \name
in {r3-1-front output-1,r3-1-front output-2,
r3-2-front output-1,r3-2-front output-2}
\node[right] at (\name) {\scriptsize{\texttt{\name}}};
\end{tikzpicture}
\end{codeexample}
The following is a Strictly-non-Blocking Clos network of 9 input and output ports in which the first and last stage have 3 modules each one.
\begin{codeexample}[]
\begin{tikzpicture}
\node[N=9,r1=3,M=9,r3=3,clos snb={module label opacity=0}] {};
\foreach \startmodule in {1,...,3}{
\foreach \port in {1,...,3}
\node[left] at (r1-\startmodule-front input-\port)
{\scriptsize{input \startmodule-\port}};
}
\foreach \startmodule in {1,...,3}{
\foreach \port in {1,...,3}
\node[right] at (r3-\startmodule-front output-\port)
{\scriptsize{output \startmodule-\port}};
}
\end{tikzpicture}
\end{codeexample}
The same applies also for Benes Networks:
\begin{codeexample}[]
\begin{tikzpicture}
\node[benes={module label opacity=0}] {};
\foreach \startmodule in {1,...,4}{
\foreach \port in {1,...,2}
\node[left] at (r1-\startmodule-front input-\port)
{\scriptsize{input \startmodule-\port}};
}
\foreach \startmodule in {1,...,4}{
\foreach \port in {1,...,2}
\node[right] at (r3-\startmodule-front output-\port)
{\scriptsize{output \startmodule-\port}};
}
\end{tikzpicture}
\end{codeexample}
and to the correspondent complete form:
\begin{codeexample}[]
\begin{tikzpicture}
\node[benes complete={module label opacity=0}] {};
\newcounter{port}
\setcounter{port}{0}
\foreach \startmodule in {1,...,4}{
\foreach \port in {1,...,2}
\stepcounter{port}
\node[left] at (r1-\startmodule-front input-\port)
{\scriptsize{input \theport}};
}
\setcounter{port}{0}
\foreach \startmodule in {1,...,4}{
\foreach \port in {1,...,2}
\stepcounter{port}
\node[right] at (r5-\startmodule-front output-\port)
{\scriptsize{output \theport}};
}
\end{tikzpicture}
\end{codeexample}
Notice that in this case to access the \verb|front output| ports, the stage number correct is 5 and not 3 as usual.
Ti\textit{k}Z has very useful \verb|bin(|$x$\verb|)| function: it converts $x$ (it is assumed to be a 10 base integer) into its binary representation. Exploiting this function for Omega or Flip Networks is very convenient. An example of Omega Network:
\begin{codeexample}[]
\begin{tikzpicture}
\node[banyan omega={module label opacity=0}] {};
\newcounter{porta}
\setcounter{porta}{0}
\foreach \module in {1,...,4}{
\foreach \port in {1,...,2}{
\stepcounter{porta}
\pgfmathbin{\theporta-1}
\node[left] at (r0-\module-front input-\port)
{\scriptsize{\pgfmathresult}};
\node[right] at (r3-\module-front output-\port)
{\scriptsize{\pgfmathresult}};
}
}
\end{tikzpicture}
\end{codeexample}
An example of Flip Network:
\begin{codeexample}[]
\begin{tikzpicture}
\node[banyan flip={module label opacity=0}] {};
\newcounter{portb}
\setcounter{portb}{0}
\foreach \module in {1,...,4}{
\foreach \port in {1,...,2}{
\stepcounter{portb}
\pgfmathbin{\theportb-1}
\node[left] at (r0-\module-front input-\port)
{\scriptsize{\pgfmathresult}};
\node[right] at (r3-\module-front output-\port)
{\scriptsize{\pgfmathresult}};
}
}
\end{tikzpicture}
\end{codeexample}
Notice that for Banyan Networks the first module is characterized by number 0 and not 1.
