summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/probsoln/samples/probspaces.tex
blob: 48f7c3c53d8a7aab2dc9defdc415f49ea3bc05a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 % Finite probability spaces
\newproblem{weightedcoin}{%
A coin is weighted so that heads is four times as likely
as tails. Find the probability that:
\begin{textenum}
\item tails appears,
\item heads appears
\end{textenum}}{%
Let $p=P(T)$, then $P(H)=4p$. We require $P(H)+P(T)=1$,
so $4p+p=1$, hence $p=\frac{1}{5}$. Therefore:
\begin{textenum}
\item $P(T)=\frac{1}{5}$,
\item $P(H)=\frac{4}{5}$
\end{textenum}}

\newproblem*{validprobspaces}{%
Under which of the following functions does 
$S=\{a_1,a_2\}$ become a probability space?
\par
\begin{textenum}
\begin{tabular}{ll}
\incorrectitem $P(a_1)=\frac{1}{3}$, $P(a_2)=\frac{1}{2}$
&
\correctitem $P(a_1)=\frac{3}{4}$, $P(a_2)=\frac{1}{4}$
\\
\correctitem $P(a_1)=1$, $P(a_2)=0$
&
\incorrectitem $P(a_1)=\frac{5}{4}$, $P(a_2)=-\frac{1}{4}$
\end{tabular}
\end{textenum}
}