summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/polexpr/polexpr.html
blob: 5a9404127bd7083ecda8cc5dc60df9cf9c621c84 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.14: http://docutils.sourceforge.net/" />
<title>Package polexpr documentation</title>
<style type="text/css">
body{font-size: 13pt;}
/*
:Author: David Goodger (goodger@python.org)
:Id: $Id: html4css1.css 7952 2016-07-26 18:15:59Z milde $
:Copyright: This stylesheet has been placed in the public domain.

Default cascading style sheet for the HTML output of Docutils.

See http://docutils.sf.net/docs/howto/html-stylesheets.html for how to
customize this style sheet.
*/

/* used to remove borders from tables and images */
.borderless, table.borderless td, table.borderless th {
  border: 0 }

table.borderless td, table.borderless th {
  /* Override padding for "table.docutils td" with "! important".
     The right padding separates the table cells. */
  padding: 0 0.5em 0 0 ! important }

.first {
  /* Override more specific margin styles with "! important". */
  margin-top: 0 ! important }

.last, .with-subtitle {
  margin-bottom: 0 ! important }

.hidden {
  display: none }

.subscript {
  vertical-align: sub;
  font-size: smaller }

.superscript {
  vertical-align: super;
  font-size: smaller }

a.toc-backref {
  text-decoration: none ;
  color: black }

blockquote.epigraph {
  margin: 2em 5em ; }

dl.docutils dd {
  margin-bottom: 0.5em }

object[type="image/svg+xml"], object[type="application/x-shockwave-flash"] {
  overflow: hidden;
}

/* Uncomment (and remove this text!) to get bold-faced definition list terms
dl.docutils dt {
  font-weight: bold }
*/

div.abstract {
  margin: 2em 5em }

div.abstract p.topic-title {
  font-weight: bold ;
  text-align: center }

div.admonition, div.attention, div.caution, div.danger, div.error,
div.hint, div.important, div.note, div.tip, div.warning {
  margin: 2em ;
  border: medium outset ;
  padding: 1em }

div.admonition p.admonition-title, div.hint p.admonition-title,
div.important p.admonition-title, div.note p.admonition-title,
div.tip p.admonition-title {
  font-weight: bold ;
  font-family: sans-serif }

div.attention p.admonition-title, div.caution p.admonition-title,
div.danger p.admonition-title, div.error p.admonition-title,
div.warning p.admonition-title, .code .error {
  color: red ;
  font-weight: bold ;
  font-family: sans-serif }

/* Uncomment (and remove this text!) to get reduced vertical space in
   compound paragraphs.
div.compound .compound-first, div.compound .compound-middle {
  margin-bottom: 0.5em }

div.compound .compound-last, div.compound .compound-middle {
  margin-top: 0.5em }
*/

div.dedication {
  margin: 2em 5em ;
  text-align: center ;
  font-style: italic }

div.dedication p.topic-title {
  font-weight: bold ;
  font-style: normal }

div.figure {
  margin-left: 2em ;
  margin-right: 2em }

div.footer, div.header {
  clear: both;
  font-size: smaller }

div.line-block {
  display: block ;
  margin-top: 1em ;
  margin-bottom: 1em }

div.line-block div.line-block {
  margin-top: 0 ;
  margin-bottom: 0 ;
  margin-left: 1.5em }

div.sidebar {
  margin: 0 0 0.5em 1em ;
  border: medium outset ;
  padding: 1em ;
  background-color: #ffffee ;
  width: 40% ;
  float: right ;
  clear: right }

div.sidebar p.rubric {
  font-family: sans-serif ;
  font-size: medium }

div.system-messages {
  margin: 5em }

div.system-messages h1 {
  color: red }

div.system-message {
  border: medium outset ;
  padding: 1em }

div.system-message p.system-message-title {
  color: red ;
  font-weight: bold }

div.topic {
  margin: 2em }

h1.section-subtitle, h2.section-subtitle, h3.section-subtitle,
h4.section-subtitle, h5.section-subtitle, h6.section-subtitle {
  margin-top: 0.4em }

h1.title {
  text-align: center }

h2.subtitle {
  text-align: center }

hr.docutils {
  width: 75% }

img.align-left, .figure.align-left, object.align-left, table.align-left {
  clear: left ;
  float: left ;
  margin-right: 1em }

img.align-right, .figure.align-right, object.align-right, table.align-right {
  clear: right ;
  float: right ;
  margin-left: 1em }

img.align-center, .figure.align-center, object.align-center {
  display: block;
  margin-left: auto;
  margin-right: auto;
}

table.align-center {
  margin-left: auto;
  margin-right: auto;
}

.align-left {
  text-align: left }

.align-center {
  clear: both ;
  text-align: center }

.align-right {
  text-align: right }

/* reset inner alignment in figures */
div.align-right {
  text-align: inherit }

/* div.align-center * { */
/*   text-align: left } */

.align-top    {
  vertical-align: top }

.align-middle {
  vertical-align: middle }

.align-bottom {
  vertical-align: bottom }

ol.simple, ul.simple {
  margin-bottom: 1em }

ol.arabic {
  list-style: decimal }

ol.loweralpha {
  list-style: lower-alpha }

ol.upperalpha {
  list-style: upper-alpha }

ol.lowerroman {
  list-style: lower-roman }

ol.upperroman {
  list-style: upper-roman }

p.attribution {
  text-align: right ;
  margin-left: 50% }

p.caption {
  font-style: italic }

p.credits {
  font-style: italic ;
  font-size: smaller }

p.label {
  white-space: nowrap }

p.rubric {
  font-weight: bold ;
  font-size: larger ;
  color: maroon ;
  text-align: center }

p.sidebar-title {
  font-family: sans-serif ;
  font-weight: bold ;
  font-size: larger }

p.sidebar-subtitle {
  font-family: sans-serif ;
  font-weight: bold }

p.topic-title {
  font-weight: bold }

pre.address {
  margin-bottom: 0 ;
  margin-top: 0 ;
  font: inherit }

pre.literal-block, pre.doctest-block, pre.math, pre.code {
  margin-left: 2em ;
  margin-right: 2em }

pre.code .ln { color: grey; } /* line numbers */
pre.code, code { background-color: #eeeeee }
pre.code .comment, code .comment { color: #5C6576 }
pre.code .keyword, code .keyword { color: #3B0D06; font-weight: bold }
pre.code .literal.string, code .literal.string { color: #0C5404 }
pre.code .name.builtin, code .name.builtin { color: #352B84 }
pre.code .deleted, code .deleted { background-color: #DEB0A1}
pre.code .inserted, code .inserted { background-color: #A3D289}

span.classifier {
  font-family: sans-serif ;
  font-style: oblique }

span.classifier-delimiter {
  font-family: sans-serif ;
  font-weight: bold }

span.interpreted {
  font-family: sans-serif }

span.option {
  white-space: nowrap }

span.pre {
  white-space: pre }

span.problematic {
  color: red }

span.section-subtitle {
  /* font-size relative to parent (h1..h6 element) */
  font-size: 80% }

table.citation {
  border-left: solid 1px gray;
  margin-left: 1px }

table.docinfo {
  margin: 2em 4em }

table.docutils {
  margin-top: 0.5em ;
  margin-bottom: 0.5em }

table.footnote {
  border-left: solid 1px black;
  margin-left: 1px }

table.docutils td, table.docutils th,
table.docinfo td, table.docinfo th {
  padding-left: 0.5em ;
  padding-right: 0.5em ;
  vertical-align: top }

table.docutils th.field-name, table.docinfo th.docinfo-name {
  font-weight: bold ;
  text-align: left ;
  white-space: nowrap ;
  padding-left: 0 }

/* "booktabs" style (no vertical lines) */
table.docutils.booktabs {
  border: 0px;
  border-top: 2px solid;
  border-bottom: 2px solid;
  border-collapse: collapse;
}
table.docutils.booktabs * {
  border: 0px;
}
table.docutils.booktabs th {
  border-bottom: thin solid;
  text-align: left;
}

h1 tt.docutils, h2 tt.docutils, h3 tt.docutils,
h4 tt.docutils, h5 tt.docutils, h6 tt.docutils {
  font-size: 100% }

ul.auto-toc {
  list-style-type: none }

</style>
</head>
<body>
<div class="document" id="package-polexpr-documentation">
<h1 class="title">Package polexpr documentation</h1>
<h2 class="subtitle" id="id1">0.4.1 (2018/03/01)</h2>