\subsection{Identifying input/output ports per module}
It is also possible to access, for each module of each stage, its input and output ports. The syntax is similar to the one used for the front input and output ports; each input port could be accessed by means of:
\begin{flushleft}
\verb|r|\bgroup\color{red!75!black}\verb|stage number|\egroup\verb|-|\bgroup\color{red!75!black}\verb|module number|\egroup\verb|-|\bgroup\color{red!75!black}\verb|input|\egroup\verb|-|\bgroup\color{red!75!black}\verb|port number|\egroup; example: \verb|r1-1-input-1|;
\end{flushleft}
Each output port could be accessed by means of:
\begin{flushleft}
\verb|r|\bgroup\color{red!75!black}\verb|stage number|\egroup\verb|-|\bgroup\color{red!75!black}\verb|module number|\egroup\verb|-|\bgroup\color{red!75!black}\verb|front output|\egroup\verb|-|\bgroup\color{red!75!black}\verb|port number|\egroup; example: \verb|r2-1-output-1|;
\end{flushleft}
This allows to derive connections from the first stage to the last stage. Here is an example.
\begin{codeexample}[]
\begin{tikzpicture}
\node[N=8,r1=4,M=8,r3=4,clos rear={module label opacity=0}] {};
\draw[red,ultra thick](r1-2-input-1)--(r1-2-output-2)
(r2-2-input-2)--(r2-2-output-3)
(r3-3-input-2)--(r3-3-output-2);
\draw[red,ultra thick](r1-4-input-1)--(r1-4-output-1)
(r2-1-input-4)--(r2-1-output-1)
(r3-1-input-1)--(r3-1-output-2);
\end{tikzpicture}
\end{codeexample}
Similarly, an example in a Benes Network:
\begin{codeexample}[]
\begin{tikzpicture}
\node[benes={module label opacity=0}] {};
\draw[red,ultra thick](r1-2-input-1)--(r1-2-output-2)
(r2-2-input-2)--(r2-2-output-3)
(r3-3-input-2)--(r3-3-output-2);
\draw[red,ultra thick](r1-4-input-1)--(r1-4-output-1)
(r2-1-input-4)--(r2-1-output-1)
(r3-1-input-1)--(r3-1-output-2);
\end{tikzpicture}
\end{codeexample}
and in its complete form:
\begin{codeexample}[]
\begin{tikzpicture}
\node[benes complete={module label opacity=0}] {};
\draw[red,ultra thick](r1-2-input-1)--(r1-2-output-2)--
(r2-3-input-2)--(r2-3-output-2)--
(r3-3-input-1)--(r3-3-output-2)--
(r4-4-input-1)--(r4-4-output-1)--
(r5-3-input-2)--(r5-3-output-2);
\draw[blue,ultra thick](r1-4-input-1)--(r1-4-output-1)--
(r2-2-input-2)--(r2-2-output-1)--
(r3-1-input-2)--(r3-1-output-1)--
(r4-1-input-1)--(r4-1-output-1)--
(r5-1-input-1)--(r5-1-output-2);
\end{tikzpicture}
\end{codeexample}
For Banyan Networks, due to the way in which the interconnections are established, it is advised to proceed as follows:
\begin{codeexample}[]
\begin{tikzpicture}
\node[banyan omega={module label opacity=0}] {};
\newcounter{portc}
\setcounter{portc}{0}
\foreach \module in {1,...,4}{
\foreach \port in {1,...,2}{
\stepcounter{portc}
\pgfmathbin{\theportc-1}
\node[left] at (r0-\module-front input-\port)
{\scriptsize{\pgfmathresult}};
\node[right] at (r3-\module-front output-\port)
{\scriptsize{\pgfmathresult}};
}
}
\draw[red,ultra thick]
(r0-1-front input-2)--(r0-1-front output-2)--
(r1-2-front input-1)--(r1-2-input-1)--
(r1-2-output-2)--(r1-2-front output-2)--
(r2-4-front input-1)--(r2-4-input-1)--
(r2-4-output-1)--(r2-4-front output-1)--
(r3-3-front input-2)-- (r3-3-input-2)--
(r3-3-output-2)--(r3-3-front output-2);
\end{tikzpicture}
\end{codeexample}
\section{Architectures for didactic purposes}
\label{sec:dida}
To quickly draw a Clos Network it is possible to exploit:
\begin{key}{/tikz/clos snb example}
Option for quickly drawing a Clos Network Strictly-non-Blocking.
