summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/prftree/prftreedoc.tex
blob: 8af679ea76053c105cb6ec25e098a46cc9a272f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
\documentclass{amsart}
\usepackage[ND,SEQ]{prftree}
\usepackage{url}

\setlength{\fboxsep}{0pt}

\begin{document}
\title{Proof Trees in \LaTeX}
\date{}
\author{Marco Benini}
\address{Dipartimento di Scienza e Alta Tecnologia\\
  Universit\`a degli Studi dell'Insubria\\
  via Valleggio 11, I-22100 Como, Italy}
\email{marco.benini@uninsubria.it}
\urladdr{http://marcobenini.wordpress.com}
\maketitle

% --------------------------

\section{Introduction}\label{sec:introduction}
Writing proofs in natural deduction or in similar, tree-like calculi,
is always a challenge: from the typographical point of view, these
proofs are complex objects that cannot be simply typeset using the
standard \LaTeX{} commands. Thus, many packages have been developed:
Sam Buss's \texttt{bussproofs.sty},
\url{http://math.ucsd.edu/~sbuss/ResearchWeb/bussproofs/}; Makoto
Tatsuta's \texttt{proof.sty},
\url{http://research.nii.ac.jp/~tatsuta/proof-sty.html}; and
\texttt{prooftree.sty} by Paul Taylor,
\url{http://mirror.ctan.org/macros/generic/proofs/taylor}.

All these packages have their merits and weaknesses. For example,
Buss's package is extremely flexible but inference rules with more
than five assumptions cannot be directly typeset. On the other hand,
Tatsuta's package provides a very simple set of commands doing a
fine job, but customisation is very limited. Taylor's package provides
a natural syntax for writing proofs, but customisation is limited, and
the package has an expire date.

The package presented in the following provides most of the features
which are already present in Buss's package, coupled with some new
ones. This package uses a syntax which is closer to Tatsuta's one, but
almost all the typesetting process is parametric, so that each bit of
a proof can be customised at will.

The graphical appearance of a proof is similar to the one obtained
using Taylor's package, but the additional features allow to set up
the graphical output to follow the style of some of the standard
textbooks, e.g., A.S.~Troelstra and H.~Schwichtenberg, \textit{Basic
  Proof Theory}, Cambridge University Press (2000).

% --------------------------
\clearpage
\section{Basic Commands}\label{sec:basic_commands}
The package is invoked by putting \verb|\usepackage{prfree.sty}| in
the preamble of the document, and installation reduces to put the file
\texttt{prftree.sty} somewhere in the \LaTeX{} search
path.\vspace{2ex} 

A proof tree constructs a box with the following internal structure:
\begin{center}
  {\setlength{\unitlength}{1em}
  \begin{picture}(31,6)
    \put(7,4){\framebox(17,2){$\mbox{assumption}_1 \cdots
        \mbox{assumption}_n$}} 
    \put(6,3){\line(1,0){19}}
    \put(26,2){\framebox(5,2){rule name}}
    \put(0,2){\framebox(5,2){label}}
    \put(10,0){\framebox(11,2){conclusion}}
  \end{picture}}
\end{center}
In turn, each assumption is typeset as a box which has usually the
shape of another proof tree, while the rule name and the label are
typeset in a text box, and the conclusion in a math box. The aspect of
the proof line is controlled by suitable options, as is the presence
of the rule name and of the label. Options cover other aspects of the
graphical rendering of a proof tree, as it will be explained
later. The basic command to build a proof tree is \verb|\prftree|.

For example, the proof of $A \supset \neg\neg A$ in natural deduction
is:
\begin{displaymath}
  \prftree[r]{$\supset$I}
    {\prftree[r]{$\supset$I}
      {\prftree[r]{$\supset$E}
        {\prfboundedassumption{A}}
        {\prfboundedassumption{\neg A}}
        {\bot}}
      {\neg\neg A}}
    {A \supset \neg\neg A}
\end{displaymath}
This proof is generated by the following \LaTeX{} code:
\begin{verbatim}
  \begin{displaymath}
    \prftree[r]{$\supset$I}
      {\prftree[r]{$\supset$I}
        {\prftree[r]{$\supset$E}
          {\prfboundedassumption{A}}
          {\prfboundedassumption{\neg A}}
          {\bot}}
        {\neg\neg A}}
      {A \supset \neg\neg A}
  \end{displaymath}
\end{verbatim}

In general, the syntax of the \verb|\prftree| command is:
\begin{displaymath}
  \verb|\prftree|[\mbox{options}] \cdots
  [\mbox{options}]\{\mbox{assumption}_1\} \cdots
  \{\mbox{assumption}_n\}\{\mbox{conclusion}\}
\end{displaymath}
Assumptions are optional and there may be any number of them. Each
assumption may contain a proof tree, which is typeset
independently. The conclusion is mandatory, and it is supposed to be a
formula. Assumptions and the conclusion are typeset in a display style
math environment. Options control the way the proof is generated: in
the example, the \verb|r| option has been used to signal that the
first argument of \verb|\prftree| is the name of the inference rule.

The available options are:
\begin{itemize}
\item\ [\textbf{r}], [\textbf{rule}], [\textbf{by rule}],
  [\textbf{by}], [\textbf{right}]: the first argument after the
  options is the rule name, which is typeset in text mode;
\item\ [\textbf{l}], [\textbf{left}], [\textbf{label}]: the first
  argument after the options is the label of the rule, which is
  typeset in text mode. If a rule name is present, the first argument
  is the rule name, and the second one is the label;
\item\ [\textbf{straight}], [\textbf{straight line}],
  [\textbf{straightline}]: makes the proof line solid;
\item\ [\textbf{dotted}], [\textbf{dotted line}],
  [\textbf{dottedline}]: makes the proof line  dotted;
\item\ [\textbf{dashed}], [\textbf{dashed line}],
  [\textbf{dashedline}]: makes the proof line dashed;
\item\ [\textbf{f}], [\textbf{fancy}], [\textbf{fancy line}],
  [\textbf{fancyline}]: the proof line will be fancy;
\item\ [\textbf{s}], [\textbf{single}], [\textbf{single line}],
  [\textbf{singleline}]: makes the proof line single;
\item\ [\textbf{d}], [\textbf{double}], [\textbf{double line}],
  [\textbf{doubleline}]: makes the proof line double;
\item\ [\textbf{noline}]: suppresses the proof line (prevails over all
  other line options);
\item\ [\textbf{summary}]: renders the proof line as the summary
  symbol (prevails over all other line options except \textbf{noline}).
\end{itemize}
By default the proof line is straight and single.  Options may be
written in sequence, as in \verb|[r,f,d]|, which means that the proof
tree will have a rule name, and the proof line will be fancy and
double, or separately, as in \verb|[r][f][d]|, or even as a
combination, like \verb|[r][f,d]|. Options are evaluated
left-to-right, so \verb|[d,s]| is the same as \verb|[s]|, while
\verb|[noline,straight,d]| is the same as \verb|[noline]|.

The conjunction introduction rule illustrates the various line
options\footnote{The reader is invited to look at the source code of
  the documentation to see how these examples have been implemented.}:
\begin{displaymath}
  \begin{array}{lcc@{\qquad}l}
    \mbox{default (single straight)} &
    \prftree{A}{B}{A \wedge B} &
    \prftree[r]{$\wedge$I}{A}{B}{A \wedge B} &
    \texttt{[straight]} \\
    \mbox{double straight} &
    \prftree[d]{A}{B}{A \wedge B} &
    \prftree[d,r]{$\wedge$I}{A}{B}{A \wedge B} &
    \texttt{[double,straight]} \\
    \mbox{single dotted} &
    \prftree[dotted]{A}{B}{A \wedge B} &
    \prftree[dotted,r]{$\wedge$I}{A}{B}{A \wedge B} &
    \texttt{[dotted]} \\
    \mbox{double dotted} &
    \prftree[dotted,d]{A}{B}{A \wedge B} &
    \prftree[dotted,d,r]{$\wedge$I}{A}{B}{A \wedge B} &
    \texttt{[double,dotted]} \\
    \mbox{single dashed} &
    \prftree[dashed]{A}{B}{A \wedge B} &
    \prftree[dashed,r]{$\wedge$I}{A}{B}{A \wedge B} &
    \texttt{[dashed]} \\
    \mbox{double dashed} &
    \prftree[dashed,d]{A}{B}{A \wedge B} &
    \prftree[dashed,d,r]{$\wedge$I}{A}{B}{A \wedge B} &
    \texttt{[double,dashed]} \\
    \mbox{single fancy} &
    \prftree[f]{A}{B}{A \wedge B} &
    \prftree[f,r]{$\wedge$I}{A}{B}{A \wedge B} &
    \texttt{[fancy]} \\
    \mbox{double fancy} &
    \prftree[f,d]{A}{B}{A \wedge B} &
    \prftree[f,d,r]{$\wedge$I}{A}{B}{A \wedge B} &
    \texttt{[double,fancy]} \\
    \mbox{noline} &
    \prftree[noline]{A}{B}{A \wedge B} &
    \prftree[noline,r]{$\wedge$I}{A}{B}{A \wedge B} &
    \texttt{[noline]}
  \end{array}
\end{displaymath}\vspace{1ex}

An assumption is a special proof tree, built by the command:
\begin{displaymath}
  \verb|\prfassumption|\{\text{formula}\}
\end{displaymath}
Similarly, a bounded assumption is produced by the command:
\begin{displaymath}
  \verb|\prfboundedassumption|\{\text{formula}\}
\end{displaymath}
as in the previous example.