<!-- comment: -*- fill-column: 72; mode: rst; -*- -->
<div class="contents topic" id="contents">
<p class="topic-title first">Contents</p>
<ul class="simple">
<li><a class="reference internal" href="#basic-examples" id="id33">Basic Examples</a></li>
<li><a class="reference internal" href="#examples-of-localization-of-roots" id="id34">Examples of localization of roots</a><ul>
<li><a class="reference internal" href="#a-typical-example" id="id35">A typical example</a></li>
<li><a class="reference internal" href="#a-degree-four-polynomial-with-nearby-roots" id="id36">A degree four polynomial with nearby roots</a></li>
<li><a class="reference internal" href="#the-degree-nine-polynomial-with-0-99-0-999-0-9999-as-triple-roots" id="id37">The degree nine polynomial with 0.99, 0.999, 0.9999 as triple roots</a></li>
<li><a class="reference internal" href="#a-mignotte-type-polynomial" id="id38">A Mignotte type polynomial</a></li>
<li><a class="reference internal" href="#the-degree-41-polynomial-with-2-1-9-1-8-0-0-1-1-9-2-as-roots" id="id39">The degree 41 polynomial with -2, -1.9, -1.8, ..., 0, 0.1, ..., 1.9, 2 as roots</a></li>
<li><a class="reference internal" href="#roots-of-chebyshev-polynomials" id="id40">Roots of Chebyshev polynomials</a></li>
</ul>
</li>
<li><a class="reference internal" href="#non-expandable-macros" id="id41">Non-expandable macros</a><ul>
<li><a class="reference internal" href="#poldef-polname-letter-expression-in-letter" id="id42"><tt class="docutils literal">\poldef <span class="pre">polname(letter):=</span> expression in letter;</tt></a></li>
<li><a class="reference internal" href="#poldef-letter-polname-expression-in-letter" id="id43"><tt class="docutils literal"><span class="pre">\PolDef[letter]{polname}{expression</span> in letter}</tt></a></li>
<li><a class="reference internal" href="#polgenfloatvariant-polname" id="id44"><tt class="docutils literal">\PolGenFloatVariant{polname}</tt></a></li>
<li><a class="reference internal" href="#pollet-polname-2-polname-1" id="id45"><tt class="docutils literal"><span class="pre">\PolLet{polname_2}={polname_1}</span></tt></a></li>
<li><a class="reference internal" href="#polgloballet-polname-2-polname-1" id="id46"><tt class="docutils literal"><span class="pre">\PolGlobalLet{polname_2}={polname_1}</span></tt></a></li>
<li><a class="reference internal" href="#polassign-polname-toarray-macro" id="id47"><tt class="docutils literal"><span class="pre">\PolAssign{polname}\toarray\macro</span></tt></a></li>
<li><a class="reference internal" href="#polget-polname-fromarray-macro" id="id48"><tt class="docutils literal"><span class="pre">\PolGet{polname}\fromarray\macro</span></tt></a></li>
<li><a class="reference internal" href="#polfromcsv-polname-csv" id="id49"><tt class="docutils literal"><span class="pre">\PolFromCSV{polname}{&lt;csv&gt;}</span></tt></a></li>
<li><a class="reference internal" href="#poltypeset-polname" id="id50"><tt class="docutils literal">\PolTypeset{polname}</tt></a><ul>
<li><a class="reference internal" href="#poltypesetcmd-raw-coeff" id="id51"><tt class="docutils literal">\PolTypesetCmd{raw_coeff}</tt></a></li>
<li><a class="reference internal" href="#poltypesetone-raw-coeff" id="id52"><tt class="docutils literal">\PolTypesetOne{raw_coeff}</tt></a></li>
<li><a class="reference internal" href="#id6" id="id53"><tt class="docutils literal">\PolTypesetMonomialCmd</tt></a></li>
<li><a class="reference internal" href="#poltypesetcmdprefix-raw-coeff" id="id54"><tt class="docutils literal">\PolTypesetCmdPrefix{raw_coeff}</tt></a></li>
</ul>
</li>
<li><a class="reference internal" href="#id8" id="id55"><tt class="docutils literal"><span class="pre">\PolTypeset*{polname}</span></tt></a></li>
<li><a class="reference internal" href="#poldiff-polname-1-polname-2" id="id56"><tt class="docutils literal"><span class="pre">\PolDiff{polname_1}{polname_2}</span></tt></a></li>
<li><a class="reference internal" href="#poldiff-n-polname-1-polname-2" id="id57"><tt class="docutils literal"><span class="pre">\PolDiff[N]{polname_1}{polname_2}</span></tt></a></li>
<li><a class="reference internal" href="#polantidiff-polname-1-polname-2" id="id58"><tt class="docutils literal"><span class="pre">\PolAntiDiff{polname_1}{polname_2}</span></tt></a></li>
<li><a class="reference internal" href="#polantidiff-n-polname-1-polname-2" id="id59"><tt class="docutils literal"><span class="pre">\PolAntiDiff[N]{polname_1}{polname_2}</span></tt></a></li>
<li><a class="reference internal" href="#poldivide-polname-1-polname-2-polname-q-polname-r" id="id60"><tt class="docutils literal"><span class="pre">\PolDivide{polname_1}{polname_2}{polname_Q}{polname_R}</span></tt></a></li>
<li><a class="reference internal" href="#polquo-polname-1-polname-2-polname-q" id="id61"><tt class="docutils literal"><span class="pre">\PolQuo{polname_1}{polname_2}{polname_Q}</span></tt></a></li>
<li><a class="reference internal" href="#polrem-polname-1-polname-2-polname-r" id="id62"><tt class="docutils literal"><span class="pre">\PolRem{polname_1}{polname_2}{polname_R}</span></tt></a></li>
<li><a class="reference internal" href="#polgcd-polname-1-polname-2-polname-gcd" id="id63"><tt class="docutils literal"><span class="pre">\PolGCD{polname_1}{polname_2}{polname_GCD}</span></tt></a></li>
<li><a class="reference internal" href="#poltosturm-polname-sturmname" id="id64"><tt class="docutils literal"><span class="pre">\PolToSturm{polname}{sturmname}</span></tt></a></li>
<li><a class="reference internal" href="#id10" id="id65"><tt class="docutils literal"><span class="pre">\PolToSturm*{polname}{sturmname}</span></tt></a></li>
<li><a class="reference internal" href="#polsettosturmchainsignchangesat-macro-sturmname-fraction" id="id66"><tt class="docutils literal"><span class="pre">\PolSetToSturmChainSignChangesAt{\macro}{sturmname}{fraction}</span></tt></a></li>
<li><a class="reference internal" href="#polsettonbofzeroswithin-macro-sturmname-value-a-value-b" id="id67"><tt class="docutils literal"><span class="pre">\PolSetToNbOfZerosWithin{\macro}{sturmname}{value_a}{value_b}</span></tt></a></li>
<li><a class="reference internal" href="#polsturmisolatezeros-sturmname" id="id68"><tt class="docutils literal">\PolSturmIsolateZeros{sturmname}</tt></a></li>
<li><a class="reference internal" href="#polrefineinterval-sturmname-index" id="id69"><tt class="docutils literal"><span class="pre">\PolRefineInterval*{sturmname}{index}</span></tt></a></li>
<li><a class="reference internal" href="#polrefineinterval-n-sturmname-index" id="id70"><tt class="docutils literal"><span class="pre">\PolRefineInterval[N]{sturmname}{index}</span></tt></a></li>
<li><a class="reference internal" href="#polensureintervallength-sturmname-index-e" id="id71"><tt class="docutils literal"><span class="pre">\PolEnsureIntervalLength{sturmname}{index}{E}</span></tt></a></li>
<li><a class="reference internal" href="#polensureintervallengths-sturmname-e" id="id72"><tt class="docutils literal"><span class="pre">\PolEnsureIntervalLengths{sturmname}{E}</span></tt></a></li>
<li><a class="reference internal" href="#polprintintervals-varname-sturmname" id="id73"><tt class="docutils literal"><span class="pre">\PolPrintIntervals[varname]{sturmname}</span></tt></a><ul>
<li><a class="reference internal" href="#id11" id="id74"><tt class="docutils literal">\PolPrintIntervalsPrintExactZero</tt></a></li>
<li><a class="reference internal" href="#id12" id="id75"><tt class="docutils literal">\PolPrintIntervalsPrintLeftEndPoint</tt></a></li>
<li><a class="reference internal" href="#id13" id="id76"><tt class="docutils literal">\PolPrintIntervalsPrintRightEndPoint</tt></a></li>
</ul>
</li>
<li><a class="reference internal" href="#polmapcoeffs-macro-polname" id="id77"><tt class="docutils literal"><span class="pre">\PolMapCoeffs{\macro}{polname}</span></tt></a></li>
<li><a class="reference internal" href="#polreducecoeffs-polname" id="id78"><tt class="docutils literal">\PolReduceCoeffs{polname}</tt></a></li>
<li><a class="reference internal" href="#id15" id="id79"><tt class="docutils literal"><span class="pre">\PolReduceCoeffs*{polname}</span></tt></a></li>
<li><a class="reference internal" href="#polmakemonic-polname" id="id80"><tt class="docutils literal">\PolMakeMonic{polname}</tt></a></li>
</ul>
</li>
<li><a class="reference internal" href="#expandable-macros" id="id81">Expandable macros</a><ul>
<li><a class="reference internal" href="#poleval-polname-atexpr-numerical-expression" id="id82"><tt class="docutils literal"><span class="pre">\PolEval{polname}\AtExpr{numerical</span> expression}</tt></a></li>
<li><a class="reference internal" href="#poleval-polname-at-fraction" id="id83"><tt class="docutils literal"><span class="pre">\PolEval{polname}\At{fraction}</span></tt></a></li>
<li><a class="reference internal" href="#polevalreduced-polname-atexpr-numerical-expression" id="id84"><tt class="docutils literal"><span class="pre">\PolEvalReduced{polname}\AtExpr{numerical</span> expression}</tt></a></li>
<li><a class="reference internal" href="#polevalreduced-polname-at-fraction" id="id85"><tt class="docutils literal"><span class="pre">\PolEvalReduced{polname}\At{fraction}</span></tt></a></li>
<li><a class="reference internal" href="#polfloateval-polname-atexpr-numerical-expression" id="id86"><tt class="docutils literal"><span class="pre">\PolFloatEval{polname}\AtExpr{numerical</span> expression}</tt></a></li>
<li><a class="reference internal" href="#polfloateval-polname-at-fraction" id="id87"><tt class="docutils literal"><span class="pre">\PolFloatEval{polname}\At{fraction}</span></tt></a></li>
<li><a class="reference internal" href="#polifcoeffisplusorminusone-a-b" id="id88"><tt class="docutils literal"><span class="pre">\PolIfCoeffIsPlusOrMinusOne{A}{B}</span></tt></a></li>
<li><a class="reference internal" href="#polleadingcoeff-polname" id="id89"><tt class="docutils literal">\PolLeadingCoeff{polname}</tt></a></li>
<li><a class="reference internal" href="#polnthcoeff-polname-number" id="id90"><tt class="docutils literal"><span class="pre">\PolNthCoeff{polname}{number}</span></tt></a></li>
<li><a class="reference internal" href="#poldegree-polname" id="id91"><tt class="docutils literal">\PolDegree{polname}</tt></a></li>
<li><a class="reference internal" href="#poltoexpr-polname" id="id92"><tt class="docutils literal">\PolToExpr{polname}</tt></a><ul>
<li><a class="reference internal" href="#poltoexproneterm-raw-coeff-number" id="id93"><tt class="docutils literal"><span class="pre">\PolToExprOneTerm{raw_coeff}{number}</span></tt></a></li>
<li><a class="reference internal" href="#poltoexpronetermstylea-raw-coeff-number" id="id94"><tt class="docutils literal"><span class="pre">\PolToExprOneTermStyleA{raw_coeff}{number}</span></tt></a></li>
<li><a class="reference internal" href="#poltoexpronetermstyleb-raw-coeff-number" id="id95"><tt class="docutils literal"><span class="pre">\PolToExprOneTermStyleB{raw_coeff}{number}</span></tt></a></li>
<li><a class="reference internal" href="#poltoexprcmd-raw-coeff" id="id96"><tt class="docutils literal">\PolToExprCmd{raw_coeff}</tt></a></li>
<li><a class="reference internal" href="#poltoexprtermprefix-raw-coeff" id="id97"><tt class="docutils literal">\PolToExprTermPrefix{raw_coeff}</tt></a></li>
<li><a class="reference internal" href="#id23" id="id98"><tt class="docutils literal">\PolToExprVar</tt></a></li>
<li><a class="reference internal" href="#id24" id="id99"><tt class="docutils literal">\PolToExprTimes</tt></a></li>
</ul>
</li>
<li><a class="reference internal" href="#id26" id="id100"><tt class="docutils literal"><span class="pre">\PolToExpr*{polname}</span></tt></a></li>
<li><a class="reference internal" href="#poltofloatexpr-polname" id="id101"><tt class="docutils literal">\PolToFloatExpr{polname}</tt></a><ul>
<li><a class="reference internal" href="#poltofloatexproneterm-raw-coeff-number" id="id102"><tt class="docutils literal"><span class="pre">\PolToFloatExprOneTerm{raw_coeff}{number}</span></tt></a></li>