\end{key}
\begin{key}{/tikz/clos rear example}
Option for quickly drawing a Clos Network Rearrangeable.
\end{key}
In this way the network is not seen in its whole complexity, but it is synthetically depicted. An example of a Strictly-non-Blocking Clos Network drawn with this approach:
\begin{codeexample}[]
\begin{tikzpicture}[N=12,r1=4,M=8,r3=4]
\node[clos snb example] {};
\end{tikzpicture}
\end{codeexample}
Similarly, an example of a Rearrangeable Clos Network:
\begin{codeexample}[]
\begin{tikzpicture}[N=12,r1=4,M=8,r3=4]
\node[clos rear example] {};
\end{tikzpicture}
\end{codeexample}
The networks drawn, automatically display the values at which the input parameters |N|, |M|, |r1| and |r3| have been set. However, to let the user to have the possibility of deploying labels rather than the input parameter values, the following option is available:
\begin{key}{/tikz/clos example with labels}
Option for quickly drawing a Clos Network with custom labels.
\end{key}
The labels could be customized by means of:
\begin{key}{/tikz/N label=\marg{value} (default N)}
This options sets the label representing the total number of ports in the first stage.
\end{key}
\begin{key}{/tikz/r1 label=\marg{value} (default r$_1$)}
This options sets the label representing the number of modules in the first stage.
\end{key}
\begin{key}{/tikz/m1 label=\marg{value} (default m$_1$)}
This options sets the label representing the number of ports per module in the first stage.
\end{key}
\begin{key}{/tikz/r2 label=\marg{value} (default r$_2$)}
This options sets the label representing the number of modules in the second stage.
\end{key}
\begin{key}{/tikz/M label=\marg{value} (default M)}
This options sets the label representing the total number of ports in the last stage.
\end{key}
\begin{key}{/tikz/r3 label=\marg{value} (default r$_3$)}
This options sets the label representing the number of modules in the last stage.
\end{key}
\begin{key}{/tikz/m3 label=\marg{value} (default m$_3$)}
This options sets the label representing the number of ports per module in the last stage.
\end{key}
An example with the default values for the labels:
\begin{codeexample}[]
%\tikzset{N=8,r1=4,M=8,r3=4} % setting the parameters here is useless
\begin{tikzpicture}
\node[clos example with labels] {};
\end{tikzpicture}
\end{codeexample}
To have automatically all labels in math mode, use:
\begin{key}{/tikz/set math mode labels=\mchoice{true,false} (default false)}
This option is normally disabled |set math mode labels/.default=false|; to ensure labels be set completely in math mode is sufficient set |set math mode labels=true| before the type of the network.
\end{key}
An example:
\begin{codeexample}[]
\begin{tikzpicture}[set math mode labels=true]
\node[clos example with labels] {};
\end{tikzpicture}
\end{codeexample}
This example, instead, represents a |clos example with labels| network with custom labels introduced by means of the |\tikzset| syntax.
\begin{codeexample}[]
\tikzset{N label={p$_1$ $\times$ q$_1$},M label={p$_3$ $\times$ q$_3$},
r1 label=p$_1$, m1 label=q$_1$, r2 label=p$_2$,r3 label=p$_3$, m3 label=q$_3$}
\begin{tikzpicture}
\node[clos example with labels] {};
\end{tikzpicture}
\end{codeexample}
Notice that it does not exist an equivalent of |clos example with labels| or |clos rear example| for Benes Networks: this because Benes Networks are a particular type of Rearrangeable Clos Networks where |P|=|N|=|M| and $m1$=$m3$=$z$=2, thus |r1|=|r3|=$q=P/z$.