Although it is possible to type assumptions directly as argument of
\verb|\prftree|, it is better to use the commands above: as explained
later, since a proof tree is a box with an internal structure, the
assumption commands take care of building this structure
appropriately, while the direct typing does not, which may produce
unexpected results.\vspace{2ex}

Similarly, axioms are produced by the commands
\begin{displaymath}
  \verb|\prfaxiom|\{\mbox{axiom}\}
\end{displaymath}
and
\begin{displaymath}
  \verb|\prfbyaxiom|\{\mbox{name}\}\{\mbox{axiom}\}
\end{displaymath}
For example, the axiom stating that equality is reflexive, is 
\begin{displaymath}
  \begin{array}{cc}
    \prfaxiom{\forall x\, x = x} &
    \prfbyaxiom{refl}{\forall x\, x = x}
  \end{array}
\end{displaymath}
and they are generated by the \LaTeX{} code
\begin{displaymath}
  \begin{array}{cc}
    \verb|\prfaxiom{\forall x\, x = x}|& 
    \verb|\prfbyaxiom{refl}{\forall x\, x = x}|
  \end{array}
\end{displaymath}\vspace{-.2ex}

Finally, a proof summary is used to summarise a proof. The
corresponding command is:
\begin{displaymath}
  \verb|\prfsummary|[\mbox{name}]\{\mbox{assumption}_1\} \cdots
  \{\mbox{assumption}_n\}\{\mbox{conclusion}\}
\end{displaymath}
The name of the proof is optional, while the assumptions and the
conclusion are treated as in \verb|\prftree|. When present, the proof
name is typeset in text mode.

For example, \verb|\prfsummary{\forall x\, x = x}| produces
\begin{displaymath}
  \prfsummary{\forall x\, x = x}
\end{displaymath}
while \verb|\prfsummary[name]{A(x)}{B(y)}{B(y) \wedge A(x)}| gives
\begin{displaymath}
  \prfsummary[name]{A(x)}{B(y)}{B(y) \wedge A(x)}
\end{displaymath}\vspace{-.2ex}

In general, a proof tree is a \TeX{} box containing all the pieces of
the tree, with strict bounds: for example,
\begin{displaymath}
  \fbox{\prfsummary[name]{A(x)}{B(y)}{B(y) \wedge A(x)}}
\end{displaymath}

% --------------------------
\clearpage
\section{Parameters}\label{sec:parameters}
A number of parameters may be used to control the typesetting of proof
trees. They may be changed globally or locally, following the usual
scoping rules of \TeX{}. In this respect, remember that each
assumption is typeset independently, so parameters may be changed on a
sub-proof basis, as will be done in most examples.\vspace{2ex}

There are various \TeX{} dimensions that influence how proofs are
constructed:
\begin{itemize}
\item\ \verb|\prflinepad| (default 0.3ex): the space between the
  bottom line of assumptions and the proof line, and also the space
  between the proof line and the top of the conclusion;
\item\ \verb|\prflineextra| (default 0.3em): the length which extends
  on the left and on the right the proof line so that it is slightly
  longer than the largest between the conclusion and the list of
  (direct) assumptions;
\item\ \verb|\prflinethickness| (default 0.2pt): the thickness of the
  proof line;
\item\ \verb|\prfemptylinethickness| (default 4 times the line
  thickness): in the rare case when the line is empty, but there are
  assumptions, this is the distance between the assumptions and the
  conclusion;
\item\ \verb|\prfrulenameskip| (default 0.2em): the space between the
  proof line and the rule name; 
\item\ \verb|\prflabelskip| (default 0.2em): the space between the
  proof label and the proof line; 
\item\ \verb|\prfinterspace| (default .6em): the space between two
  subsequent assumptions in the assumption list;
\item\ \verb|\prfdoublelineinterspace| (default 1.2pt): the space
  between the two lines of a double line.
\end{itemize}

For example, 
\begin{displaymath}
  \prflinepad=.7ex
  \prftree[r]{$\supset$I}
  {\prftree[r]{$\supset$I}
    {\prftree[r]{$\supset$E}
      {\prfboundedassumption{A}}
      {\prfboundedassumption{\neg A}}
      {\bot}}
    {\neg\neg A}}
  {A \supset \neg\neg A}
\end{displaymath}
is typeset by
\begin{verbatim}
  \prflinepad=.7ex
  \prftree[r]{$\supset$I}
    {\prftree[r]{$\supset$I}
      {\prftree[r]{$\supset$E}
        {\prfboundedassumption{A}}
        {\prfboundedassumption{\neg A}}
        {\bot}}
      {\neg\neg A}}
    {A \supset \neg\neg A}
\end{verbatim}

Similarly, \verb|\prflineextra=-.4em| and \verb|\prfrulenameskip=.8em|
produce: 
\begin{displaymath}
  {\prflineextra=-.4em
    \prfrulenameskip=.8em
  \prftree[r]{$\supset$I}
    {\prftree[r]{$\supset$I}
      {\prftree[r]{$\supset$E}
        {\prfboundedassumption{A}}
        {\prfboundedassumption{\neg A}}
        {\bot}}
      {\neg\neg A}}
    {A \supset \neg\neg A}}
\end{displaymath}

Also, \verb|\prflinethickness=3pt| and
\verb|\prfdoublelineinterspace=2pt| in the upper sub-proof generate:
\begin{displaymath}
  \prftree[r]{$\supset$I}
    {\prftree[r]{$\supset$I}
      {\prflinethickness=3pt
        \prfdoublelineinterspace=2pt
        \prftree[r,d]{$\supset$E}
        {\prfboundedassumption{A}}
        {\prfboundedassumption{\neg A}}
        {\bot}}
      {\neg\neg A}}
    {A \supset \neg\neg A}
\end{displaymath}
The corresponding code is
\begin{verbatim}
  \prftree[r]{$\supset$I}
    {\prftree[r]{$\supset$I}
      {\prflinethickness=3pt
        \prfdoublelineinterspace=2pt
        \prftree[r,d]{$\supset$E}
        {\prfboundedassumption{A}}
        {\prfboundedassumption{\neg A}}
        {\bot}}
      {\neg\neg A}}
    {A \supset \neg\neg A}
\end{verbatim}

Line thickness does not affect dashed, dotted, and fancy lines, but
interline space does: in the example,
\verb|\prfdoublelineinterspace=4pt| on a fancy line produces
\begin{displaymath}
  \prftree[r]{$\supset$I}
    {\prftree[r]{$\supset$I}
      {\prfdoublelineinterspace=4pt
        \prftree[r,d,f]{$\supset$E}
        {\prfboundedassumption{A}}
        {\prfboundedassumption{\neg A}}
        {\bot}}
      {\neg\neg A}}
    {A \supset \neg\neg A}
\end{displaymath}\vspace{.2ex}

Fancy lines are drawn by the \verb|\prffancyline| command. This can be
redefined: as a guideline, the package defines it as
\begin{verbatim}
  \def\prffancyline{\cleaders\hbox to .63em%
    {\hss\raisebox{-.5ex}[.2ex][0pt]{$\sim$}\hss}\hfill}
\end{verbatim}\vspace{2ex}

Label spacing works exactly as rule name spacing. Actually, it is
possible to have a proof with both a label and a rule name:
\begin{displaymath}
  \prftree[r]{$\supset$I}
    {\prflabelskip=.7em
      \prftree[r,l]{$\supset$I}
              {[\textsl{$\bot\mathrm{E}$ will not work here!}]}
      {\prftree[r]{$\supset$E}
        {\prfboundedassumption{A}}
        {\prfboundedassumption{\neg A}}
        {\bot}}
      {\neg\neg A}}
    {A \supset \neg\neg A}
\end{displaymath}
which has been typeset by
\begin{verbatim}
  \prftree[r]{$\supset$I}
    {\prflabelskip=.7em
      \prftree[r,l]{$\supset$I}
              {[\textsl{$\bot\mathrm{E}$ will not work here!}]} 
      {\prftree[r]{$\supset$E}
        {\prfboundedassumption{A}}
        {\prfboundedassumption{\neg A}}
        {\bot}}
      {\neg\neg A}}
    {A \supset \neg\neg A}
\end{verbatim}\vspace{2ex}

The \verb|\prfinterspace| controls the distance between
assumptions. Specifically, this is the space between the \emph{boxes}
containing two assumptions. 