<li><a class="reference internal" href="#poltofloatexprcmd-raw-coeff" id="id103"><tt class="docutils literal">\PolToFloatExprCmd{raw_coeff}</tt></a></li>
</ul>
</li>
<li><a class="reference internal" href="#id30" id="id104"><tt class="docutils literal"><span class="pre">\PolToFloatExpr*{polname}</span></tt></a></li>
<li><a class="reference internal" href="#poltolist-polname" id="id105"><tt class="docutils literal">\PolToList{polname}</tt></a></li>
<li><a class="reference internal" href="#poltocsv-polname" id="id106"><tt class="docutils literal">\PolToCSV{polname}</tt></a></li>
<li><a class="reference internal" href="#polsturmchainlength-sturmname" id="id107"><tt class="docutils literal">\PolSturmChainLength{sturmname}</tt></a></li>
<li><a class="reference internal" href="#polsturmifzeroexactlyknown-sturmname-index-a-b" id="id108"><tt class="docutils literal"><span class="pre">\PolSturmIfZeroExactlyKnown{sturmname}{index}{A}{B}</span></tt></a></li>
<li><a class="reference internal" href="#polsturmisolatedzeroleft-sturmname-index" id="id109"><tt class="docutils literal"><span class="pre">\PolSturmIsolatedZeroLeft{sturmname}{index}</span></tt></a></li>
<li><a class="reference internal" href="#polsturmisolatedzeroright-sturmname-index" id="id110"><tt class="docutils literal"><span class="pre">\PolSturmIsolatedZeroRight{sturmname}{index}</span></tt></a></li>
<li><a class="reference internal" href="#polsturmnbofisolatedzeros-sturmname" id="id111"><tt class="docutils literal">\PolSturmNbOfIsolatedZeros{sturmname}</tt></a></li>
<li><a class="reference internal" href="#polintervalwidth-sturmname-index" id="id112"><tt class="docutils literal"><span class="pre">\PolIntervalWidth{sturmname}{index}</span></tt></a></li>
<li><a class="reference internal" href="#macros-for-use-within-execution-of-polprintintervals" id="id113">Macros for use within execution of <tt class="docutils literal">\PolPrintIntervals</tt></a><ul>
<li><a class="reference internal" href="#id31" id="id114"><tt class="docutils literal">\PolPrintIntervalsTheEndPoint</tt></a></li>
<li><a class="reference internal" href="#id32" id="id115"><tt class="docutils literal">\PolPrintIntervalsTheIndex</tt></a></li>
<li><a class="reference internal" href="#polifendpointispositive-a-b" id="id116"><tt class="docutils literal"><span class="pre">\PolIfEndPointIsPositive{A}{B}</span></tt></a></li>
<li><a class="reference internal" href="#polifendpointisnegative-a-b" id="id117"><tt class="docutils literal"><span class="pre">\PolIfEndPointIsNegative{A}{B}</span></tt></a></li>
<li><a class="reference internal" href="#polifendpointiszero-a-b" id="id118"><tt class="docutils literal"><span class="pre">\PolIfEndPointIsZero{A}{B}</span></tt></a></li>
</ul>
</li>
<li><a class="reference internal" href="#poldectostring-decimal-number" id="id119"><tt class="docutils literal">\PolDecToString{decimal number}</tt></a></li>
</ul>
</li>
<li><a class="reference internal" href="#booleans-with-default-setting-as-indicated" id="id120">Booleans (with default setting as indicated)</a><ul>
<li><a class="reference internal" href="#xintverbosefalse" id="id121"><tt class="docutils literal">\xintverbosefalse</tt></a></li>
<li><a class="reference internal" href="#poltypesetallfalse" id="id122"><tt class="docutils literal">\poltypesetallfalse</tt></a></li>
<li><a class="reference internal" href="#poltoexprallfalse" id="id123"><tt class="docutils literal">\poltoexprallfalse</tt></a></li>
</ul>
</li>
<li><a class="reference internal" href="#technicalities" id="id124">Technicalities</a></li>
<li><a class="reference internal" href="#change-log" id="id125">CHANGE LOG</a></li>
<li><a class="reference internal" href="#acknowledgments" id="id126">Acknowledgments</a></li>
</ul>
</div>
<div class="section" id="basic-examples">
<h1><a class="toc-backref" href="#id33">Basic Examples</a></h1>
<p>The syntax is:</p>
<pre class="literal-block">
\poldef polname(x):= expression in variable x;
</pre>
<p>where in place of <tt class="docutils literal">x</tt> an arbitrary <em>dummy variable</em> is authorized
(i.e. per default any of <tt class="docutils literal"><span class="pre">[a-z|A-Z]</span></tt>; more letters can be declared
under Unicode engines.) One can also issue:</p>
<pre class="literal-block">
\PolDef{polname}{expression in variable x}
</pre>
<p>which admits an optional first argument to modify the variable letter
from its default <tt class="docutils literal">x</tt>.</p>
<dl class="docutils">
<dt><tt class="docutils literal">\poldef <span class="pre">f(x):=</span> <span class="pre">1-x+x^2;</span></tt></dt>
<dd>defines polynomial <tt class="docutils literal">f</tt>. Polynomial names must start with a
letter and may contain letters, digits, and underscores. The
variable must be a single letter. The colon character is optional.
The semi-colon at end of expression is mandatory.</dd>
<dt><tt class="docutils literal"><span class="pre">\PolDef{f}{1-x+x^2}</span></tt></dt>
<dd>does the same as <tt class="docutils literal">\poldef <span class="pre">f(x):=</span> <span class="pre">1-x+x^2;</span></tt> To use another letter
than <tt class="docutils literal">x</tt> in the expression, one must pass it as an extra optional
argument to <tt class="docutils literal">\PolDef</tt>. Useful if the semi-colon has been assigned
some non-standard catcode by some package.</dd>
<dt><tt class="docutils literal"><span class="pre">\PolLet{g}={f}</span></tt></dt>
<dd>saves a copy of <tt class="docutils literal">f</tt> under name <tt class="docutils literal">g</tt>. Also usable without <tt class="docutils literal">=</tt>.</dd>
<dt><tt class="docutils literal">\poldef <span class="pre">f(z):=</span> <span class="pre">f(z)^2;</span></tt></dt>
<dd>redefines <tt class="docutils literal">f</tt> in terms of itself.</dd>
<dt><tt class="docutils literal">\poldef <span class="pre">f(T):=</span> <span class="pre">f(f(T));</span></tt></dt>
<dd>again redefines <tt class="docutils literal">f</tt> in terms of its (new) self.</dd>
<dt><tt class="docutils literal">\poldef <span class="pre">k(z):=</span> <span class="pre">f(z)-g(g(z)^2)^2;</span></tt></dt>
<dd>should now define the zero polynomial... Let's check:
<tt class="docutils literal">\[ k(z) = <span class="pre">\PolTypeset[z]{k}</span> \]</tt></dd>
<dt><tt class="docutils literal"><span class="pre">\PolDiff{f}{df_dx}</span></tt></dt>
<dd>sets <tt class="docutils literal">df_dx</tt> to the derivative of <tt class="docutils literal">f</tt>.</dd>
<dt><tt class="docutils literal"><span class="pre">\PolDiff{df_dx}{f_xx}</span></tt></dt>
<dd>obtains second derivative.</dd>
<dt><tt class="docutils literal"><span class="pre">\PolDiff[3]{f}{d3f_dx3}</span></tt></dt>
<dd>computes directly the third derivative. Its name does not have to be
chosen so complicated <tt class="docutils literal">:)</tt>, but the right quote <tt class="docutils literal">'</tt> is not
allowed in polynomial names (currently).</dd>
</dl>
<pre class="literal-block">
$f(z)   = \PolTypeset[z]{f}    $\newline
$f'(z)  = \PolTypeset[z]{df_dx}$\newline
$f''(z) = \PolTypeset[z]{f_xx}$\newline
$f'''(z)= \PolTypeset[z]{d3f_dx3}$\par
</pre>
<div class="admonition important">
<p class="first admonition-title">Important</p>
<p>The package does not currently know rational functions: <tt class="docutils literal">/</tt> in
a parsed polynomial expression does the Euclidean quotient:</p>
<pre class="literal-block">
(1-x^2)/(1-x)
</pre>
<p>does give <tt class="docutils literal">1+x</tt> but</p>
<pre class="literal-block">
(1/(1-x))*(1-x^2)
</pre>
<p>evaluates to zero. This will work as expected:</p>
<pre class="last literal-block">
\poldef k(x):= (x-1)(x-2)(x-3)(x-4)/(x^2-5x+4);
</pre>
</div>
<div class="admonition attention" id="warningtacit">
<p class="first admonition-title">Attention!</p>
<p><tt class="docutils literal">1/2 x^2</tt> skips the space and is treated like <tt class="docutils literal"><span class="pre">1/(2*x^2)</span></tt> because
of the tacit multiplication rules of xintexpr. But this means it
gives zero! Thus one must use <tt class="docutils literal">(1/2)x^2</tt> or <tt class="docutils literal">1/2*x^2</tt> or
<tt class="docutils literal"><span class="pre">(1/2)*x^2</span></tt> for disambiguation: <tt class="docutils literal">x - 1/2*x^2 + <span class="pre">1/3*x^3...</span></tt>. It is
even simpler to move the denominator to the right: <tt class="docutils literal">x - x^2/2 +
x^3/3 - ...</tt>.</p>
<p class="last">It is worth noting that <tt class="docutils literal"><span class="pre">1/2(x-1)(x-2)</span></tt> suffers the same issue:
<a class="reference external" href="http://www.ctan.org/pkg/xint">xint</a> tacit multiplication always &quot;ties more&quot;, hence this gets
interpreted as <tt class="docutils literal"><span class="pre">1/(2*(x-1)*(x-2))</span></tt> which gives zero by polynomial
division. Thus, use one of <tt class="docutils literal"><span class="pre">(1/2)(x-1)(x-2)</span></tt>, <tt class="docutils literal"><span class="pre">1/2*(x-1)(x-2)</span></tt> or
<tt class="docutils literal"><span class="pre">(x-1)(x-2)/2</span></tt>.</p>
</div>
<p>After:</p>
<pre class="literal-block">
\poldef f_1(x):= 25(x-1)(x^2-2)(x-3)(x-4)(x-5);%
\poldef f_2(x):= 37(x-1)(x^2-2)(x-6)(x-7)(x-8);%
</pre>
<p>the macro call <tt class="docutils literal"><span class="pre">\PolGCD{f_1}{f_2}{k}</span></tt> sets <tt class="docutils literal">k</tt> to the (unitary) GCD of
<tt class="docutils literal">f_1</tt> and <tt class="docutils literal">f_2</tt> (hence to the expansion of <tt class="docutils literal"><span class="pre">(x-1)(x^2-2)</span></tt>.)</p>
<dl class="docutils">
<dt><tt class="docutils literal">\PolToExpr{k}</tt></dt>
<dd>will (expandably) give in this case <tt class="docutils literal"><span class="pre">x^3-x^2-2*x+2</span></tt>. This is
useful for console or file output (the syntax is Maple- and
PSTricks-compatible; the letter used in output can be
(non-expandably) changed via a redefinition of <a class="reference internal" href="#poltoexprvar">\PolToExprVar</a>.)</dd>
<dt><tt class="docutils literal"><span class="pre">\PolToExpr*{k}</span></tt></dt>
<dd>gives ascending powers: <tt class="docutils literal"><span class="pre">2-2*x-x^2+x^3</span></tt>.</dd>
</dl>
</div>
<div class="section" id="examples-of-localization-of-roots">
<h1><a class="toc-backref" href="#id34">Examples of localization of roots</a></h1>
<p>First some remarks about auxiliaries.</p>
<ul>
<li><p class="first">To make printed decimal numbers more enjoyable than via
<tt class="docutils literal">\xintSignedFrac</tt>:</p>
<pre class="literal-block">
\renewcommand\PolTypesetOne[1]{\PolDecToString{\xintREZ{#1}}}%
</pre>
<p><tt class="docutils literal">\PolDecToString</tt> will use decimal notation to incorporate the power
of ten part; and the <tt class="docutils literal">\xintREZ</tt> will have the effect to suppress
trailing zeros if present in raw numerator (if those digits end up
after decimal mark.) Notice that the above are expandable macros and
that one can also do:</p>
<pre class="literal-block">
\renewcommand\PolToExprCmd[1]{\PolDecToString{\xintREZ{#1}}}%
</pre>
<p>to modify output of <a class="reference internal" href="#poltoexpr-polname">\PolToExpr{polname}</a>.</p>
</li>
<li><p class="first">for extra info in log file <tt class="docutils literal">\xintverbosetrue</tt>. In fact one can also
work from command line then (I recommend <tt class="docutils literal">rlwrap</tt> for encapsulating
<tt class="docutils literal">latex</tt>).</p>
</li>
</ul>
<div class="section" id="a-typical-example">
<h2><a class="toc-backref" href="#id35">A typical example</a></h2>
<p>In this example the polynomial is square-free; we can make sure of that by
comparing the degree of the first element of the Sturm chain with the
degree of the original polynomial. In such case the second element of
the Sturm chain is still the polynomial first derivative, because there
was no further reduction.</p>
<pre class="literal-block">
\poldef f(x) := x^7 - x^6 - 2x + 1;