For example:
\begin{codeexample}[]
\begin{tikzpicture}[N=8,r1=4,M=8,r3=4]
\node[clos rear example] {};
\end{tikzpicture}
\end{codeexample}
\begin{codeexample}[]
\tikzset{N label={P},M label={P},
r1 label=q, m1 label=z, r2 label=z,r3 label=q, m3 label=z}
\begin{tikzpicture}
\node[set math mode labels=true,clos example with labels] {};
\end{tikzpicture}
\end{codeexample}
\clearpage
\appendix
\section{Benes complete internal connections algorithm}
\label{sec:benesconnalg}
To explain how the connections of the |benes complete| networks are drawn, the following reference example will be considered:
\begin{center}
\scalebox{0.75}{
\begin{tikzpicture}[module size=0.75cm, module ysep=1, module xsep=2.5]
\node[P=16, benes complete]{};
\end{tikzpicture}
}
\end{center}
The network is $16\times 16$ (|P|=16), thus the number of stages $\mathcal{S}$ is:
\[\mathcal{S}=2\log_2{P}-1 \implies \mathcal{S}_{16}=7\]
Indeed:
\begin{center}
\scalebox{0.75}{
\begin{tikzpicture}[module size=0.75cm, module ysep=1, module xsep=2.5]
\node[P=16, benes complete]{};
\foreach \x in {1,...,7}
\node[above of=r\x-1, red] {\x};
\draw[red,thick,decorate,decoration={brace}]([yshift=0.1cm]r1-1.north west)--([yshift=0.1cm]r7-1.north east);
\end{tikzpicture}
}
\end{center}
This parameter, therefore, allows to correctly draw all the modules of the network and, as it will be pointed out later better, its knowledge is important also to define the stages range of applicability of the algorithm. Notice the network symmetry: the connections from stage 1 to stage 4 are exactly the same from stage 7 to stage 4.
\pagebreak
The first step is \emph{labelling} modules and ports. \saTikZ\ uses this philosophy:
\begin{itemize}
\item progressive numeration for modules of the same stage;
\item progressive numeration for ports of the same module.
\end{itemize}
Thus:
\begin{center}
\scalebox{0.75}{
\begin{tikzpicture}[module size=0.75cm, module ysep=1, module xsep=3.5, connections disabled=true]
\node[P=16, benes complete]{};
\foreach \stg in {2,...,6}{
\foreach \module in {1,...,8}{
\node[right,font=\scriptsize] at (r\stg-\module-output-1) {1};
\node[right,font=\scriptsize] at (r\stg-\module-output-2) {2};
\node[left,font=\scriptsize] at (r\stg-\module-input-1) {1};
\node[left,font=\scriptsize] at (r\stg-\module-input-2) {2};
}
}
\foreach \module in {1,...,8}{
\node[right,font=\scriptsize] at (r1-\module-output-1) {1};
\node[right,font=\scriptsize] at (r1-\module-output-2) {2};
}
\foreach \module in {1,...,8}{
\node[left,font=\scriptsize] at (r7-\module-input-1) {1};
\node[left,font=\scriptsize] at (r7-\module-input-2) {2};
}
\end{tikzpicture}
}
\end{center}
Due to the network symmetry, at the beginning the attention will be focused only on the left side of the network, because for the right part things are dual:
\begin{center}
\scalebox{0.75}{
\begin{tikzpicture}[module size=0.75cm, module ysep=1, module xsep=3.5, connections disabled=true]
\node[P=16, benes complete]{};
\foreach \stg in {2,...,6}{
\foreach \module in {1,...,8}{
\node[right,font=\scriptsize] at (r\stg-\module-output-1) {1};
\node[right,font=\scriptsize] at (r\stg-\module-output-2) {2};
\node[left,font=\scriptsize] at (r\stg-\module-input-1) {1};
\node[left,font=\scriptsize] at (r\stg-\module-input-2) {2};
}
}
\foreach \module in {1,...,8}{
\node[right,font=\scriptsize] at (r1-\module-output-1) {1};
\node[right,font=\scriptsize] at (r1-\module-output-2) {2};
}