Consider the following example
\begin{displaymath}
  \prftree
  {\prftree
    {\prftree
      {\prftree
        {\prftree
          {\prfboundedassumption{A \rightarrow (B \rightarrow C)}}
          {\prfboundedassumption{A}}
          {B \rightarrow C}}
        {\prftree
          {\prfboundedassumption{A \rightarrow B}}
          {\prfboundedassumption{A}}
          {B}}
        {C}}
      {A \rightarrow C}}
    {(A \rightarrow B) \rightarrow (A \rightarrow C)}}
  {(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) 
    \rightarrow (A \rightarrow C))} 
\end{displaymath}
Although the assumptions in the top line are well spaced, the two
sub-proofs on the top are too close. This can be corrected in two
different ways: by putting an explicit space, via \verb|\hspace|, in
front of the second sub-proof, or after the first
sub-proof---remember, they are just boxes
\begin{displaymath}
  \prftree
  {\prftree
    {\prftree
      {\prftree
        {\prftree
          {\prfboundedassumption{A \rightarrow (B \rightarrow C)}}
          {\prfboundedassumption{A}}
          {B \rightarrow C}\hspace{1.5em}}
        {\prftree
          {\prfboundedassumption{A \rightarrow B}}
          {\prfboundedassumption{A}}
          {B}}
        {C}}
      {A \rightarrow C}}
    {(A \rightarrow B) \rightarrow (A \rightarrow C)}}
  {(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) 
    \rightarrow (A \rightarrow C))} 
\end{displaymath}
otherwise, putting $\verb|\prfinterspace|=1.5\mathrm{em}$ before the
sub-proof whose conclusion is $C$, one obtains the more pleasant
\begin{displaymath}
  \prftree
  {\prftree
    {\prftree
      {\prfinterspace=1.5em
        \prftree
        {\prftree
          {\prfboundedassumption{A \rightarrow (B \rightarrow C)}}
          {\prfboundedassumption{A}}
          {B \rightarrow C}}
        {\prftree
          {\prfboundedassumption{A \rightarrow B}}
          {\prfboundedassumption{A}}
          {B}}
        {C}}
      {A \rightarrow C}}
    {(A \rightarrow B) \rightarrow (A \rightarrow C)}}
  {(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) 
    \rightarrow (A \rightarrow C))} 
\end{displaymath}\vspace{.2ex}

The rendering of bounded assumptions is modified by
\verb|\prfboundedstyle|. When $\verb|\prfboundedstyle| = 0$, the
format of the assumption is $[\mbox{formula}]$, which is the default
behaviour; with $\verb|\prfboundedstyle| = 1$, the formula is
cancelled by a horizontal line; with $\verb|\prfboundedstyle| > 1$,
the custom \verb|\prfdiscargedassumption| command is invoked:
\begin{displaymath}
  \begin{array}{c@{\qquad}c@{\qquad}c}
    \prfboundedassumption{A(x)} &
    {\prfboundedstyle=1\prfboundedassumption{A(x)}} &
    {\prfboundedstyle=2\prfboundedassumption{A(x)}}
  \end{array}
\end{displaymath}

The \verb|\prfdiscargedassumption| can be freely redefined. The
package provides a reference implementation:
\begin{verbatim}
  \def\prfdiscargedassumption#1{\left\langle{#1}\right\rangle}
\end{verbatim}\vspace{2ex}

Proof summaries are drawn according to \verb|\prfsummarystyle|.  The
default value is $0$, which produces a vertical dotted line. Setting
$\verb|\prfsummarystyle| = 1$ produces a huge $\Pi$, while
$\verb|\prfsummarystyle| = 2$ produces a $\prod$. The value $3$ uses a
$\mathcal{D}$ as the derivation symbol. Values greater than $3$ force
the summary to be rendered by the \verb|\prffancysummarybox| command.
\begin{displaymath}
  \begin{array}{@{}c@{\quad}c@{\qquad}c@{\qquad}c@{}}
    \verb|\prfsummarystyle| = 0 &
    {\prfsummary{\forall x.\, x = x}} &
    {\prfsummary{B(x)}{A(x)}} &
    {\prfsummary[name]{A(y)}{D(x)}{B(x) \wedge C(x)}} \\[2ex]
    \verb|\prfsummarystyle| = 1 &
    {\prfsummarystyle1\prfsummary{\forall x.\, x = x}} &
    {\prfsummarystyle1\prfsummary{B(x)}{A(x)}} &
    {\prfsummarystyle1\prfsummary[name]{A(y)}{D(x)}{B(x) \wedge
        C(x)}} \\[1ex]
    \verb|\prfsummarystyle| = 2 &
    {\prfsummarystyle2\prfsummary{\forall x.\, x = x}} &
    {\prfsummarystyle2\prfsummary{B(x)}{A(x)}} &
    {\prfsummarystyle2\prfsummary[name]{A(y)}{D(x)}{B(x) \wedge
        C(x)}} \\[1ex]
    \verb|\prfsummarystyle| = 3 &
    {\prfsummarystyle3\prfsummary{\forall x.\, x = x}} &
    {\prfsummarystyle3\prfsummary{B(x)}{A(x)}} &
    {\prfsummarystyle3\prfsummary[name]{A(y)}{D(x)}{B(x) \wedge C(x)}}
    \\[1ex]
    \verb|\prfsummarystyle| = 4 &
    {\prfsummarystyle4\prfsummary{\forall x.\, x = x}} &
    {\prfsummarystyle4\prfsummary{B(x)}{A(x)}} &
    {\prfsummarystyle4\prfsummary[name]{A(y)}{D(x)}{B(x) \wedge C(x)}}
  \end{array}
\end{displaymath}

The fancy summary box is composed by the \verb|\prffancysummarybox|
command. This can be modified at will. The package defines it as
\begin{verbatim}
  \newbox\prf@@fancysummarybox\newdimen\prf@@fancysymmarylen
  \def\prffancysummarybox{%
    \sbox{\prf@@fancysummarybox}{\Huge$\bigtriangledown$}%
    \prf@@fancysymmarylen\ht\prf@@fancysummarybox%
    \advance\prf@@fancysymmarylen\dp\prf@@fancysummarybox%
    \sbox{\prf@@fancysummarybox}{%
      \raisebox{.25\prf@@fancysymmarylen}[.8\prf@@fancysymmarylen]%
      [0pt]{\usebox{\prf@@fancysummarybox}}}%
    \prf@@fancysymmarylen\wd\prf@summary@label%
    \ifdim\prf@@fancysymmarylen>\z@\relax%
      \prf@@fancysymmarylen\wd\prf@@fancysummarybox%
      \wd\prf@summary@label.4em%
      \hbox to\prf@@fancysymmarylen{%
        \usebox\prf@@fancysummarybox}\kern-.4em%
        \box\prf@summary@label%
    \else\usebox\prf@@fancysummarybox\fi}
\end{verbatim}\vspace{2ex}

The assumptions, conclusions, labels, and rule names are drawn using
the following commands, which may be redefined:
\begin{verbatim}
  \def\prfConclusionBox#1{\hbox%
    {$\displaystyle\begingroup#1\endgroup\mathstrut$}}
  \def\prfAssumptionBox#1{\hbox%
    {$\displaystyle\begingroup#1\endgroup\mathstrut$}}
  \def\prfRuleNameBox#1{\hbox{\begingroup#1\endgroup\strut}}
  \def\prfLabelBox#1{\hbox{\begingroup#1\endgroup\strut}}
\end{verbatim}
It is not advisable to change these commands in a radical way, unless
one understands how the graphical engine works.

% -------------------------------------
\clearpage
\section{Labels and References}\label{sec:references}
As discharged assumptions are often hard to track in a proof, the
package provides a mechanism to label them and to reference them
inside a proof tree. A reference is made up of three pieces: the
\emph{label}, which is the name to denote the reference inside the
text, the \emph{reference value}, which is the value denoted by the
label, and the \emph{anchor}, which is the graphical rendering of the
value aside the labelled point of the proof.

For example,
\begin{displaymath}
  \begin{prooftree}
    \prftree[r]{$\supset\mathrm{I}_{\prfref<assum:A>}$}
    {\prftree[r]{$\supset\mathrm{I}_{\prfref<assum:not_A>}$}
      {\prftree[r]{$\supset$E}
        {\prfboundedassumption<assum:A>{A}}
        {\prfboundedassumption<assum:not_A>{\neg A}}
        {\bot}}
      {\neg\neg A}}
    {A \supset \neg\neg A}
  \end{prooftree}
\end{displaymath}
is generated by the following code
\begin{verbatim}
  \begin{prooftree}
    \prftree[r]{$\supset\mathrm{I}_{\prfref<assum:A>}$}
    {\prftree[r]{$\supset\mathrm{I}_{\prfref<assum:not_A>}$}
      {\prftree[r]{$\supset$E}
        {\prfboundedassumption<assum:A>{A}}
        {\prfboundedassumption<assum:not_A>{\neg A}}
        {\bot}}
      {\neg\neg A}}
    {A \supset \neg\neg A}
  \end{prooftree}
\end{verbatim}
The labels are \verb|assum:A| and \verb|assum:not_A|, the reference
values are $1$ and $2$, respectively, and the anchors are these values
on the discharged assumptions on the top of the proof. The references
to these labels are the values in the rule names.\vspace{2ex}

The \verb|prooftree| environment delimits the scope of labels: the
\verb|\end{prooftree}| declaration makes the labels still available
for reference, but numbering of new labels will restart from
$1$. Enclosing a proof tree in a \verb|prooftree| environment is not
mandatory: in such case, labels will be global to the
document.\vspace{2ex}

Sometimes, labels require two compilation steps to be correctly
generated: in fact, as \LaTeX{} labels, forward references may be
undefined in the first compilation step. The package issues a warning
in this case, and display a \verb|??| for the invalid reference. Also,
notice how the assumption reference mechanism is analogous to \LaTeX{}
labels, but it is independent from it.\vspace{2ex}

A reference to a label is made by the
$\verb|\prfref|\langle\mathrm{label}\rangle$ command: its argument is
a label, i.e., a string of text following the same rules as the
argument of the \LaTeX{} \verb|\label| command. As in the \verb|\ref|
command, the resulting value has no formatting.\vspace{2ex}

A labelled assumption is generated by the following commands:
\begin{displaymath}
  \begin{array}{l}
    \verb|\prfassumption|\langle[\mathrm{option}]\mathrm{label}\rangle
    \{\mathrm{assumption}\}
    \\ 
    \verb|\prfboundedassumption|\langle[\mathrm{option}]
    \mathrm{label}\rangle\{\mathrm{assumption}\} 
  \end{array}
\end{displaymath}
The first one acts as \verb|\prfassumption| but also declares the
assumption label and decorates the assumption text with the
anchor. The second one does the same on bounded assumptions. 

