summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/presentations-en/04-01-1.ltxb
blob: 6ae1f0fd912b5ff8a9d8e582b9c1de42a82df7c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
%% 
%%  An UIT Edition example
%% 
%%  Example 04-01-1 on page 68.
%% 
%%  Copyright (C) 2012 Vo\ss 
%% 
%%  It may be distributed and/or modified under the conditions
%%  of the LaTeX Project Public License, either version 1.3
%%  of this license or (at your option) any later version.
%% 
%%  See http://www.latex-project.org/lppl.txt for details.
%% 

% Show page(s) 1,2

%% ==== 
\PassOptionsToClass{british,xcolor={table,dvipsnames}, smaller,compress,hyperref={bookmarks,colorlinks}}{beamer}
\documentclass{exabeamer}
\usepackage[utf8]{inputenc}

%\StartShownPreambleCommands
\documentclass[british,xcolor={table,dvipsnames},smaller,compress,
  hyperref={bookmarks,colorlinks}]{beamer}
%\StopShownPreambleCommands

\begin{document}
\title{Introduction to Analytic Geometry}
\author{Gerhard Kowalewski}
\date{1910}
\frame{\maketitle}
\section{Research and studies}
\begin{frame}{The integral and its geometric applications.}
We assume that the theory of irrational numbers is known.

\begin{enumerate}
 \item The \emph{interval} $\langle a,b\rangle$ consists of all numbers $x$
    that satisfy the condition $a\le x\le b$.
 \item A \emph{sequence of numbers} or \emph{sequence} is created by replacing each
    member of the infinite sequence of numbers $1,2,3,\ldots$ by some rational or
    irrational number, i.e.\ each $n$ by a number $x_n$.
 \item $\lim x_n=g$ means that almost all members of the sequence are within each
    neighbourhood of $g$.
 \item \textbf{Convergence criterion}: The sequence $x_1,x_2,x_3,\ldots$ converges
    if and only if \textbf{each} sub-sequence $x^\prime_1,x^\prime_2,
    x^\prime_3,\ldots$ satisfies the relation $\lim(x_n-x^\prime_n)=0$.
\end{enumerate}
\end{frame}
\end{document}