1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
|
%%
%% A DANTE-Edition example
%%
%% Example 36-00-99 on page 810.
%%
%% Copyright (C) 2011 Herbert Voss
%%
%% It may be distributed and/or modified under the conditions
%% of the LaTeX Project Public License, either version 1.3
%% of this license or (at your option) any later version.
%%
%% See http://www.latex-project.org/lppl.txt for details.
%%
%%
%% ====
% Show page(s) 1
%%
\documentclass[]{article}
\pagestyle{empty}
\setlength\textwidth{201.70511pt}
\setlength\parindent{0pt}
\usepackage{pstricks,pst-node,graphicx}
\definecolor{Pink}{rgb}{1.,0.75,0.8}
\newsavebox\PBox
\begin{document}
\psset{linearc=0} % it makes a round corner of connection link
\savebox\PBox{%
\begin{psmatrix}[rowsep=1cm,colsep=.5cm]
& \psshadowbox[linearc=5mm,fillstyle=solid,fillcolor=Pink]
{ \begin{tabular}{c}
$ f1 = a \, q_1 + b \, q_2 $ \\
$ f2 = c \, q_1 + d \, q_2 $ \\
\end{tabular} } & \\% end of 1st row
\psshadowbox[linearc=5mm,shadow=true,fillstyle=solid,fillcolor=Pink]{
\begin{tabular}{c}
$L_1 = t (q_1+ q_2)\dot{q}_1 - \dot{q}_2 + \frac{dg}{dt} $ \\
when $a=0, b=1, c=2, d=1$
\end{tabular}
}
& &
\psshadowbox[linearc=5mm,shadow=true,fillstyle=solid,fillcolor=Pink]{
\begin{tabular}{c}
$L_1 = t (q_1+ q_2)\dot{q}_1 - \dot{q}_2 + \frac{dg}{dt} $ \\
when $a=0, b=1, c=2, d=1$
\end{tabular}
} \\
\psshadowbox[linearc=5mm,shadow=true,fillstyle=solid,fillcolor=Pink]{
\begin{tabular}{c}
$L_1 = t (q_1+ q_2)\dot{q}_1 - \dot{q}_2 + \frac{dg}{dt} $ \\
when $a=0, b=1, c=2, d=1$
\end{tabular}
}
& &
\psshadowbox[linearc=5mm,shadow=true,fillstyle=solid,fillcolor=Pink]{
\begin{tabular}{c}
$L_1 = t (q_1+ q_2)\dot{q}_1 - \dot{q}_2 + \frac{dg}{dt} $ \\
when $a=0, b=1, c=2, d=1$
\end{tabular}
} \\
\psshadowbox[linearc=5mm,shadow=true,fillstyle=solid,fillcolor=Pink]{
\begin{tabular}{c}
$L_1 = t (q_1+ q_2)\dot{q}_1 - \dot{q}_2 + \frac{dg}{dt} $ \\
when $a=0, b=1, c=2, d=1$
\end{tabular}
}
& &
\psshadowbox[linearc=5mm,shadow=true,fillstyle=solid,fillcolor=Pink]{
\begin{tabular}{c}
$L_1 = t (q_1+ q_2)\dot{q}_1 - \dot{q}_2 + \frac{dg}{dt} $ \\
when $a=0, b=1, c=2, d=1$
\end{tabular}
}
\end{psmatrix}}%
\rput[lt](0,0){\usebox\PBox}%
{\psset{linewidth=1.5pt,arrowsize=7pt,angleA=-90,angleB=90,arm=0}%
\ncdiag{->}{1,2}{4,1}%
\ncdiag{->}{1,2}{4,3}%
%
\ncdiag{->}{1,2}{3,1}%
\ncdiag{->}{1,2}{3,3}%
%
\ncdiag{->}{1,2}{2,1}%
\ncdiag{->}{1,2}{2,3}}%
%
\rput[lt](0,0){\usebox\PBox}% again to put the boxes over the arrows
\end{document}
|