The generation of labels is controlled by the option value:
\begin{itemize}
\item \textbf{n}, \textbf{number}, \textbf{arabic}: generates a number
  (default);
\item \textbf{r}, \textbf{roman}: generates a lowercase roman number;
\item \textbf{R}, \textbf{Roman}: generates an uppercase
  roman number;
\item \textbf{a}, \textbf{alph}, \textbf{alpha}, \textbf{alphabetic}:
  produces a lowercase letter;
\item \textbf{A}, \textbf{Alph}, \textbf{Alpha}, \textbf{Alphabetic}:
  produces an uppercase letter;
\item \textbf{f}, \textbf{s}, \textbf{function}, \textbf{symbol},
  \textbf{function symbol}: produces a footnote symbol, as in
  Section~C.8.4 of Lamport's, \textit{\LaTeX: A document preparation
    system};
\item \textbf{l}, \textbf{label}: tells that the label has not to be
  defined. This is used to generate a labelled assumption sharing the
  label with another one, which declares the value and the format.
\end{itemize}
Except for \textbf{l} and \textbf{label}, all the options are used to
format the anchor following the standard \LaTeX{} way available for
counters. No multiple options are allowed.

For example, the disjunction elimination rule is a perfect way to
illustrate the reason behind the \textbf{label} option, i.e., the need
to discharge a pair of assumptions: 
\begin{displaymath}
  \begin{prooftree}
    \prfinterspace=1.2em
    \prftree[r]{$\vee\mathrm{E}_{\prfref<assum:orE>}$}
    {\prfsummary{\Gamma}{A \vee B}}
    {\prfsummary{\Gamma, 
        \prfboundedassumption<assum:orE>{A}}{C}}
    {\prfsummary{\Gamma, 
        \prfboundedassumption<[l]assum:orE>{B}}{C}}{C}
  \end{prooftree}
\end{displaymath}
\begin{verbatim}
    \prftree[r]{$\vee\mathrm{E}_{\prfref<assum:orE>}$}
    {\prfsummary{\Gamma}{A \vee B}}
    {\prfsummary{\Gamma, 
        \prfboundedassumption<assum:orE>{A}}{C}}
    {\prfsummary{\Gamma, 
        \prfboundedassumption<[l]assum:orE>{B}}{C}}{C}
\end{verbatim}

If a label is declared more than once, a warning is issued when the
\textbf{label} option is not used: although this is not a mistake, it
may indicate that a label is reused when it should not.

The same example can be used to show how the other options work:
\begin{displaymath}
  \begin{array}{ccc}
    \begin{prooftree}
      \prfsummarystyle=2
      \prftree[r]{$\vee\mathrm{E}_{\prfref<assum:orEn>}$}
      {\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, 
          \prfboundedassumption<[n]assum:orEn>{A}}{C}}
      {\prfsummary{\Gamma, 
          \prfboundedassumption<[l]assum:orEn>{B}}{C}}
      {C}
    \end{prooftree} &
    \begin{prooftree}
      \prfsummarystyle=2
      \prftree[r]{$\vee\mathrm{E}_{\prfref<assum:orEr>}$}
      {\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, 
          \prfboundedassumption<[r]assum:orEr>{A}}{C}}
      {\prfsummary{\Gamma, 
          \prfboundedassumption<[l]assum:orEr>{B}}{C}}
      {C}
    \end{prooftree} &
    \begin{prooftree}
      \prfsummarystyle=2
      \prftree[r]{$\vee\mathrm{E}_{\prfref<assum:orER>}$}
      {\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, 
          \prfboundedassumption<[R]assum:orER>{A}}{C}}
      {\prfsummary{\Gamma, 
          \prfboundedassumption<[l]assum:orER>{B}}{C}}
      {C}
    \end{prooftree} \\
    \begin{prooftree}
      \prfsummarystyle=2
      \prftree[r]{$\vee\mathrm{E}_{\prfref<assum:orEa>}$}
      {\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, 
          \prfboundedassumption<[a]assum:orEa>{A}}{C}}
      {\prfsummary{\Gamma, 
          \prfboundedassumption<[l]assum:orEa>{B}}{C}}
      {C}
    \end{prooftree} &
    \begin{prooftree}
      \prfsummarystyle=2
      \prftree[r]{$\vee\mathrm{E}_{\prfref<assum:orEA>}$}
      {\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, 
          \prfboundedassumption<[A]assum:orEA>{A}}{C}}
      {\prfsummary{\Gamma, 
          \prfboundedassumption<[l]assum:orEA>{B}}{C}}
      {C}
    \end{prooftree} &
    \begin{prooftree}
      \prfsummarystyle=2
      \prftree[r]{$\vee\mathrm{E}_{\prfref<assum:orEf>}$}
      {\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, 
          \prfboundedassumption<[f]assum:orEf>{A}}{C}}
      {\prfsummary{\Gamma, 
          \prfboundedassumption<[l]assum:orEf>{B}}{C}}
      {C}
    \end{prooftree}
  \end{array}
\end{displaymath}

Also, as the \verb|\prfboundedstyle| varies, the resulting proof trees
are: 
\begin{displaymath}
  \begin{array}{ccc}
    \begin{prooftree}
      \prfboundedstyle=0
      \prfsummarystyle=4
      \prftree[r]{$\vee\mathrm{E}_{\prfref<assum:AorE>}$}
      {\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, 
          \prfboundedassumption<assum:AorE>{A}}{C}}
      {\prfsummary{\Gamma, 
          \prfboundedassumption<[l]assum:AorE>{B}}{C}}
      {C}
    \end{prooftree} &
    \begin{prooftree}
      \prfboundedstyle=1
      \prfsummarystyle=4
      \prftree[r]{$\vee\mathrm{E}_{\prfref<assum:BorE>}$}
      {\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, 
          \prfboundedassumption<assum:BorE>{A}}{C}}
      {\prfsummary{\Gamma, 
          \prfboundedassumption<[l]assum:BorE>{B}}{C}}
      {C}
    \end{prooftree} &
    \begin{prooftree}
      \prfboundedstyle=2
      \prfsummarystyle=4
      \prftree[r]{$\vee\mathrm{E}_{\prfref<assum:CorE>}$}
      {\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, 
          \prfboundedassumption<assum:CorE>{A}}{C}}
      {\prfsummary{\Gamma, 
          \prfboundedassumption<[l]assum:CorE>{B}}{C}}
      {C}
    \end{prooftree}
  \end{array}
\end{displaymath}\vspace{.2ex}

The \verb|prfassumptioncounter| is the \LaTeX{} counter used to
generate the assumption values. It contains the last used value, and
initially, it is set to $0$. By modifying its value, e.g., to
\verb|\setcounter{prfassumptioncounter}{1}|,
\begin{displaymath}
  \begin{prooftree}
    \setcounter{prfassumptioncounter}{1}
    \prfsummarystyle=2
    \prftree[r]{$\vee\mathrm{E}_{\prfref<assum:orEff>}$}
    {\prfsummary{\Gamma}{A \vee B}}
    {\prfsummary{\Gamma, 
        \prfboundedassumption<[f]assum:orEff>{A}}{C}}
    {\prfsummary{\Gamma, 
        \prfboundedassumption<[l]assum:orEff>{B}}{C}}
    {C}
  \end{prooftree}
\end{displaymath}\vspace{.2ex}

A labelled assumption box is graphically constructed by the package
command \verb|\prflabelledassumptionbox| which can be redefined if
needed. It takes two arguments: the assumption and the anchor. Its
standard definition is
\begin{verbatim}
  \def\prflabelledassumptionbox#1#2{%
    \setbox\prf@fancybox\hbox{${#1}$}%
    \prf@tmp\wd\prf@fancybox%
    \setbox\prf@fancybox\hbox{$\box\prf@fancybox^{#2}$}%
    \wd\prf@fancybox\prf@tmp%
    \prf@assumption{\box\prf@fancybox}}
\end{verbatim}