\foreach \module in {1,...,8}{
\node[left,font=\scriptsize] at (r7-\module-input-1) {1};
\node[left,font=\scriptsize] at (r7-\module-input-2) {2};
}
\begin{pgfonlayer}{background}
\draw[dashed, ultra thick, red, fill=red!10]
($(r1-1-front input-1)+(-0.2,0.5)$)--($(r4-1-output-1)+(0.5,0.5)$)--($(r4-8-output-2)-(-0.5,0.5)$)--($(r1-8-front input-2)-(0.2,0.5)$)--cycle;
\end{pgfonlayer}
\end{tikzpicture}
}
\end{center}
\pagebreak
Now, by drawing some connections, it is possible to find a common behaviour:
\begin{center}
\scalebox{0.75}{
\begin{tikzpicture}[module size=0.75cm, module ysep=1, module xsep=3.5, connections disabled=true]
\node[P=16, benes complete]{};
\foreach \stg in {2,...,6}{
\foreach \module in {1,...,8}{
\node[right,font=\scriptsize] at (r\stg-\module-output-1) {1};
\node[right,font=\scriptsize] at (r\stg-\module-output-2) {2};
\node[left,font=\scriptsize] at (r\stg-\module-input-1) {1};
\node[left,font=\scriptsize] at (r\stg-\module-input-2) {2};
}
}
\foreach \module in {1,...,8}{
\node[right,font=\scriptsize] at (r1-\module-output-1) {1};
\node[right,font=\scriptsize] at (r1-\module-output-2) {2};
}
\foreach \module in {1,...,8}{
\node[left,font=\scriptsize] at (r7-\module-input-1) {1};
\node[left,font=\scriptsize] at (r7-\module-input-2) {2};
}
% some connections
\begin{pgfonlayer}{background}
% first-second stage
\draw[thick,red](r1-1-output-1)--(r2-1-input-1);
\draw[thick,red](r1-1-output-2)--(r2-5-input-1);
\draw[thick,red](r1-2-output-1)--(r2-1-input-2);
\draw[thick,red](r1-2-output-2)--(r2-5-input-2);
% second-third stage
\draw[thick,red](r2-1-output-1)--(r3-1-input-1);
\draw[thick,red](r2-1-output-2)--(r3-3-input-1);
\draw[thick,red](r2-2-output-1)--(r3-1-input-2);
\draw[thick,red](r2-2-output-2)--(r3-3-input-2);
\draw[thick,red](r2-3-output-1)--(r3-2-input-1);
\draw[thick,red](r2-3-output-2)--(r3-4-input-1);
\draw[thick,red](r2-4-output-1)--(r3-2-input-2);
\draw[thick,red](r2-4-output-2)--(r3-4-input-2);
% third-fourth stage
\draw[thick,red](r3-1-output-1)--(r4-1-input-1);
\draw[thick,red](r3-1-output-2)--(r4-2-input-1);
\draw[thick,red](r3-2-output-1)--(r4-1-input-2);
\draw[thick,red](r3-2-output-2)--(r4-2-input-2);
\end{pgfonlayer}
\end{tikzpicture}
}
\end{center}
\begin{itemize}
\item if the start module $st$ and the output port are odd (i.e. module 1, port 1), then it will be connected to
\[\textrm{end module}=\dfrac{st+1}{2} \; , \; \textrm{port}=1 \]
\item if the start module $st$ is odd and the output port is even (i.e. module 1, port 2), then it will be connected to
\[\textrm{end module}=\dfrac{st+1+\gamma}{2} \; , \; \textrm{port}=1 \]
\item if the start module $st$ is even and the output port is odd (i.e. module 2, port 1), then it will be connected to
\[\textrm{end module}=\dfrac{st}{2} \; , \; \textrm{port}=2 \]
\item if the start module $st$ and the output port are even (i.e. module 2, port 2), then it will be connected to
\[\textrm{end module}=\dfrac{st+\gamma}{2}\; , \; \textrm{port}=2 \]
\end{itemize}
What is the term $\gamma$? It is a corrective term that depends on the starting stage. Consider indeed the connections of the output port 2 of the module 1 for the first and the second starting stages:
\begin{flushleft}
\texttt{r1-1-output-2} \tikz[baseline=-0.5ex]\draw[-stealth](0,0)--(0.5,0); \texttt{r2-5-input-1}\\
\texttt{r2-1-output-2} \tikz[baseline=-0.5ex]\draw[-stealth](0,0)--(0.5,0); \texttt{r3-3-input-1}
\end{flushleft}