\PolToSturm{f}{f}
\PolSturmIsolateZeros{f}
The \PolTypeset{f} polynomial has \PolSturmNbOfIsolatedZeros{f} distinct real
roots which are located in the following intervals:
\PolPrintIntervals{f}
Here is the second root with ten more decimal digits:
\PolRefineInterval[10]{f}{2}
\[\PolSturmIsolatedZeroLeft{f}{2}&lt;Z_2&lt;\PolSturmIsolatedZeroRight{f}{2}\]
And here is the first root with twenty digits after decimal mark:
\PolEnsureIntervalLength{f}{1}{-20}
\[\PolSturmIsolatedZeroLeft{f}{1}&lt;Z_1&lt;\PolSturmIsolatedZeroRight{f}{1}\]
The derivative polynomial is \PolTypeset{f_1} (from
$\PolDegree{f_0}=7$ we know that original polynomial was square-free).
\PolToSturm{f_1}{f_1}\PolSturmIsolateZeros{f_1}%
It has \PolSturmNbOfIsolatedZeros{f_1} distinct real
roots:
\PolPrintIntervals[W]{f_1}
\PolEnsureIntervalLengths{f_1}{-10}%
Here they are with ten digits after decimal mark:
\PolPrintIntervals[W]{f_1}
\PolDiff{f_1}{f_xx}
\PolToSturm{f_xx}{f_xx}
\PolSturmIsolateZeros{f_xx}
The second derivative is \PolTypeset{f_xx}.
It has \PolSturmNbOfIsolatedZeros{f_xx} distinct real
roots:
\PolPrintIntervals[X]{f_xx}
Here is the positive one with 20 digits after decimal mark:
\PolEnsureIntervalLength{f_xx}{2}{-20}%
\[X_2 = \PolSturmIsolatedZeroLeft{f_xx}{2}\dots\]
The more mathematically advanced among our dear readers will be able
to give the exact value for $X_2$!
</pre>
</div>
<div class="section" id="a-degree-four-polynomial-with-nearby-roots">
<h2><a class="toc-backref" href="#id36">A degree four polynomial with nearby roots</a></h2>
<pre class="literal-block">
\PolDef{Q}{(x-1.050001)(x-1.105001)(x-1.110501)(x-1.111051)}
\PolTypeset{Q}
\PolToSturm{Q}{Q} % it is allowed to use same prefix for Sturm chain
\PolSturmIsolateZeros{Q}
\PolPrintIntervals{Q}
% reports 1.0 &lt; Z_1 &lt; 1.1, 1.10 &lt; Z_2 &lt; 1.11, 1.110 &lt; Z_3 &lt; 1.111, and 1.111 &lt; Z_4 &lt; 1.112
% but the above bounds do not allow minimizing separation between roots
% so we refine:
\PolRefineInterval*{Q}{1}
\PolRefineInterval*{Q}{2}
\PolRefineInterval*{Q}{3}
\PolRefineInterval*{Q}{4}
\PolPrintIntervals{Q}
% reports 1.05 &lt; Z_1 &lt; 1.06, 1.105 &lt; Z_2 &lt; 1.106, 1.1105 &lt; Z_3 &lt; 1.1106,
% and 1.11105 &lt; Z_4 &lt; 1.11106.
\PolEnsureIntervalLengths{Q}{-6}
\PolPrintIntervals{Q}
% of course finds here all roots exactly
</pre>
</div>
<div class="section" id="the-degree-nine-polynomial-with-0-99-0-999-0-9999-as-triple-roots">
<h2><a class="toc-backref" href="#id37">The degree nine polynomial with 0.99, 0.999, 0.9999 as triple roots</a></h2>
<pre class="literal-block">
\PolDef{P}{(x-0.99)^3(x-0.999)^3(x-0.9999)^3}
\PolTypeset{P}\par
\PolToSturm{P}{P}%
\PolLet{Psqfree}{P_0}\PolMakeMonic{Psqfree}\PolReduceCoeffs*{Psqfree}
\par
The monic square-free radical is \PolTypeset{Psqfree}.
\PolSturmIsolateZeros{P}
\par
It has \PolSturmNbOfIsolatedZeros{P} real roots.
\PolPrintIntervals{P}% all three roots found exactly
</pre>
</div>
<div class="section" id="a-mignotte-type-polynomial">
<h2><a class="toc-backref" href="#id38">A Mignotte type polynomial</a></h2>
<pre class="literal-block">
\PolDef{P}{x^10 - (10x-1)^2}%
\PolTypeset{P}              % prints it in expanded form
\PolToSturm{P}{P}           % we can use same prefix for Sturm chain
\PolSturmIsolateZeros{P}    % finds 4 real roots
\PolPrintIntervals{P}%
% reports  -2 &lt; Z_1 &lt; -1, 0 &lt; Z_2 &lt; 0.1, 0.1 &lt; Z_3 &lt; 0.2, 1 &lt; Z_4 &lt; 2
\PolRefineInterval*{P}{2}% will refine to 0.0999990 &lt; Z_2 &lt; 0.0999991
\PolRefineInterval*{P}{3}% will refine to 0.100001 &lt; Z_3 &lt; 0.100002
\PolPrintIntervals{P}%
\PolEnsureIntervalLengths{P}{-10}%
\PolPrintIntervals{P}% now all roots are known 10 decimal digits after mark
\PolEnsureIntervalLength{P}{2}{-20}% makes Z_2 known with 20 digits after mark
There are $\PolSturmNbOfIsolatedZeros{P}$ distinct real roots and there holds
$\PolSturmIsolatedZeroLeft{P}{2}&lt;Z_2&lt;\PolSturmIsolatedZeroRight{P}{2}$.
</pre>
<p>The last line produces:</p>
<pre class="literal-block">
0.09999900004999650028 &lt; Z_2 &lt; 0.09999900004999650029
</pre>
</div>
<div class="section" id="the-degree-41-polynomial-with-2-1-9-1-8-0-0-1-1-9-2-as-roots">
<h2><a class="toc-backref" href="#id39">The degree 41 polynomial with -2, -1.9, -1.8, ..., 0, 0.1, ..., 1.9, 2 as roots</a></h2>
<pre class="literal-block">
\PolDef{P}{mul((x-i*1e-1), i=-20..20)}% i/10 is same but less efficient
</pre>
<p>In the defining expression we could have used <tt class="docutils literal">i/10</tt> but this gives
less efficient internal form for the coefficients (the <tt class="docutils literal">10</tt>'s end up
in denominators). Using <tt class="docutils literal">\PolToExpr{P}</tt> after having done</p>
<pre class="literal-block">
\renewcommand\PolToExprCmd[1]{\PolDecToString{\xintREZ{#1}}}
</pre>
<p>we get this expanded form:</p>
<pre class="literal-block">
x^41
-28.7*x^39
+375.7117*x^37
-2975.11006*x^35
+15935.28150578*x^33
-61167.527674162*x^31
+173944.259366417394*x^29
-373686.963560544648*x^27
+613012.0665016658846445*x^25
-771182.31133138163125495*x^23
+743263.86672885754888959569*x^21
-545609.076599482896371978698*x^19
+301748.325708943677229642930528*x^17
-123655.8987669450434698869844544*x^15
+36666.1782054884005855608205864192*x^13
-7607.85821367459445649518380016128*x^11
+1053.15135918687298508885950223794176*x^9
-90.6380005918141132650786081964032*x^7
+4.33701563847327366842552218288128*x^5
-0.0944770968420804735498178265088*x^3
+0.00059190121813899276854174416896*x
</pre>
<p>which shows coefficients with up to 36 significant digits...</p>
<p>Stress test: not a hard challenge to <tt class="docutils literal">xint + polexpr</tt>, but be a bit patient!</p>
<pre class="literal-block">
\PolDef{P}{mul((x-i*1e-1), i=-20..20)}%
\PolToSturm{P}{S}        % dutifully computes S_0, ..., S_{41}
\PolSturmIsolateZeros{S} % finds *exactly* (but a bit slowly) all 41 roots!
\PolPrintIntervals{S}    % nice, isn't it?
</pre>
</div>
<div class="section" id="roots-of-chebyshev-polynomials">
<h2><a class="toc-backref" href="#id40">Roots of Chebyshev polynomials</a></h2>
<pre class="literal-block">
\newcount\mycount
\poldef T_0(x) := 1;
\poldef T_1(x) := x;
\mycount 2
\xintloop
  \poldef T_\the\mycount(x) :=
          2x*T_\the\numexpr\mycount-1(x)
           - T_\the\numexpr\mycount-2(x);
\ifnum\mycount&lt;15
\advance\mycount 1
\repeat