Moreover, also a labelled and bounded assumption is graphically
rendered by the same command. There is just one exception: when
$\verb|\prfboundedstyle| > 1$. In fact, since that style is
controlled by a command that can be redefined, the same must hold for
references in that style. The command which is called in this case is
\verb|\prflabelleddiscargedassumption| which can be redefined if
needed; its standard definition in the package is
\begin{verbatim}
  \def\prflabelleddiscargedassumption#1#2{%
    \prflabelledassumptionbox{\left\langle{#1}\right\rangle}{#2}}
\end{verbatim}\vspace{2ex}

Also proof summaries can be labelled and referenced. The syntax
extends the \verb|\prfsummary| command:
\begin{displaymath}
  \verb|\prfsummary|\langle[\mathrm{option}]\mathrm{label}\rangle
  [\mathrm{name}]\{\mathrm{assumption}1\} \cdots
  \{\mathrm{assumption}_n\}\{\mathrm{conclusion}\} 
\end{displaymath}
The reference argument works in the same way as the corresponding one
for assumptions, and the options are the same.

\begin{displaymath}
  \setcounter{prfsummarycounter}{0}
  \begin{array}{c@{\qquad}c@{\qquad}c@{\qquad}c@{\qquad}c}
    {\prfsummarystyle=0
      \prfsummary<proof:a0>{A}{B}{A \wedge B}} &
    {\prfsummarystyle=1
      \prfsummary<proof:a1>{A}{B}{A \wedge B}} &
    {\prfsummarystyle=2
      \prfsummary<proof:a2>{A}{B}{A \wedge B}} &
    {\prfsummarystyle=3
      \prfsummary<proof:a3>{A}{B}{A \wedge B}} &
    {\prfsummarystyle=4
      \prfsummary<proof:a4>{A}{B}{A \wedge B}} 
  \end{array}
\end{displaymath}

These examples have been generated by the following code snippet:
\begin{verbatim}
  {\prfsummarystyle=X
   \prfsummary<proof:aX>{A}{B}{A \wedge B}}
\end{verbatim}

The \verb|[option]| part of the label specification is optional, and
it works exactly as the option field of labelled assumptions. This is
best illustrated by an example:
\begin{displaymath}
  \setcounter{prfsummarycounter}{0}
  \begin{array}{cccc}
    {\prfsummarystyle=1
    \prfsummary<[r]proof:b1>{A}{B}{A \wedge B}} &
    {\prfsummarystyle=1
    \prfsummary<[R]proof:b2>{A}{B}{A \wedge B}} &
    {\prfsummarystyle=1
    \prfsummary<[f]proof:b3>{A}{B}{A \wedge B}} &
    {\prfsummarystyle=1
    \prfsummary<[a]proof:b4>{A}{B}{A \wedge B}} \\ &
    {\prfsummarystyle=1
    \prfsummary<[A]proof:b5>{A}{B}{A \wedge B}} &
    {\prfsummarystyle=1
    \prfsummary<[l]proof:b3>{A}{B}{A \wedge B}} &
  \end{array}
\end{displaymath}

These examples have been generated by the following code snippet:
\begin{verbatim}
  {\prfsummarystyle=1
   \prfsummary<[r]proof:bX>{A}{B}{A \wedge B}}
\end{verbatim}
and the last line uses the \verb|label| option.\vspace{2ex}

The value of the summary labelling is controlled by the
\verb|prfsummarycounter| counter, which is initially $0$ and contains
the last used value.

% -------------------------------------
\clearpage
\section{Simplified Commands}\label{sec:simplified_commands}
The basic commands illustrated so far allow to control proof trees in
all aspects, but they tend to be verbose in practise. Thus, a number
of abbreviations are provided to make handier the writing of proofs.

Since they may collide with other packages, these macros are activated
by suitable options. By loading the package as
\verb|\usepackage[ND]{prftree.sty}|, the following abbreviations are
available, which correspond to the inference rule of natural deduction
calculi:
\begin{itemize}
\item \verb|\NDA|: assumption;
\item \verb|\NDAL|: labelled assumption;
\item \verb|\NDD|: bounded assumption;
\item \verb|\NDDL|: labelled bounded assumption;
\item \verb|\NDP|: generic proof tree;
\item \verb|\NDANDI|: conjunction introduction;
\item \verb|\NDANDER|: conjunction elimination, right;
\item \verb|\NDANDEL|: conjunction elimination, left;
\item \verb|\NDANDE|: conjunction elimination, unspecified;
\item \verb|\NDIMPI|: implication introduction;
\item \verb|\NDIMPIL|: implication introduction with the label of the
  discharged assumption;
\item \verb|\NDIMPE|: implication elimination;
\item \verb|\NDORIR|: disjunction introduction, right;
\item \verb|\NDORIL|: disjunction introduction, left;
\item \verb|\NDORI|: disjunction introduction, unspecified;
\item \verb|\NDORE|: disjunction elimination;
\item \verb|\NDOREL|: disjunction elimination with the label of the
  discharged assumptions;
\item \verb|\NDALLI|: universal quantifier introduction;
\item \verb|\NDALLE|: universal quantifier elimination;
\item \verb|\NDEXI|: existential quantifier introduction;
\item \verb|\NDEXE|: existential quantifier elimination;
\item \verb|\NDEXE|: existential quantifier elimination with the label
  of the discharged assumption;
\item \verb|\NDTI|: truth introduction;
\item \verb|\NDFE|: falsity elimination;
\item \verb|\NDLEM|: Law of Excluded Middle.
\end{itemize}

For example, the proof
\begin{displaymath}
  \begin{prooftree}
    \NDOREL{simp:notA}{\NDLEM{A \vee \neg A}}
    {\NDIMPI{\NDDL{[l]simp:notA}{A}}{\neg\neg A \supset A}}
    {\NDIMPIL{simp:notnotA}
      {\NDFE{\NDIMPE{\NDDL{simp:notnotA}{\neg\neg A}}
          {\NDDL{simp:notA}{\neg A}}{\bot}}{A}} 
      {\neg\neg A \supset A}}
    {\neg\neg A \supset A}
  \end{prooftree}
\end{displaymath}
is typeset in abbreviated form by the following code
\begin{verbatim}
    \NDOREL{simp:notA}{\NDLEM{A \vee \neg A}}
    {\NDIMPI{\NDDL{[l]simp:notA}{A}}{\neg\neg A \supset A}}
    {\NDIMPIL{simp:notnotA}
      {\NDFE{\NDIMPE{\NDDL{simp:notnotA}{\neg\neg A}}
          {\NDDL{simp:notA}{\neg A}}{\bot}}{A}} 
      {\neg\neg A \supset A}}
    {\neg\neg A \supset A}
\end{verbatim}\vspace{2ex}

Similarly, by loading the package as
\verb|\usepackage[SEQ]{prooftree.sty}|, the following abbreviations
are available, which roughly correspond to the inference rule of
sequent calculi:
\begin{itemize}
\item \verb|\SEQA|: assumption;
\item \verb|\SEQD|: bounded assumption;
\item \verb|\SEQP|: generic proof;
\item \verb|\SEQAX|: axiom rule;
\item \verb|\SEQLF|: left falsity;
\item \verb|\SEQLW|: left weakening;
\item \verb|\SEQRW|: right weakening;
\item \verb|\SEQLC|: left contraction;
\item \verb|\SEQRC|: right contraction;
\item \verb|\SEQLAND|: left conjunction;
\item \verb|\SEQRAND|: right conjunction;
\item \verb|\SEQLOR|: left disjunction;
\item \verb|\SEQROR|: right disjunction;
\item \verb|\SEQLIMP|: left implication;
\item \verb|\SEQRIMP|: right implication;
\item \verb|\SEQLALL|: left universal quantification;
\item \verb|\SEQRALL|: right universal quantification;
\item \verb|\SEQLEX|:  left existential quantification;
\item \verb|\SEQREX|: right existential quantification;
\item \verb|\SEQCUT|: cut rule.
\end{itemize}

One can load the package with both options at the same
time.\vspace{2ex}

Since the implication symbol is usually represented either as
$\rightarrow$ or as $\supset$, the package allows to choose which
representation to use. By default, implication is $\rightarrow$, but
loading the package with the \verb|[IMP]| option switches to
$\supset$. The same effect is obtained by the commands
\verb|\prfIMPOptiontrue| (implication is $\supset$) and
\verb|prfIMPOptionfalse| (implication is $\rightarrow$).

Of course, the reader is encouraged to develop her own abbreviations
starting from the provided ones.

% -------------------------------------
\clearpage
\section{Hints and Tricks}\label{sec:hints_and_tricks}
This section shows a few hints and tricks to use the package at its
best.\vspace{2ex}

Consider the proof:
\begin{displaymath}
  \begin{prooftree}
    \NDOREL{a:notA}{\NDLEM{A \vee \neg A}}
    {\NDIMPI{\NDDL{a:notA}{A}}{\neg\neg A \supset A}}
    {\NDIMPIL{a:notnotA}
      {\NDFE{\NDIMPE{\NDDL{a:notnotA}{\neg\neg A}}
          {\NDDL{[l]a:notA}{\neg A}}{\bot}}{A}} 
      {\neg\neg A \supset A}}
    {\neg\neg A \supset A}
  \end{prooftree}
\end{displaymath}
the space between the axiom and the sub-proof of the positive case is
visually much less than the space between the positive and the
negative cases. Looking at boxes, the space is exactly the same, but
the perception is that spacing is wrong.