In the first case it points to module 5 while in the second case to module 3, thus in the first case $\gamma=8$ and in the second case $\gamma=4$. This suggest that $\gamma$ is related in some sense to the stage of the start module: in the example |P|=16 so the relation is
\[\gamma=\dfrac{P}{2^{stage}}\]
Following this strategy, however, allows to draw just part of the connections:
\begin{center}
\scalebox{0.75}{
\begin{tikzpicture}[module size=0.75cm, module ysep=1, module xsep=3.5, connections disabled=true]
\node[P=16, benes complete]{};
\foreach \stg in {2,...,6}{
\foreach \module in {1,...,8}{
\node[right,font=\scriptsize] at (r\stg-\module-output-1) {1};
\node[right,font=\scriptsize] at (r\stg-\module-output-2) {2};
\node[left,font=\scriptsize] at (r\stg-\module-input-1) {1};
\node[left,font=\scriptsize] at (r\stg-\module-input-2) {2};
}
}
\foreach \module in {1,...,8}{
\node[right,font=\scriptsize] at (r1-\module-output-1) {1};
\node[right,font=\scriptsize] at (r1-\module-output-2) {2};
}
\foreach \module in {1,...,8}{
\node[left,font=\scriptsize] at (r7-\module-input-1) {1};
\node[left,font=\scriptsize] at (r7-\module-input-2) {2};
}
% some connections
\begin{pgfonlayer}{background}
\foreach \stg[evaluate=\stg as \nextstg using int(\stg+1)] in {1,...,3}{
\pgfmathtruncatemacro\applicationon{16/(2^\stg)}% number of modules over which the algorithm is applied
\foreach \startmodule in {1,...,\applicationon}{
\pgfmathisodd{\startmodule}{initmodule}
\ifnum\initmodule=1
% if odd
\pgfmathtruncatemacro\endmodulei{int((\startmodule+1)/2)}
\pgfmathtruncatemacro\endmoduleii{int(ceil(\startmodule+1+\applicationon)/2)}
\draw[red](r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-1);
\draw[red](r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-1);
\else
% if even
\pgfmathtruncatemacro\endmodulei{int((\startmodule)/2)}
\pgfmathtruncatemacro\endmoduleii{int((\startmodule+\applicationon)/2)}
\draw[red](r\stg-\startmodule-output-1)--(r\nextstg-\endmodulei-input-2);
\draw[red](r\stg-\startmodule-output-2)--(r\nextstg-\endmoduleii-input-2);
\fi
}
}
\end{pgfonlayer}
\end{tikzpicture}
}
\end{center}
thus it is possible to claim that the algorithm has a \emph{module applicability range} that ultimately depends on the stage:
\begin{itemize}
\item in the first stage it could be applied for all modules;
\item in the second stage it could be applied for half of the modules;
\item in the third stage it could be applied just for two modules.
\end{itemize}
But, in the first stage $\gamma=8$ ($P/2^1$), in the second stage $\gamma=4$ ($P/2^2$) and in the third stage $\gamma=2$ ($P/2^3$): this means that $\gamma$ defines the \emph{module applicability range}.
Notice now, that actually for the second stage and the third stage, the algorithm should be simply repeated:
\begin{itemize}
\item in the second stage 2 times;
\item in the third stage 4 times.
\end{itemize}
The repetition $\psi$ depends on the stage with this relation:
\[\psi= 2^{stage-1}\]
Now, to draw automatically all the connections, the algorithm should know which are the starting module and ending module of the \emph{module applicability range} during the repetitions: for example, in the second stage, how to identify automatically the applicability range \texttt{1-4}, \texttt{5-8}?
\pagebreak
They could be defined as:
\begin{itemize}
\item starting module: $st_m=1+(\psi-1)\cdot\gamma $;
\item ending module: $end_m=(st_m+\gamma)-1$.