\[T_{15} = \PolTypeset[X]{T_15}\]
\PolToSturm{T_15}{T_15}
\PolSturmIsolateZeros{T_15}
\PolEnsureIntervalLengths{T_15}{-10}
\PolPrintIntervals{T_15}
</pre>
</div>
</div>
<div class="section" id="non-expandable-macros">
<h1><a class="toc-backref" href="#id41">Non-expandable macros</a></h1>
<div class="section" id="poldef-polname-letter-expression-in-letter">
<span id="poldef"></span><h2><a class="toc-backref" href="#id42"><tt class="docutils literal">\poldef <span class="pre">polname(letter):=</span> expression in letter;</tt></a></h2>
<blockquote>
<p>This evaluates the <em>polynomial expression</em> and stores the coefficients
in a private structure accessible later via other package macros,
under the user-chosen <tt class="docutils literal">polname</tt>. Of course the <em>expression</em> can
use other previously defined polynomials. Names must start with a
letter and are constituted of letters, digits and underscore
characters. The whole <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> syntax is authorized:</p>
<pre class="literal-block">
\poldef sin(z) := add((-1)^i z^(2i+1)/(2i+1)!, i = 0..10);
</pre>
<p>With fractional coefficients, beware the <a class="reference internal" href="#warningtacit">tacit multiplication issue</a>.</p>
<p>As a side effect the function <tt class="docutils literal">polname()</tt> is recognized as a
genuine <tt class="docutils literal"><span class="pre">\xintexpr...\relax</span></tt> function for (exact) numerical
evaluation (or within an <tt class="docutils literal">\xintdefvar</tt> assignment.) It computes
values not according to the original expression but via the Horner
scheme corresponding to the polynomial coefficients.</p>
<div class="admonition attention">
<p class="first admonition-title">Attention!</p>
<p>Release <tt class="docutils literal">0.3</tt> also did the necessary set-up to let the
polynomial be known to the <tt class="docutils literal">\xintfloatexpr</tt> (or
<tt class="docutils literal">\xintdeffloatvar</tt>) parser.</p>
<p>Since <tt class="docutils literal">0.4</tt> this isn't done automatically. Even more, a
previously existing floating point variant of the same name will
be let undefined again, to avoid hard to debug mismatches between
exact and floating point polynomials. This also applies when the
polynomial is produced not via <tt class="docutils literal">\poldef</tt> or <tt class="docutils literal">\PolDef</tt> but as
a product of the other package macros.</p>
<p class="last">See <a class="reference internal" href="#polgenfloatvariant-polname">\PolGenFloatVariant{polname}</a>.</p>
</div>
<p>The original expression is lost after parsing, and in particular
the package provides no way to typeset it. This has to be done
manually, if needed.</p>
</blockquote>
</div>
<div class="section" id="poldef-letter-polname-expression-in-letter">
<span id="id2"></span><h2><a class="toc-backref" href="#id43"><tt class="docutils literal"><span class="pre">\PolDef[letter]{polname}{expression</span> in letter}</tt></a></h2>
<blockquote>
Does the same as <a class="reference external" href="poldef;">\poldef</a> in an undelimited macro
format (thus avoiding potential problems with the catcode of the
semi-colon in presence of some packages.) In absence of the
<tt class="docutils literal">[letter]</tt> optional argument, the variable is assumed to be <tt class="docutils literal">x</tt>.</blockquote>
</div>
<div class="section" id="polgenfloatvariant-polname">
<span id="polgenfloatvariant"></span><h2><a class="toc-backref" href="#id44"><tt class="docutils literal">\PolGenFloatVariant{polname}</tt></a></h2>
<blockquote>
<p>Makes the polynomial also usable in the <tt class="docutils literal">\xintfloatexpr</tt> parser.
It will therein evaluates via an Horner scheme with coefficients
already pre-rounded to the float precision.</p>
<p>See also <a class="reference internal" href="#poltofloatexpr-polname">\PolToFloatExpr{polname}</a>.</p>
<div class="admonition attention">
<p class="first admonition-title">Attention!</p>
<p>Release <tt class="docutils literal">0.3</tt> did this automatically on <tt class="docutils literal">\PolDef</tt> and
<tt class="docutils literal">\poldef</tt> but this was removed at <tt class="docutils literal">0.4</tt> for optimization.</p>
<p class="last">Any operation, for example generating the derivative polynomial,
or dividing two polynomials or using the <tt class="docutils literal">\PolLet</tt>, <strong>must</strong> be
followed by explicit usage of <tt class="docutils literal">\PolGenFloatVariant{polname}</tt> if
the new polynomial is to be used in <tt class="docutils literal">\xintfloatexpr</tt> or alike
context.</p>
</div>
</blockquote>
</div>
<div class="section" id="pollet-polname-2-polname-1">
<span id="pollet"></span><h2><a class="toc-backref" href="#id45"><tt class="docutils literal"><span class="pre">\PolLet{polname_2}={polname_1}</span></tt></a></h2>
<blockquote>
Makes a copy of the already defined polynomial <tt class="docutils literal">polname_1</tt> to a
new one <tt class="docutils literal">polname_2</tt>. Same effect as
<tt class="docutils literal"><span class="pre">\PolDef{polname_2}{polname_1(x)}</span></tt> but with less overhead. The
<tt class="docutils literal">=</tt> is optional.</blockquote>
</div>
<div class="section" id="polgloballet-polname-2-polname-1">
<span id="polgloballet"></span><h2><a class="toc-backref" href="#id46"><tt class="docutils literal"><span class="pre">\PolGlobalLet{polname_2}={polname_1}</span></tt></a></h2>
<blockquote>
Acts globally.</blockquote>
</div>
<div class="section" id="polassign-polname-toarray-macro">
<span id="polassign"></span><h2><a class="toc-backref" href="#id47"><tt class="docutils literal"><span class="pre">\PolAssign{polname}\toarray\macro</span></tt></a></h2>
<blockquote>
<p>Defines a one-argument expandable macro <tt class="docutils literal"><span class="pre">\macro{#1}</span></tt> which expands
to the (raw) #1th polynomial coefficient.</p>
<ul class="simple">
<li>Attention, coefficients here are indexed starting at 1.</li>
<li>With #1=-1, -2, ..., <tt class="docutils literal"><span class="pre">\macro{#1}</span></tt> returns leading coefficients.</li>
<li>With #1=0, returns the number of coefficients, i.e. <tt class="docutils literal">1 + deg f</tt>
for non-zero polynomials.</li>
<li>Out-of-range #1's return <tt class="docutils literal">0/1[0]</tt>.</li>
</ul>
<p>See also <a class="reference internal" href="#polnthcoeff-polname-number">\PolNthCoeff{polname}{number}</a>. The main difference is that
with <tt class="docutils literal">\PolAssign</tt>, <tt class="docutils literal">\macro</tt> is made a prefix to <tt class="docutils literal">1 + deg f</tt>
already defined (hidden to user) macros holding individually the
coefficients but <a class="reference internal" href="#polnthcoeff-polname-number">\PolNthCoeff{polname}{number}</a> does each time the job
to expandably recover the <tt class="docutils literal">Nth</tt> coefficient, and due to
expandability can not store it in a macro for future usage (of course,
it can be an argument in an <tt class="docutils literal">\edef</tt>.) The other difference
is the shift by one in indexing, mentioned above (negative
indices act the same in both.)</p>
</blockquote>
</div>
<div class="section" id="polget-polname-fromarray-macro">
<span id="polget"></span><h2><a class="toc-backref" href="#id48"><tt class="docutils literal"><span class="pre">\PolGet{polname}\fromarray\macro</span></tt></a></h2>
<blockquote>
<p>Does the converse operation to <tt class="docutils literal"><span class="pre">\PolAssign{polname}\toarray\macro</span></tt>. No
error checks on validity of coefficients as numbers. Each
<tt class="docutils literal">\macro{number}</tt> is expanded in an <tt class="docutils literal">\edef</tt> before being assigned
to a coefficient. Leading zero coefficients are removed from the
polynomial.</p>
<p>(contrived) Example:</p>
<pre class="literal-block">
\xintAssignArray{1}{-2}{5}{-3}\to\foo
\PolGet{f}\fromarray\foo
</pre>
<p>This will define <tt class="docutils literal">f</tt> as would have <tt class="docutils literal">\poldef <span class="pre">f(x):=1-2x+5x^2-3x^3;</span></tt>.
However the coefficients are still in their original form (i.e.
they were not subjected to <tt class="docutils literal">\xintRaw</tt> or similar <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> macro.)</p>
</blockquote>
</div>
<div class="section" id="polfromcsv-polname-csv">
<span id="polfromcsv"></span><h2><a class="toc-backref" href="#id49"><tt class="docutils literal"><span class="pre">\PolFromCSV{polname}{&lt;csv&gt;}</span></tt></a></h2>
<blockquote>
<p>Defines a polynomial directly from the comma separated list of
values (or a macro expanding to such a list) of its coefficients,
the constant term being the first item. No validity checks. Spaces
from the list argument are trimmed. List items are each expanded in
an <tt class="docutils literal">\edef</tt>, but currently left in their original form like e.g.
<tt class="docutils literal">1.5e3</tt> which is not converted to <tt class="docutils literal">15/1[2]</tt> <em>raw</em> <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a>
format (this may change).</p>
<p>Leading zero coefficients are removed:</p>
<pre class="literal-block">
\PolFromCSV{f}{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
</pre>
<p>defines the zero polynomial, which has only one (zero) coefficient.</p>
<p>See also expandable macro <a class="reference internal" href="#poltocsv-polname">\PolToCSV</a>.</p>
</blockquote>
</div>
<div class="section" id="poltypeset-polname">
<span id="poltypeset"></span><h2><a class="toc-backref" href="#id50"><tt class="docutils literal">\PolTypeset{polname}</tt></a></h2>