We can correct this perception in two distinct ways: by adding space
between the axiom and the positive case; or, conversely, by moving the
negative case closer to the positive one.

The first strategy yields:
\begin{displaymath}
  \begin{prooftree}
    \NDOREL{a:notA}{\NDLEM{A \vee \neg A}\hspace{.8em}}
    {\NDIMPI{\NDDL{[l]a:notA}{A}}{\neg\neg A \supset A}}
    {\NDIMPIL{a:notnotA}
      {\NDFE{\NDIMPE{\NDDL{[l]a:notnotA}{\neg\neg A}}
          {\NDDL{[l]a:notA}{\neg A}}{\bot}}{A}} 
      {\neg\neg A \supset A}}
    {\neg\neg A \supset A}
  \end{prooftree}
\end{displaymath}
and this effect is given by adding an appropriate \verb|\hspace| after
the axiom, as in
\begin{verbatim}
  \NDOREL{a:notA}{\NDLEM{A \vee \neg A}\hspace{.4em}}
  {\NDIMPI{\NDDL{[l]a:notA}{A}}{\neg\neg A \supset A}}
  {\NDIMPIL{a:notnotA}
    {\NDFE{\NDIMPE{\NDDL{[l]a:notnotA}{\neg\neg A}}
        {\NDDL{[l]a:notA}{\neg A}}{\bot}}{A}} 
    {\neg\neg A \supset A}}
  {\neg\neg A \supset A}
\end{verbatim}

Adding the same space in front of the positive case is equivalent.

The second strategy yields:
\begin{displaymath}
  \begin{prooftree}
    \NDOREL{a:notA}{\NDLEM{A \vee \neg A}}
    {\NDIMPI{\NDDL{[l]a:notA}{A}}{\neg\neg A \supset A}}
    {\hspace{-.4em}\NDIMPIL{a:notnotA}
      {\NDFE{\NDIMPE{\NDDL{[l]a:notnotA}{\neg\neg A}}
          {\NDDL{[l]a:notA}{\neg A}}{\bot}}{A}} 
      {\neg\neg A \supset A}}
    {\neg\neg A \supset A}
  \end{prooftree}
\end{displaymath}
Again, this is obtained by adding a negative \verb|hspace| after the
positive case, or, equivalently, before the negative one:
\begin{verbatim}
  \NDOREL{a:notA}{\NDLEM{A \vee \neg A}}
  {\NDIMPI{\NDDL{[l]a:notA}{A}}{\neg\neg A \supset A}}
  {\hspace{-.8em}\NDIMPIL{a:notnotA}
    {\NDFE{\NDIMPE{\NDDL{[l]a:notnotA}{\neg\neg A}}
        {\NDDL{[l]a:notA}{\neg A}}{\bot}}{A}} 
    {\neg\neg A \supset A}}
  {\neg\neg A \supset A}
\end{verbatim}

In general, to make a wide proof \emph{compact}, one can appropriately
add negative spaces in front of sub-proofs so to make them closer and
letting them to overlap as boxes, but not visually, thus \emph{tiling}
the space.\vspace{2ex}

Since proof trees are boxes, it is easy to align them on need. For
example the following proof tree, with the bounding box put in
evidence
\begin{displaymath}
  \fbox{\prfsummarystyle=1
    \prfsummary{A}{B}{A \wedge B}}
\end{displaymath}
can be used wherever a box may appear. In the flow of text, it will
look like \fbox{\prfsummarystyle=1\prfsummary{A}{B}{A \wedge B}}, so
that the conclusion is aligned with the baseline. This makes easier to
align proof trees, as in
\begin{center}
  \fbox{\prfsummarystyle=1
    \prfsummary{f}{g}{f \wedge g}}\qquad
  \fbox{$\begin{prooftree}
      \NDOREL{a:notA}{\NDLEM{A \vee \neg A}}
      {\NDIMPI{\NDDL{[l]a:notA}{A}}{\neg\neg A \supset A}}
      {\hspace{-.4em}\NDIMPIL{a:notnotA}
        {\NDFE{\NDIMPE{\NDDL{[l]a:notnotA}{\neg\neg A}}
            {\NDDL{[l]a:notA}{\neg A}}{\bot}}{A}} 
        {\neg\neg A \supset A}}
      {\neg\neg A \supset A}
    \end{prooftree}$}
\end{center}
since this is the natural way to put proofs side by side:
\begin{verbatim}
  \fbox{\prfsummarystyle=1
    \prfsummary{f}{g}{f \wedge g}}\qquad
  \fbox{$
  \NDOREL{a:notA}{\NDLEM{A \vee \neg A}}
  {\NDIMPI{\NDDL{[l]a:notA}{A}}{\neg\neg A \supset A}}
  {\hspace{-.4em}\NDIMPIL{a:notnotA}
    {\NDFE{\NDIMPE{\NDDL{[l]a:notnotA}{\neg\neg A}}
        {\NDDL{[l]a:notA}{\neg A}}{\bot}}{A}} 
    {\neg\neg A \supset A}}
  {\neg\neg A \supset A}$}
\end{verbatim}

But, if really one has to include a proof tree in the flow of text, it
is slightly better to vertically centre the box, as in
\fbox{$\vcenter{\prfsummary{A}{B}{A \wedge B}}$}. This is obtained by
\begin{verbatim}
  $\vcenter{\prfsummary{A}{B}{A \wedge B}}$
\end{verbatim}

Of course, the result is not pleasant, because rows are far apart,
which is unavoidable because of the height of the proof tree.  The
same principle applies also to arrays of proof trees:
\begin{displaymath}
  \begin{array}{lcccc}
    \text{some text} &
    \setcounter{prfsummarycounter}{0}
    \setcounter{prfassumptioncounter}{0}
    {\prfsummarystyle=1
    \prfsummary<[l]proof:b1>{A}{B}{A \wedge B}} &
    {\prfsummarystyle=1
    \prfsummary<[l]proof:b2>{A}{B}{A \wedge B}} &
    {\prfsummarystyle=1
    \prfsummary<[l]proof:b3>{A}{B}{A \wedge B}} &
    {\prfsummarystyle=1
    \prfsummary<[l]proof:b4>{A}{B}{A \wedge B}}
  \end{array}
\end{displaymath}
\begin{verbatim}
  \begin{array}{lcccc}
    \text{some text} &
    {\prfsummarystyle=1
    \prfsummary<[l]proof:b1>{A}{B}{A \wedge B}} &
    {\prfsummarystyle=1
    \prfsummary<[l]proof:b2>{A}{B}{A \wedge B}} &
    {\prfsummarystyle=1
    \prfsummary<[l]proof:b3>{A}{B}{A \wedge B}} &
    {\prfsummarystyle=1
    \prfsummary<[l]proof:b4>{A}{B}{A \wedge B}}
  \end{array}
\end{verbatim}
vertically aligns the cells to their baselines.

On the contrary
\begin{displaymath}
  \begin{array}{lcccc}
    \text{some text} &
    \setcounter{prfsummarycounter}{0}
    \setcounter{prfassumptioncounter}{0}
    \vcenter{\prfsummarystyle=1
    \prfsummary<[l]proof:b1>{A}{B}{A \wedge B}} &
    \vcenter{\prfsummarystyle=1
    \prfsummary<[l]proof:b2>{A}{B}{A \wedge B}} &
    \vcenter{\prfsummarystyle=1
    \prfsummary<[l]proof:b3>{A}{B}{A \wedge B}} &
    \vcenter{\prfsummarystyle=1
    \prfsummary<[l]proof:b4>{A}{B}{A \wedge B}}
  \end{array}
\end{displaymath}
is much better, and it is obtained by
\begin{verbatim}
  \begin{array}{lcccc}
    \text{some text} &
    \vcenter{\prfsummarystyle=1
    \prfsummary<[l]proof:b1>{A}{B}{A \wedge B}} &
    \vcenter{\prfsummarystyle=1
    \prfsummary<[l]proof:b2>{A}{B}{A \wedge B}} &
    \vcenter{\prfsummarystyle=1
    \prfsummary<[l]proof:b3>{A}{B}{A \wedge B}} &
    \vcenter{\prfsummarystyle=1
    \prfsummary<[l]proof:b4>{A}{B}{A \wedge B}}
  \end{array}
\end{verbatim}\vspace{2ex}