\end{itemize}
Indeed for the second stage we have that $\gamma=4$ and $\psi=2\implies \{1,\, 2\}$, thus there are two starting and ending modules:
\begin{itemize}
\item starting modules: $st_{m_1}=1+(1-1)\cdot 4=1$ and $st_{m_2}=1+(2-1)\cdot 4=5$;
\item ending modules: $end_{m_1}=(1+4)-1=4$ and $end_{m_2}=(5+4)-1=8$.
\end{itemize}
Unfortunately, the knowledge of the starting and ending modules per stage is not sufficient to reach the goal: this because the algorithm works and draws the connections perfectly when the module labels start with 1, but during the repetitions the new starting module labels are different, so the computation of the end connection point fails. This difference should be compensated with \emph{shifts} of the ending modules that depend on the level of repetition. The rules are:
\begin{itemize}
\item if $\psi=1$ (the algorithm works for all modules of the stage), then the ending module of the connection is computed as:
\begin{itemize}
\item if the start module $st$ and the output port are odd (i.e. module 1, port 1), then it will be connected to
\[\textrm{end module}=\dfrac{st+1}{2} \; , \; \textrm{port}=1 \]
\item if the start module $st$ is odd and the output port is even (i.e. module 1, port 2), then it will be connected to
\[\textrm{end module}=\dfrac{st+1+\gamma}{2}\; , \; \textrm{port}=1 \]
\item if the start module $st$ is even and the output port is odd (i.e. module 2, port 1), then it will be connected to
\[\textrm{end module}=\dfrac{st}{2} \; , \; \textrm{port}=2 \]
\item if the start module $st$ and the output port are even (i.e. module 2, port 2), then it will be connected to
\[\textrm{end module}=\dfrac{st+\gamma}{2}\; , \; \textrm{port}=2 \]
\end{itemize}
\item if $\psi=2$ (the algorithm should be repeated twice), then the ending module of the connection is computed as
\begin{itemize}
\item if the start module $st$ and the output port are odd (i.e. module 1, port 1), then it will be connected to
\[\textrm{end module}=\dfrac{st+1}{2}+\dfrac{\gamma}{2} \; , \; \textrm{port}=1 \]
\item if the start module $st$ is odd and the output port is even (i.e. module 1, port 2), then it will be connected to
\[\textrm{end module}=\dfrac{st+1+\gamma}{2}+\dfrac{\gamma}{2}\; , \; \textrm{port}=1 \]
\item if the start module $st$ is even and the output port is odd (i.e. module 2, port 1), then it will be connected to
\[\textrm{end module}=\dfrac{st}{2}+\dfrac{\gamma}{2} \; , \; \textrm{port}=2 \]
\item if the start module $st$ and the output port are even (i.e. module 2, port 2), then it will be connected to
\[\textrm{end module}=\dfrac{st+\gamma}{2}+\dfrac{\gamma}{2}\; , \; \textrm{port}=2 \]
\end{itemize}
\item if $\psi>2\implies t=3,\ldots, \psi$ (the algorithm should be repeated more than twice), then the ending module of the connection is computed as:
\begin{itemize}
\item if the start module $st$ and the output port are odd (i.e. module 1, port 1), then it will be connected to
\[\textrm{end module}=\dfrac{st+1}{2}+\left(\dfrac{\gamma}{2}\cdot (t-2)\right) \; , \; \textrm{port}=1 \]
\item if the start module $st$ is odd and the output port is even (i.e. module 1, port 2), then it will be connected to
\[\textrm{end module}=\dfrac{st+1+\gamma}{2}+\dfrac{\gamma}{2}+\left(\dfrac{\gamma}{2}\cdot (t-2)\right)\; , \; \textrm{port}=1 \]
\item if the start module $st$ is even and the output port is odd (i.e. module 2, port 1), then it will be connected to