<blockquote>
<p>Typesets in descending powers in math mode. It uses letter <tt class="docutils literal">x</tt> but
this can be changed via an optional argument:</p>
<pre class="literal-block">
\PolTypeset[z]{polname}
</pre>
<p>By default zero coefficients are skipped (issue <tt class="docutils literal">\poltypesetalltrue</tt>
to get all of them in output).</p>
<p>These commands (whose meanings will be found in the package code)
can be re-defined for customization. Their default definitions are
expandable, but this is not a requirement.</p>
</blockquote>
<div class="section" id="poltypesetcmd-raw-coeff">
<span id="poltypesetcmd"></span><h3><a class="toc-backref" href="#id51"><tt class="docutils literal">\PolTypesetCmd{raw_coeff}</tt></a></h3>
<blockquote>
<p>Checks if the coefficient is <tt class="docutils literal">1</tt> or <tt class="docutils literal"><span class="pre">-1</span></tt> and then skips printing
the <tt class="docutils literal">1</tt>, except for the constant term. Also it sets conditional
<a class="reference internal" href="#polifcoeffisplusorminusone-a-b">\PolIfCoeffIsPlusOrMinusOne{A}{B}</a>.</p>
<p>The actual printing of the coefficients, when not equal to plus or
minus one is handled by <a class="reference internal" href="#poltypesetone-raw-coeff">\PolTypesetOne{raw_coeff}</a>.</p>
</blockquote>
</div>
<div class="section" id="poltypesetone-raw-coeff">
<span id="poltypesetone"></span><h3><a class="toc-backref" href="#id52"><tt class="docutils literal">\PolTypesetOne{raw_coeff}</tt></a></h3>
<blockquote>
<p>The default is <tt class="docutils literal">\xintSignedFrac</tt> but this macro is annoying as it
insists to use a power of ten, and not decimal notation.</p>
<p>One can do things such as for example: <a class="footnote-reference" href="#id5" id="id4">[1]</a></p>
<pre class="literal-block">
\renewcommand\PolTypesetOne[1]{\num{\xintPFloat[5]{#1}}}
\renewcommand\PolTypesetOne[1]{\num{\xintRound{4}{#1}}}
</pre>
<p>where e.g. we used the <tt class="docutils literal">\num</tt> macro of <tt class="docutils literal">siunitx</tt> as it
understands floating point notation.</p>
<table class="docutils footnote" frame="void" id="id5" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id4">[1]</a></td><td>the difference in the syntaxes of <tt class="docutils literal">\xintPFloat</tt> and
<tt class="docutils literal">\xintRound</tt> is explained from the fact that
<tt class="docutils literal">\xintPFloat</tt> by default uses the prevailing precision
hence the extra argument like here <tt class="docutils literal">5</tt> is an optional one.</td></tr>
</tbody>
</table>
<p>One can also give a try to using <a class="reference internal" href="#poldectostring-decimal-number">\PolDecToString{decimal number}</a>
which uses decimal notation (at least for the numerator part).</p>
</blockquote>
</div>
<div class="section" id="id6">
<span id="poltypesetmonomialcmd"></span><h3><a class="toc-backref" href="#id53"><tt class="docutils literal">\PolTypesetMonomialCmd</tt></a></h3>
<blockquote>
This decides how a monomial (in variable <tt class="docutils literal">\PolVar</tt> and with
exponent <tt class="docutils literal">\PolIndex</tt>) is to be printed. The default does nothing
for the constant term, <tt class="docutils literal">\PolVar</tt> for the first degree and
<tt class="docutils literal"><span class="pre">\PolVar^{\PolIndex}</span></tt> for higher degrees monomials. Beware that
<tt class="docutils literal">\PolIndex</tt> expands to digit tokens and needs termination in
<tt class="docutils literal">\ifnum</tt> tests.</blockquote>
</div>
<div class="section" id="poltypesetcmdprefix-raw-coeff">
<span id="poltypesetcmdprefix"></span><h3><a class="toc-backref" href="#id54"><tt class="docutils literal">\PolTypesetCmdPrefix{raw_coeff}</tt></a></h3>
<blockquote>
Expands to a <tt class="docutils literal">+</tt> if the <tt class="docutils literal">raw_coeff</tt> is zero or positive, and to
nothing if <tt class="docutils literal">raw_coeff</tt> is negative, as in latter case the
<tt class="docutils literal">\xintSignedFrac</tt> used by <a class="reference internal" href="#poltypesetcmd-raw-coeff">\PolTypesetCmd{raw_coeff}</a> will put
the <tt class="docutils literal">-</tt> sign in front of the fraction (if it is a fraction) and
this will thus serve as separator in the typeset formula. Not used
for the first term.</blockquote>
</div>
</div>
<div class="section" id="id8">
<span id="id7"></span><h2><a class="toc-backref" href="#id55"><tt class="docutils literal"><span class="pre">\PolTypeset*{polname}</span></tt></a></h2>
<blockquote>
Typesets in ascending powers. Use e.g. <tt class="docutils literal">[h]</tt> optional argument
(after the <tt class="docutils literal">*</tt>) to use letter <tt class="docutils literal">h</tt> rather than <tt class="docutils literal">x</tt>.</blockquote>
</div>
<div class="section" id="poldiff-polname-1-polname-2">
<span id="poldiff"></span><h2><a class="toc-backref" href="#id56"><tt class="docutils literal"><span class="pre">\PolDiff{polname_1}{polname_2}</span></tt></a></h2>
<blockquote>
<p>This sets <tt class="docutils literal">polname_2</tt> to the first derivative of <tt class="docutils literal">polname_1</tt>. It
is allowed to issue <tt class="docutils literal"><span class="pre">\PolDiff{f}{f}</span></tt>, effectively replacing <tt class="docutils literal">f</tt>
by <tt class="docutils literal">f'</tt>.</p>
<p>Coefficients of the result <tt class="docutils literal">polname_2</tt> are irreducible fractions
(see <a class="reference internal" href="#technicalities">Technicalities</a> for the whole story.)</p>
</blockquote>
</div>
<div class="section" id="poldiff-n-polname-1-polname-2">
<span id="poldiff-n"></span><h2><a class="toc-backref" href="#id57"><tt class="docutils literal"><span class="pre">\PolDiff[N]{polname_1}{polname_2}</span></tt></a></h2>
<blockquote>
This sets <tt class="docutils literal">polname_2</tt> to the <tt class="docutils literal">N</tt>-th derivative of <tt class="docutils literal">polname_1</tt>.
Identical arguments is allowed. With <tt class="docutils literal">N=0</tt>, same effect as
<tt class="docutils literal"><span class="pre">\PolLet{polname_2}={polname_1}</span></tt>. With negative <tt class="docutils literal">N</tt>, switches to
using <tt class="docutils literal">\PolAntiDiff</tt>.</blockquote>
</div>
<div class="section" id="polantidiff-polname-1-polname-2">
<span id="polantidiff"></span><h2><a class="toc-backref" href="#id58"><tt class="docutils literal"><span class="pre">\PolAntiDiff{polname_1}{polname_2}</span></tt></a></h2>
<blockquote>
<p>This sets <tt class="docutils literal">polname_2</tt> to the primitive of <tt class="docutils literal">polname_1</tt> vanishing
at zero.</p>
<p>Coefficients of the result <tt class="docutils literal">polname_2</tt> are irreducible fractions
(see <a class="reference internal" href="#technicalities">Technicalities</a> for the whole story.)</p>
</blockquote>
</div>
<div class="section" id="polantidiff-n-polname-1-polname-2">
<span id="polantidiff-n"></span><h2><a class="toc-backref" href="#id59"><tt class="docutils literal"><span class="pre">\PolAntiDiff[N]{polname_1}{polname_2}</span></tt></a></h2>
<blockquote>
This sets <tt class="docutils literal">polname_2</tt> to the result of <tt class="docutils literal">N</tt> successive integrations on
<tt class="docutils literal">polname_1</tt>. With negative <tt class="docutils literal">N</tt>, it switches to using <tt class="docutils literal">\PolDiff</tt>.</blockquote>
</div>
<div class="section" id="poldivide-polname-1-polname-2-polname-q-polname-r">
<span id="poldivide"></span><h2><a class="toc-backref" href="#id60"><tt class="docutils literal"><span class="pre">\PolDivide{polname_1}{polname_2}{polname_Q}{polname_R}</span></tt></a></h2>
<blockquote>
This sets <tt class="docutils literal">polname_Q</tt> and <tt class="docutils literal">polname_R</tt> to be the quotient and
remainder in the Euclidean division of <tt class="docutils literal">polname_1</tt> by
<tt class="docutils literal">polname_2</tt>.</blockquote>
</div>
<div class="section" id="polquo-polname-1-polname-2-polname-q">
<span id="polquo"></span><h2><a class="toc-backref" href="#id61"><tt class="docutils literal"><span class="pre">\PolQuo{polname_1}{polname_2}{polname_Q}</span></tt></a></h2>
<blockquote>
This sets <tt class="docutils literal">polname_Q</tt> to be the quotient in the Euclidean division
of <tt class="docutils literal">polname_1</tt> by <tt class="docutils literal">polname_2</tt>.</blockquote>
</div>
<div class="section" id="polrem-polname-1-polname-2-polname-r">
<span id="polrem"></span><h2><a class="toc-backref" href="#id62"><tt class="docutils literal"><span class="pre">\PolRem{polname_1}{polname_2}{polname_R}</span></tt></a></h2>
<blockquote>
This sets <tt class="docutils literal">polname_R</tt> to be the remainder in the Euclidean division
of <tt class="docutils literal">polname_1</tt> by <tt class="docutils literal">polname_2</tt>.</blockquote>
</div>
<div class="section" id="polgcd-polname-1-polname-2-polname-gcd">
<span id="polgcd"></span><h2><a class="toc-backref" href="#id63"><tt class="docutils literal"><span class="pre">\PolGCD{polname_1}{polname_2}{polname_GCD}</span></tt></a></h2>
<blockquote>
This sets <tt class="docutils literal">polname_GCD</tt> to be the (monic) GCD of the two first
polynomials. It is a unitary polynomial except if both <tt class="docutils literal">polname_1</tt>
and <tt class="docutils literal">polname_2</tt> vanish, then <tt class="docutils literal">polname_GCD</tt> is the zero
polynomial.</blockquote>
<!-- ``\PolIGCD{polname_1}{polname_2}{polname_iGCD}``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 **NOT YET**

