blob: 3106fcfdb9aae7a9bd2fa75db4e04697e13e061b (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
% These are all easy differentiation problems
\newproblem{diffeasy:gpowh}{%
\(f(x) = g(x)^{h(x)}.\)}{%
\begin{eqnarray*}
f(x) & = & e^{\ln g(x)^{h(x)}}\\
& = & e^{h(x)\ln g(x)}\\
f'(x) & = & e^{h(x)\ln g(x)}(h'(x)\ln g(x) + h(x)\frac{g'(x)}{g(x)})\\
& = & g(x)^{h(x)}(h'(x)\ln g(x) + \frac{h(x)g'(x)}{g(x)})
\end{eqnarray*}}
\newproblem{diffeasy:arcsin}{%
\(y = \arcsin(x)\)}{%
\[\sin(y) = x\]
diff. w.r.t. $x$:
\begin{eqnarray*}
\cos y \frac{dy}{dx} & = & 1\\
\frac{dy}{dx} & = & \frac{1}{\cos y}\\
& = & \frac{1}{\sqrt{1 - \sin^2y}}\\
& = & \frac{1}{\sqrt{1-x^2}}.
\end{eqnarray*}}
\newproblem{diffeasy:arccos}{%
$y = \arccos x$.}{%
\(\cos y = x\)
diff. w.r.t. $x$:
\begin{eqnarray*}
-\sin y \frac{dy}{dx} & = & 1\\
\frac{dy}{dx} & = & \frac{-1}{\sin y}\\
& = & \frac{-1}{\sqrt{1-\cos^2y}}\\
& = & \frac{-1}{\sqrt{1-x^2}}
\end{eqnarray*}}
\newproblem{diffeasy:tan}{%
\(y = \tan x\)}{%
\begin{eqnarray*}
y & = & \tan x\\
& = & \frac{\sin x}{\cos x}\\
\frac{dy}{dx} & = & \frac{\cos x}{\cos x} + \sin x\times\frac{-1}{\cos^2x}\times -\sin x\\
& = & 1 + \tan^2x\\
& = & \sec^2x.
\end{eqnarray*}}
\newproblem{diffeasy:arctan}{%
\(y = \arctan x = \tan^{-1}x\)}{%
\[\tan y = x\]
diff w.r.t. $x$:
\begin{eqnarray*}
\sec^2y\frac{dy}{dx} & = & 1\\
\frac{dy}{dx} & = & \frac{1}{\sec^2y}\\
& = & \frac{1}{1+\tan^2y}\\
& = & \frac{1}{1+x^2}
\end{eqnarray*}}
\newproblem{diffeasy:cot}{%
\(y = (\tan x)^{-1} = \cot x\)}{%
\begin{eqnarray*}
\frac{dy}{dx} & = & -(\tan x)^{-2}\sec^2x\\
& = & -\frac{\cos^2x}{\sin^2x}\cdot\frac{1}{\cos^2x}\\
& = & \frac{-1}{\sin^2x}\\
& = & -\csc^2x.
\end{eqnarray*}}
\newproblem{diffeasy:cosxsqsinx}{%
$y = \cos(x^2)\sin x$.}{%
\[\frac{dy}{dx} = -\sin(x^2)2x\sin x + \cos(x^2)\cos x\]}
\newproblem{diffeasy:xlnx}{%
$y = (x+1)\ln(x+1)$.}{%
\begin{eqnarray*}
\frac{dy}{dx} & = & \ln(x+1) + \frac{x+1}{x+1}\\
& = & 1 + \ln(x+1).
\end{eqnarray*}}
\newproblem{diffeasy:glng}{%
$f(x) = g(x)\ln(g(x))$.}{%
\begin{eqnarray*}
f'(x) & = & g'(x)\ln(g(x)) + \frac{g(x)}{g(x)}g'(x)\\
& = & g'(x)(1+\ln(g(x))).
\end{eqnarray*}}
\newproblem{diffeasy:sinx/x}{%
$y = \frac{\sin x}{x}$.}{%
\[\frac{dy}{dx} = \frac{\cos x}{x} - \frac{\sin x}{x^2}\]}
|