\[\textrm{end module}=\dfrac{st}{2}+\left(\dfrac{\gamma}{2}\cdot (t-2)\right)\; , \; \textrm{port}=2 \]
\item if the start module $st$ and the output port are even (i.e. module 2, port 2), then it will be connected to
\[\textrm{end module}=\dfrac{st+\gamma}{2}+\dfrac{\gamma}{2}+\left(\dfrac{\gamma}{2}\cdot (t-2)\right)\; , \; \textrm{port}=2 \]
\end{itemize}
\end{itemize}
Unfortunately, the rule $\psi>2$ when applied to the intermediate stages
\[I_1=\lfloor\mathcal{S}\div 2\rfloor \hspace*{1cm} I_2=\mathcal{S}-(I_1-1)\]
does not work; this implies that:
\begin{itemize}
\item on the left side of the network the applicability of the algorithm is from the starting stage 1 up to the starting stage $I_1-1$ (in the example |P|=16: from the starting stage 1 up to the starting stage 2);
\item on the right side of the network the applicability of the algorithm is from the starting stage $\mathcal{S}$ up to the starting stage $I_2-1$ (in the example |P|=16: from the starting stage 7 up to the starting stage 6);
\item for the intermediate starting stages $I_1$ and $I_2$ (in the example |P|=16: the stages 3 and 5) another rule should be used:
\begin{itemize}
\item if the start module $st$ and the output port are odd (i.e. module 1, port 1), then it will be connected to
\[\textrm{end module}=st\; , \; \textrm{port}=1 \]
\item if the start module $st$ is odd and the output port is even (i.e. module 1, port 2), then it will be connected to
\[\textrm{end module}=st+1\; , \; \textrm{port}=1 \]
\item if the start module $st$ is even and the output port is odd (i.e. module 2, port 1), then it will be connected to
\[\textrm{end module}=st-1 \; , \; \textrm{port}=2 \]
\item if the start module $st$ and the output port are even (i.e. module 2, port 2), then it will be connected to
\[\textrm{end module}=st\; , \; \textrm{port}=2 \]
\end{itemize}
\end{itemize}
To summarize, the algorithm to \textbf{d}raw \textbf{B}enes \textbf{n}etwork \textbf{c}onnections (dBnc) is reported in~\ref{algo_dBnc}: for the rules, please refer to the descriptions mentioned above.
\begin{algorithm}
compute $\mathcal{S}=2\log_2{P}-1$\;
compute $I_1=\lfloor\mathcal{S}\div 2\rfloor$\;
compute $I_2=\mathcal{S}-(I_1-1)$\;
\emph{from left to right}\;
\For{$stg\leftarrow 1$ \KwTo $(I_1-1)$}{
compute $\gamma=P\div 2^{stg}$\;
compute $\psi=2^{stg-1}$\;
\For{$t\leftarrow 1$ \KwTo $\psi$}{
compute starting point $x=1+((t-1)\cdot\gamma)$\;
compute ending point $y=(x+\gamma)-1$\;
\ForEach{$\textrm{ start module } s \textrm{ in set } (x,y)$}{
\uIf{$t==1$}{
\uIf{$s$ is odd}{
use rules $\psi=1$ for starting module odd\;
}
\Else{
use rules $\psi=1$ for starting module even\;
}
}
\uIf{$t==2$}{
\uIf{$s$ is odd}{
use rules $\psi=2$ for starting module odd\;
}
\Else{
use rules $\psi=2$ for starting module even\;
}
}
\uIf{$t>2$}{
\uIf{$s$ is odd}{
use rules $\psi>2$ for starting module odd\;
}
\Else{
use rules $\psi>2$ for starting module even\;
}
}
}
}
}
\emph{from right to left}\;
\For{$stg\leftarrow \mathcal{S}$ \KwTo $(I_2-1)$}{
repeat in dual mode $\textbf{6}-\textbf{32}$\;
}
\emph{complete with intermediate stages}\;
\ForEach{$stg$ in set $(I_1,\, I_2)$}{
use rules for intermediate stages\;
}
\caption{\textbf{d}raw \textbf{B}enes \textbf{n}etwork \textbf{c}onnections (dBnc)}\label{algo_dBnc}
\end{algorithm}
% * * * * * * * * * * * * * * * * * * * * * * * * * *
% belongs to \usepackage{makeindex}
\printindex
\end{document}
|