 This **assumes** that the two polynomials have integer coefficients.
 It then computes the greatest common divisor in the integer
 polynomial ring, normalized to have a positive leading coefficient
 (if the inputs are not both zero).

``\PolIContent{polname}``
~~~~~~~~~~~~~~~~~~~~~~~~~

 **NOT YET**

 This computes a positive rational number such that dividing the
 polynomial with it returns an integer coefficients polynomial with
 no common factor among the coefficients. -->
</div>
<div class="section" id="poltosturm-polname-sturmname">
<span id="poltosturm"></span><h2><a class="toc-backref" href="#id64"><tt class="docutils literal"><span class="pre">\PolToSturm{polname}{sturmname}</span></tt></a></h2>
<blockquote>
<p>With, for example, <tt class="docutils literal">polname</tt> being <tt class="docutils literal">P</tt> and <tt class="docutils literal">sturmname</tt> being
<tt class="docutils literal">S</tt>, the macro starts by computing polynomials <tt class="docutils literal">S_0 = P</tt>, <tt class="docutils literal">S_1
= P'</tt>, ..., with <tt class="docutils literal">S_{n+1}</tt> the opposite of the remainder of
euclidean division of <tt class="docutils literal"><span class="pre">S_{n-1}</span></tt> by <tt class="docutils literal">S_{n}</tt>. The last non-zero
remainder <tt class="docutils literal">S_N</tt> is up to a factor the GCD of <tt class="docutils literal">P</tt> and <tt class="docutils literal">P'</tt>
hence a constant if and only if <tt class="docutils literal">P</tt> is square-free.</p>
<p>In case <tt class="docutils literal">S_N</tt> is not a constant, the macro then goes on with
dividing all <tt class="docutils literal">S_k</tt>'s with <tt class="docutils literal">S_N</tt> (which becomes <tt class="docutils literal">1</tt>).</p>
<p>Thus <tt class="docutils literal">S_0</tt> now has exactly the same real and complex
roots as polynomial <tt class="docutils literal">polname</tt>, but each with multiplicity one.</p>
</blockquote>
</div>
<div class="section" id="id10">
<span id="id9"></span><h2><a class="toc-backref" href="#id65"><tt class="docutils literal"><span class="pre">\PolToSturm*{polname}{sturmname}</span></tt></a></h2>
<blockquote>
Does not divide the Sturm chain by its last element.</blockquote>
</div>
<div class="section" id="polsettosturmchainsignchangesat-macro-sturmname-fraction">
<span id="polsettosturmchainsignchangesat"></span><h2><a class="toc-backref" href="#id66"><tt class="docutils literal"><span class="pre">\PolSetToSturmChainSignChangesAt{\macro}{sturmname}{fraction}</span></tt></a></h2>
<blockquote>
<p>Sets macro <tt class="docutils literal">\macro</tt> to the number of sign changes in the Sturm
chain with name prefix <tt class="docutils literal">sturmname</tt>, at location <tt class="docutils literal">fraction</tt>
(which must be in format as acceptable by the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> macros.)</p>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p>The author was lazy and did not provide rather an expandable
variant, where one would do <tt class="docutils literal"><span class="pre">\edef\macro{\PolNbOf...}</span></tt>.</p>
<p>This will presumably get added in a future release.</p>
<p class="last">After some hesitation it was decided the macro would by default
act globally. To make the scope of its macro definition local,
use <tt class="docutils literal">[\empty]</tt> as extra optional argument.</p>
</div>
</blockquote>
</div>
<div class="section" id="polsettonbofzeroswithin-macro-sturmname-value-a-value-b">
<span id="polsettonbofzeroswithin"></span><h2><a class="toc-backref" href="#id67"><tt class="docutils literal"><span class="pre">\PolSetToNbOfZerosWithin{\macro}{sturmname}{value_a}{value_b}</span></tt></a></h2>
<blockquote>
<p>Applies the <a class="reference external" href="https://en.wikipedia.org/wiki/Sturm%27s_theorem">Sturm Theorem</a> to set <tt class="docutils literal">\macro</tt> to the exact number
of distinct roots of <tt class="docutils literal">sturmname_0</tt> in the interval <tt class="docutils literal">(value_a,
value_b]</tt> (the macro first re-orders the value for <tt class="docutils literal">value_a &lt;=
value_b</tt> to hold).</p>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p>The author was lazy and did not provide rather an expandable
variant, where one would do <tt class="docutils literal"><span class="pre">\edef\macro{\PolNbOf...}</span></tt>.</p>
<p>This will presumably get added in future.</p>
<p class="last">After some hesitation it was decided the macro would by default
act globally. To make the scope of its macro definition local,
use <tt class="docutils literal">[\empty]</tt> as extra optional argument.</p>
</div>
</blockquote>
</div>
<div class="section" id="polsturmisolatezeros-sturmname">
<span id="polsturmisolatezeros"></span><h2><a class="toc-backref" href="#id68"><tt class="docutils literal">\PolSturmIsolateZeros{sturmname}</tt></a></h2>
<blockquote>
<p>First, it evaluates using <a class="reference external" href="https://en.wikipedia.org/wiki/Sturm%27s_theorem">Sturm theorem</a> the number of distinct
real roots of <tt class="docutils literal">sturmname_0</tt>.</p>
<div class="admonition important">
<p class="first admonition-title">Important</p>
<p class="last">The Sturm chain <strong>must</strong> be of the reduced type, i.e.
as constructed via <a class="reference internal" href="#poltosturm-polname-sturmname">\PolToSturm{polname}{sturmname}</a>.</p>
</div>
<p>Then it locates, again using <a class="reference external" href="https://en.wikipedia.org/wiki/Sturm%27s_theorem">Sturm theorem</a>, as many disjoint
intervals as there are roots. Some intervals reduce to singleton
which are roots. Non-singleton intervals get refined to make sure
none of their two limit points is a root: they contain each a single
root, in their respective interiors.</p>
<!-- This procedure is covariant
with the independent variable ``x`` becoming ``-x``.
Hmm, pas sûr et trop fatigué -->
<p>The interval boundaries are decimal numbers, originating
in iterated decimal subdivision from initial intervals
<tt class="docutils literal"><span class="pre">(-10^E,</span> 0)</tt> and <tt class="docutils literal">(0, 10^E)</tt>; if zero is a root it is always
identified individually. The non-singleton intervals are of the
type <tt class="docutils literal">(a/10^f, <span class="pre">(a+1)/10^f)</span></tt> with <tt class="docutils literal">a</tt> an integer, which is
neither <tt class="docutils literal">0</tt> nor <tt class="docutils literal"><span class="pre">-1</span></tt>. Hence <tt class="docutils literal">a</tt> and <tt class="docutils literal">a+1</tt> are both positive
or both negative.</p>
<p>The interval boundaries (and exactly found roots) are made available
for future computations in <tt class="docutils literal">\xintexpr</tt>-essions or polynomial
definitions as variables <tt class="docutils literal">&lt;sturmname&gt;L_1</tt>,
<tt class="docutils literal">&lt;sturmname&gt;L_2</tt>, etc..., for the left end-points and
<tt class="docutils literal">&lt;sturmname&gt;R_1</tt>, <tt class="docutils literal">&lt;sturmname&gt;R_2</tt>, ..., for the right
end-points.</p>
<p>Also two macro arrays (in the sense of
<a class="reference external" href="http://www.ctan.org/pkg/xint">xinttools</a>'s <tt class="docutils literal">\xintAssignArray</tt>) are created for holding the
interval end-points written out in standard decimal notation
(see <a class="reference internal" href="#poldectostring-decimal-number">\PolDecToString{decimal number}</a>).
To access these values, macros
<a class="reference internal" href="#polsturmisolatedzeroleft-sturmname-index">\PolSturmIsolatedZeroLeft{sturmname}{index}</a> and
<a class="reference internal" href="#polsturmisolatedzeroright-sturmname-index">\PolSturmIsolatedZeroRight{sturmname}{index}</a> are provided.</p>
<div class="admonition important">
<p class="first admonition-title">Important</p>
<p class="last">Trailing zeroes in these stored decimal numbers are significant:
they are also present in the decimal expansion of the exact root.</p>
</div>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">The actual array macros are <tt class="docutils literal">\POL_ZeroInt&lt;sturmname&gt;L</tt> and
<tt class="docutils literal">\POL_ZeroInt&lt;sturmname&gt;R</tt> but as these names use the
non-letter character <tt class="docutils literal">_</tt> and possibly also digits from
<tt class="docutils literal">sturmname</tt>, the accessor macros above have been made part of
the package.</p>
</div>
<p>The start of decimal expansion of a positive <tt class="docutils literal">k</tt>-th root is given