The labelling of proof summaries is useful when a proof is very large
and there is the need to split it. The strategy is to select some
sub-proofs and to show them as summaries: instead of writing
\begin{displaymath}
  \setcounter{prfsummarycounter}{0}
  \setcounter{prfassumptioncounter}{0}
  \NDOREL{a:notA}{\NDLEM{A \vee \neg A}}
  {\NDIMPI{\NDDL{[l]a:notA}{A}}{\neg\neg A \supset A}}
  {\NDIMPIL{a:notnotA}
    {\NDFE{\NDIMPE{\NDDL{[l]a:notnotA}{\neg\neg A}}
        {\NDDL{[l]a:notA}{\neg A}}{\bot}}{A}} 
    {\neg\neg A \supset A}}
  {\neg\neg A \supset A}
\end{displaymath}
we may consider to define
\begin{displaymath}
  \setcounter{prfsummarycounter}{0}
  \setcounter{prfassumptioncounter}{0}
  \mbox{Let }
  \vcenter{\vbox{\prfsummary<s:abbrev>
      {\NDDL{s:notnotA}{\neg\neg A}}
      {\NDAL{s:notA}{\neg A}}
      {\neg\neg A \supset A}}}
  \equiv
  \vcenter{\hbox{$\NDIMPIL{s:notnotA}
      {\NDFE{\NDIMPE{\NDDL{[l]s:notnotA}{\neg\neg A}}
          {\NDAL{[l]s:notA}{\neg A}}{\bot}}{A}} 
      {\neg\neg A \supset A}$}}
\end{displaymath}
allowing to abbreviate the whole proof as
\begin{displaymath}
  \NDOREL{s:notA}{\NDLEM{A \vee \neg A}}
  {\NDIMPI{\NDDL{[l]s:notA}{A}}{\neg\neg A \supset A}}
  {\prfsummary<s:abbrev>
    {\NDDL{[l]s:notnotA}{\neg\neg A}}
    {\NDDL{[l]s:notA}{\neg A}}
      {\neg\neg A \supset A}}
  {\neg\neg A \supset A}
\end{displaymath}

The corresponding \LaTeX{} code is
\begin{verbatim}
  \setcounter{prfsummarycounter}{0}
  \setcounter{prfassumptioncounter}{0}
  \mbox{Let }
  \vcenter{\vbox{\prfsummary<s:abbrev>
      {\NDDL{s:notnotA}{\neg\neg A}}
      {\NDAL{s:notA}{\neg A}}
      {\neg\neg A \supset A}}}
  \equiv
  \vcenter{\hbox{$\NDIMPIL{s:notnotA}
      {\NDFE{\NDIMPE{\NDDL{[l]s:notnotA}{\neg\neg A}}
          {\NDAL{[l]s:notA}{\neg A}}{\bot}}{A}} 
      {\neg\neg A \supset A}$}}
\end{verbatim}
for the definition of the proof summary, and
\begin{verbatim}
  \NDOREL{s:notA}{\NDLEM{A \vee \neg A}}
  {\NDIMPI{\NDDL{[l]s:notA}{A}}{\neg\neg A \supset A}}
  {\prfsummary<s:abbrev>
    {\NDDL{[l]s:notnotA}{\neg\neg A}}
    {\NDDL{[l]s:notA}{\neg A}}
      {\neg\neg A \supset A}}
  {\neg\neg A \supset A}
\end{verbatim}
for its use.

% -------------------------------------
\clearpage
\section{More Examples}\label{sec:examples}
This section shows a number of examples illustrating the package. See
the previous sections for the description of the features.\vspace{2ex}

The disjunction elimination rule, with various line options:
\begin{displaymath}
  \begin{array}{@{}ccc@{}}
    {\prfsummarystyle=1
      \prftree{\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
      {\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
      {C}} &
    {\prfsummarystyle=1
      \prftree[r]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
      {\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
      {C}} &
    {\prfsummarystyle=1
      \prftree[l]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
      {\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
      {C}} \\
    {\prfsummarystyle=1
      \prftree[d]{\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
      {\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
      {C}} &
    {\prfsummarystyle=1
      \prftree[r][d]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
      {\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
      {C}} &
    {\prfsummarystyle=1
      \prftree[l][d]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
      {\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
      {C}} \\
    {\prfsummarystyle=1
      \prftree[dotted]{\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
      {\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
      {C}} &
    {\prfsummarystyle=1
      \prftree[r,dotted]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
      {\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
      {C}} &
    {\prfsummarystyle=1
      \prftree[l,dotted]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
      {\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
      {C}} \\
    {\prfsummarystyle=1
      \prftree[d,dotted]{\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
      {\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
      {C}} &
    {\prfsummarystyle=1
      \prftree[r,d,dotted]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
      {\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
      {C}} &
    {\prfsummarystyle=1
      \prftree[l,d,dotted]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
      {\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
      {C}} \\
    {\prfsummarystyle=1
      \prftree[dashed]{\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
      {\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
      {C}} &
    {\prfsummarystyle=1
      \prftree[r,dashed]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
      {\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
      {C}} &
    {\prfsummarystyle=1
      \prftree[l,dashed]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
      {\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
      {C}} \\
    {\prfsummarystyle=1
      \prftree[d,dashed]{\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
      {\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
      {C}} &
    {\prfsummarystyle=1
      \prftree[d,r,dashed]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
      {\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
      {C}} &
    {\prfsummarystyle=1
      \prftree[d,l,dashed]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
      {\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
      {C}} \\
    {\prfsummarystyle=1
      \prftree[f]{\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
      {\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
      {C}} &
    {\prfsummarystyle=1
      \prftree[r,f]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
      {\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
      {C}} &
    {\prfsummarystyle=1
      \prftree[l,f]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
      {\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
      {C}} \\
    {\prfsummarystyle=1
      \prftree[noline]{\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
      {\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
      {C}} &
    {\prfsummarystyle=1
      \prftree[noline][r]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
      {\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
      {C}} &
    {\prfsummarystyle=1
      \prftree[noline][l]{$\vee$E}{\prfsummary{\Gamma}{A \vee B}}
      {\prfsummary{\Gamma, \prfboundedassumption{A}}{C}}
      {\prfsummary{\Gamma, \prfboundedassumption{B}}{C}}
      {C}}
  \end{array}
\end{displaymath}

Proof that the Law of Excluded middle implies $\neg\neg A \supset A$:
\begin{displaymath}
  \prftree[r]{$\vee$E}
  {\prfbyaxiom{LEM}
    {A \vee \neg A}\hspace{.4em}}
  {\prftree[r]{$\supset$I}
    {\prfboundedassumption{A}}
    {\neg\neg A \supset A}}
  {\prftree[r]{$\supset$I}
    {\prftree[r]{$\bot$E}
      {\prftree[r]{$\supset$E}
        {\prfboundedassumption{\neg\neg A}}
        {\prfboundedassumption{\neg A}}
        {\bot}}
      {A}}
    {\neg\neg A \supset A}}
  {\neg\neg A \supset A}
\end{displaymath}

Proof that the Law of Excluded middle implies $\neg\neg A \supset A$
with labels instead of rule names, except on axioms:
\begin{displaymath}
  \prftree[l]{$\vee$E}
  {\prfbyaxiom{LEM}
    {A \vee \neg A}\hspace{.6em}}
  {\prftree[l]{$\supset$I}
    {\prfboundedassumption{A}}
    {\neg\neg A \supset A}}
  {\prftree[l]{$\supset$I}
    {\prftree[l]{$\bot$E}
      {\prftree[l]{$\supset$E}
        {\prfboundedassumption{\neg\neg A}}
        {\prfboundedassumption{\neg A}}
        {\bot}}
      {A}}
    {\neg\neg A \supset A}}
  {\neg\neg A \supset A}
\end{displaymath}

Another simple proof in natural deduction:
\begin{displaymath}
  \prftree
  {\prftree
    {\prftree
      {\prftree
        {\prftree
          {\prfboundedassumption{A \rightarrow (B \rightarrow C)}}
          {\prfboundedassumption{A}}
          {B \rightarrow C}\hspace{2em}}
        {\prftree
          {\prfboundedassumption{A \rightarrow B}}
          {\prfboundedassumption{A}}
          {B}}
        {C}}
      {A \rightarrow C}}
    {(A \rightarrow B) \rightarrow (A \rightarrow C)}}
  {(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) 
    \rightarrow (A \rightarrow C))} 
\end{displaymath}

The same proof, under the proposition-as-types interpretation:
\begin{displaymath}
  \prftree
  {\prftree
    {\prftree
      {\prftree
        {\prftree
          {\prfassumption{u\colon A \rightarrow (B \rightarrow C)}}
          {\prfassumption{w\colon A}}
          {u w\colon B \rightarrow C}\hspace{2em}}
        {\prftree
          {\prfassumption{v\colon A \rightarrow B}}
          {\prfassumption{w\colon A}}
          {v w\colon B}}
        {u w(v w)\colon C}}
      {\lambda w.\, u w(v w)\colon A \rightarrow C}}
    {\lambda v w.\, u w(v w)\colon (A \rightarrow B) \rightarrow (A
      \rightarrow C)}}
  {\lambda u v w.\, u w(v w)\colon (A \rightarrow (B \rightarrow C))
    \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))}
\end{displaymath}

A deduction in a sequent calculus:
\begin{displaymath}
  \prfinterspace=1.2em
  \prftree
  {\prftree
    {\prftree
      {\prftree
        {\prfassumption{A \Rightarrow A}}
        {\prftree
          {\prfassumption{A \Rightarrow A}}
          {\prftree
            {B \Rightarrow B}
            {C \Rightarrow C}
            {B, B \rightarrow C \Rightarrow C}}
          {A, A \rightarrow B, B \rightarrow C \Rightarrow C}}
        {A, A \rightarrow B, A \rightarrow (B \rightarrow C)
          \Rightarrow C}}
      {A \rightarrow B, A \rightarrow (B \rightarrow C) \Rightarrow A 
        \rightarrow C}}
    {A \rightarrow (B \rightarrow C) \Rightarrow (A \rightarrow B) 
      \rightarrow (A \rightarrow C)}}
  {\Rightarrow (A \rightarrow (B \rightarrow C)) \rightarrow ((A
    \rightarrow B) \rightarrow (A \rightarrow C))}
\end{displaymath}

% -------------------------------------
\clearpage
\section{Internals}\label{sec:internals}
A proof tree is typeset as a \TeX{} box in horizontal mode. This means
that wherever a character can stay, so does a proof: in principle,
there is no need to put the proof in a math environment. Also, the
width of a proof is exactly the width of the box; the height of the
proof is the height of the conclusion plus the total height of all the
matter above it; the depth of the proof is the depth of the
conclusion. The proof is aligned so that the current baseline is the
baseline of the conclusion.

For example, the proof of $g \supset \neg\neg g$ in natural deduction
is:
\begin{displaymath}
  \mbox{proof} \equiv 
  \fbox{\prftree[r]{$\supset$I}
    {\prftree[r]{$\supset$I}
      {\prftree[r]{$\supset$E}
        {\prfboundedassumption{g}}
        {\prfboundedassumption{\neg g}}
        {\bot}}
      {\neg\neg g}}
    {g \supset \neg\neg g}}
\end{displaymath}
The proof has been surrounded by a framebox to make evident its
bounds. Also, since the letter $g$ has a depth, the example shows how
depth in the conclusion influences the alignment of the proof with
respect to the preceding text.\vspace{2ex}

Actually, the fundamental command in the package is \verb|\prftree|:
the commands to construct assumptions (\verb|\prfassumption| and
\verb|\prfboundedassumption|), those to generate axioms
(\verb|\prfaxiom| and \verb|\prfbyaxiom|), and \verb|\prfsummary| are
just appropriate instances.\vspace{2ex}

The \verb|\prftree| command is composed by a parser, which takes care
of reading the various options and parameters, and by a graphical
engine, \verb|\prf@draw|, which calculates and draw the box containing
the proof tree.

It may be useful to understand how the graphical engine works. In the
first place, each proof tree is a box with a structure:
\begin{center}
  {\setlength{\unitlength}{1em}
  \begin{picture}(27,6)
    \put(0.8,0){\framebox(26.2,6){}}
    \put(5,4){\framebox(18,1.8){$\cdots$}}
    \put(5.2,4.2){\framebox(6,1.4){$\mbox{assumption}_1$}} 
    \put(16.8,4.2){\framebox(6,1.4){$\mbox{assumption}_n$}} 
    \put(7,3){\line(1,0){14}}
    \put(22,2.3){\framebox(4.8,1.4){rule name}}
    \put(1,2.3){\framebox(4.8,1.4){label}}
    \put(8.5,0.2){\framebox(11,1.8){conclusion}}
  \end{picture}}
\end{center}

The conclusion, the proof line, and the \emph{assumption line} are
centred. The assumption line is the line whose first element is the
conclusion of the first assumption, and whose last element is the
conclusion of the last assumption, properly spaced so that all the
assumptions fit in between. The width of the proof line is calculated
as the maximum of the width of the assumption line and the conclusion,
with the rule name and the label, if present, hanging on the right and
the left, respectively.

To calculate the assumption line, the engine keeps track of the
position of the conclusion within a proof tree, which reduces to
remember how far is the conclusion from the left margin
(\verb|Lassum|), and how far it is from the right margin
(\verb|Rassum|). So, the assumption line starts from the value of
\verb|Lassum| of the first assumption, and finishes at \verb|Rassum|
of the last assumption. 

Thus, with these values it is not difficult to figure out the
mathematics to place the various boxes around, so to combine them into
a proof tree. This is exactly what the graphical engine does.

Unfortunately, when one writes assumptions as simple formulae, without
the \verb|\prfassumption| command, the corresponding \verb|Lassum| and
\verb|Rassum| are not set to $0$, which is the right value. In fact,
the recursive expansion of the \verb|\prf@draw| macro follows the
\emph{natural} order in the construction of the proof box, which is
extremely useful because it allows to locally modify parameters in
sub-proofs; but this order conflicts with proper rendering of
assumptions which are not proof trees.

Also, the hints on how to put space between assumptions, see
Section~\ref{sec:hints_and_tricks}, may have strange effects: if space
is added in front of the first assumption or behind the last one, this
space makes invalid the values of \verb|Lassum| and \verb|Rassum|,
respectively, yielding hard to predict results.

It is worth remarking that the mathematics of the graphical engine is
sound, which means that zero or negative values for the various
dimensions specified as parameters, or using \emph{bizarre} boxes in
the fancy commands, yields the expected results, as far as boxes do
not have parts which extends beyond the bounds.\vspace{2ex}

The implementation of references mimics the implementation of
\verb|\label| and \verb|\ref| in \LaTeX. Whenever a reference is
defined, through a command with the $\langle \mathrm{label}\rangle$ as
the first argument, the reference value is created according to the
options, and it gets stored in the \texttt{.aux} file, by writing
$\verb|\prfauxvalue|\{\mathrm{label}\}\{\mathrm{value}\}$ in the
file. Then, when the source code will be recompiled, and the
\texttt{.aux} file read, this command will be executed before any
occurrence of a reference, which can be resolved.

Most difficulties in the implementation of references lie in the way
to construct the boxes to be used in the proof tree. But, the tricky
part is the interaction with the \LaTeX{} and \TeX{} kernel for error
reporting. Actually, it is in this part that the bugs signalled in the
next section have their origin. 

% -------------------------------------
\clearpage
\section{Future Features and Bugs}\label{sec:future_features}
Essentially, all the features of Buss's package have been implemented
but one: alignment of proofs according to the $\vdash$ (or equivalent)
sign. While this feature is occasionally useful in the writing of
sequent proofs, it requires some trickery in the graphical engine, so
it has been postponed for the moment.\vspace{2ex}

Moreover, automatic compact proofs have been analysed, but not
implemented. A compact proof minimises the amount of space between
subsequent assumptions, eventually making the upper trees to overlap
as boxes, but not as typed text. 

The algorithm to obtain this result is not immediate: one should keep
track of the left and right \emph{skylines} of a proof. Comparing the
left skyline of an assumption with the right skyline of the next one,
one can calculate what is the distance between the boxes so that the
distance between the closest points in the skylines is exactly
\verb|\prfinterspace|. 

It is not simple to code such an algorithm in \TeX{}, but the real
difficulty is how to represent skylines and how to store them, since
\TeX{} provides no abstract data structures. Hence, the implementation
of this feature has been postponed to a remote future, or to the will
of a real \TeX{} magician.\vspace{2ex}

There are three bugs in the packages. 

The first one is that \verb|\mathrm| and similar may break a proof
tree when used in the rule name. I have not been able to track down
why this happens. The effect is that the proof tree is correctly
constructed but it cannot be used as a box, e.g., it cannot be put
inside a \verb|\fbox| or used in normal text. Although disappointing
this bug can be easily circumvented by typesetting the proof tree in a
math environment, e.g., by putting it into a math display or by
enclosing it in a pair of dollar signs.\vspace{2ex}

The second bug is minimal and in a future version it could be
solved. If one considers the following proof:
\begin{displaymath}
  \begin{prooftree}
    \fbox{%
      \prflineextra=0pt
      \prftree
      {\prftree
        {\prftree
          {\prfboundedassumption{\neg\neg A}}
          {\prfboundedassumption<bug:1>{\neg A}}
          {\bot}}
        {A}}
      {\neg\neg A \supset A}}
  \end{prooftree}
\end{displaymath}
the anchor of assumption (\prfref<bug:1>) is out of the bounding
box. Usually, this is not a problem and, in case, it can be manually
corrected
\begin{displaymath}
  \begin{prooftree}
    \fbox{%
      \prflineextra=0pt
      \hbox{\prftree
      {\prftree
        {\prftree
          {\prfboundedassumption{\neg\neg A}}
          {\prfboundedassumption<[l]bug:1>{\neg A}}
          {\bot}}
        {A}}
      {\neg\neg A \supset A}\hspace{.34em}}}
  \end{prooftree}
\end{displaymath}
as in the following code:
\begin{verbatim}
  \prfassumption{\prftree{\prftree{\prftree
        {\prfboundedassumption{\neg\neg A}}
        {\prfboundedassumption<bug:1>{\neg A}}{\bot}}
      {A}}{\neg\neg A \supset A}\hspace{.34em}}}
\end{verbatim}\vspace{2ex}

The third bug happens the first time a reference is created: if it is
referred by \verb|\prfref| in the rule name, a strange ``immediate''
follows it. This is not a problem, since the code has to be recompiled
anyway to complete the definition of references, and this is enough to
make the problem to disappear. Since it is a transient problem, I have
not investigated any further.  

\vfill

\end{document}