by <tt class="docutils literal"><span class="pre">\PolSturmIsolatedZeroLeft{sturmname}{k}</span></tt>, and for a negative
root it is given by <tt class="docutils literal"><span class="pre">\PolSturmIsolatedZeroRight{sturmname}{k}</span></tt>.
These two decimal numbers are either both zero or both of the same
sign.</p>
<p>The number of distinct roots is obtainable as
<tt class="docutils literal">\PolSturmNbOfIsolatedZeros{sturmname}</tt>.</p>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">In the current implementation the <tt class="docutils literal"><span class="pre">&lt;sturmname&gt;...</span></tt> variables
and the <tt class="docutils literal"><span class="pre">\POL_ZeroInt...</span></tt> arrays are globally defined. On the
other hand the Sturm sequence polynomials obey the current scope.</p>
</div>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">When two successive roots are located in adjacent intervals, the
separation between them is not lower bounded. See
<a class="reference internal" href="#polrefineinterval-sturmname-index">\PolRefineInterval*{sturmname}{index}</a>.</p>
</div>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p>As all computations are done <em>exactly</em> there can be no errors...
apart those due to bad coding by author. The results are exact
bounds for the mathematically exact real roots.</p>
<p class="last">Future releases will perhaps also provide macros based on Newton
or Regula Falsi methods. Exact computations with such methods
lead however quickly to very big fractions, and this forces usage
of some rounding scheme for the abscissas if computation times
are to remain reasonable. This raises issues of its own, which
are studied in numerical mathematics.</p>
</div>
</blockquote>
</div>
<div class="section" id="polrefineinterval-sturmname-index">
<span id="polrefineinterval"></span><h2><a class="toc-backref" href="#id69"><tt class="docutils literal"><span class="pre">\PolRefineInterval*{sturmname}{index}</span></tt></a></h2>
<blockquote>
The <tt class="docutils literal">index</tt>-th interval (starting indexing at one) is further
subdivided as many times as is necessary in order for the newer
interval to have both its end-points distinct from the end-points of
the original interval. This means that the <tt class="docutils literal">k</tt>th root is then
strictly separated from the other roots.</blockquote>
</div>
<div class="section" id="polrefineinterval-n-sturmname-index">
<span id="polrefineinterval-n"></span><h2><a class="toc-backref" href="#id70"><tt class="docutils literal"><span class="pre">\PolRefineInterval[N]{sturmname}{index}</span></tt></a></h2>
<blockquote>
The <tt class="docutils literal">index</tt>-th interval (starting count at one) is further
subdivided once, reducing its length by a factor of 10. This is done
<tt class="docutils literal">N</tt> times if the optional argument <tt class="docutils literal">[N]</tt> is present.</blockquote>
</div>
<div class="section" id="polensureintervallength-sturmname-index-e">
<span id="polensureintervallength"></span><h2><a class="toc-backref" href="#id71"><tt class="docutils literal"><span class="pre">\PolEnsureIntervalLength{sturmname}{index}{E}</span></tt></a></h2>
<blockquote>
The <tt class="docutils literal">index</tt>-th interval is subdivided until its length becomes at
most <tt class="docutils literal">10^E</tt>. This means (for <tt class="docutils literal">E&lt;0</tt>) that the first <tt class="docutils literal"><span class="pre">-E</span></tt> digits
after decimal mark of the <tt class="docutils literal">k</tt>th root will then be known exactly.</blockquote>
</div>
<div class="section" id="polensureintervallengths-sturmname-e">
<span id="polensureintervallengths"></span><h2><a class="toc-backref" href="#id72"><tt class="docutils literal"><span class="pre">\PolEnsureIntervalLengths{sturmname}{E}</span></tt></a></h2>
<blockquote>
<p>The intervals as obtained from <tt class="docutils literal">\PolSturmIsolateZeros</tt> are (if
necessary) subdivided further by (base 10) dichotomy in order for
each of them to have length at most <tt class="docutils literal">10^E</tt> (length will be shorter
than <tt class="docutils literal">10^E</tt> in output only if it did not change or became zero.)</p>
<p>This means that decimal expansions of all roots will be known with
<tt class="docutils literal"><span class="pre">-E</span></tt> digits (for <tt class="docutils literal">E&lt;0</tt>) after decimal mark.</p>
</blockquote>
</div>
<div class="section" id="polprintintervals-varname-sturmname">
<span id="polprintintervals"></span><h2><a class="toc-backref" href="#id73"><tt class="docutils literal"><span class="pre">\PolPrintIntervals[varname]{sturmname}</span></tt></a></h2>
<blockquote>
<p>This is a convenience macro which prints the bounds for the roots
<tt class="docutils literal">Z_1</tt>, <tt class="docutils literal">Z_2</tt>, ... (the optional argument <tt class="docutils literal">varname</tt> allows to
specify a replacement for the default <tt class="docutils literal">Z</tt>). This will be done in a
math mode <tt class="docutils literal">array</tt>, one interval per row, and pattern <tt class="docutils literal">rcccl</tt>,
where the second and fourth column hold the <tt class="docutils literal">&lt;</tt> sign, except when
the interval reduces to a singleton, which means the root is known
exactly. The user is invited to renewcommand the macro if some other
type of tabular environment for example is wanted.</p>
<p>In each array cell the corresponding interval end-point (which may
be an exactly known root) is available as macro
<a class="reference internal" href="#polprintintervalstheendpoint">\PolPrintIntervalsTheEndPoint</a> (in decimal notation). And the
corresponding interval index is available as
<a class="reference internal" href="#polprintintervalstheindex">\PolPrintIntervalsTheIndex</a>.</p>
<p>These values may be tested to decide some on-the-fly customization
(color for example), via the following auxiliaries which can be
modified by user. Furthermore these auxiliaries can also use the
following conditionals: <a class="reference internal" href="#polifendpointispositive-a-b">\PolIfEndPointIsPositive{A}{B}</a>,
<a class="reference internal" href="#polifendpointisnegative-a-b">\PolIfEndPointIsNegative{A}{B}</a>, <a class="reference internal" href="#polifendpointiszero-a-b">\PolIfEndPointIsZero{A}{B}</a>.</p>
</blockquote>
<div class="section" id="id11">
<span id="polprintintervalsprintexactzero"></span><h3><a class="toc-backref" href="#id74"><tt class="docutils literal">\PolPrintIntervalsPrintExactZero</tt></a></h3>
<blockquote>
<p>This is provided to help customize how an exactly known root is
printed in the right most column of the array. The package
definition is:</p>
<pre class="literal-block">
\newcommand\PolPrintIntervalsPrintExactZero{\PolPrintIntervalsTheEndPoint}%
</pre>
<p>Recall that this is expanded in an array cell.</p>
<p>If for example you want to print in red the third root, known
exactly, the macro could make a test for the value of
<a class="reference internal" href="#polprintintervalstheindex">\PolPrintIntervalsTheIndex</a>  and act accordingly.</p>
</blockquote>
</div>
<div class="section" id="id12">
<span id="polprintintervalsprintleftendpoint"></span><h3><a class="toc-backref" href="#id75"><tt class="docutils literal">\PolPrintIntervalsPrintLeftEndPoint</tt></a></h3>
<blockquote>
<p>Package definition is:</p>
<pre class="literal-block">
\newcommand\PolPrintIntervalsPrintLeftEndPoint{\PolPrintIntervalsTheEndPoint}%
</pre>
</blockquote>
</div>
<div class="section" id="id13">
<span id="polprintintervalsprintrightendpoint"></span><h3><a class="toc-backref" href="#id76"><tt class="docutils literal">\PolPrintIntervalsPrintRightEndPoint</tt></a></h3>
<blockquote>
<p>Package definition is:</p>
<pre class="literal-block">
\newcommand\PolPrintIntervalsPrintRightEndPoint{\PolPrintIntervalsTheEndPoint}%
</pre>
</blockquote>
</div>
</div>
<div class="section" id="polmapcoeffs-macro-polname">
<span id="polmapcoeffs"></span><h2><a class="toc-backref" href="#id77"><tt class="docutils literal"><span class="pre">\PolMapCoeffs{\macro}{polname}</span></tt></a></h2>
<blockquote>
<p>It modifies ('in-place': original coefficients get lost) each
coefficient of the defined polynomial via the <em>expandable</em> macro
<tt class="docutils literal">\macro</tt>. The degree is adjusted as necessary if some leading
coefficients vanish after the operation. In replacement text of
<tt class="docutils literal">\macro</tt>, <tt class="docutils literal">\index</tt> expands to the coefficient index (which is
defined to be zero for the constant term).</p>
<p>Notice that <tt class="docutils literal">\macro</tt> will have to handle inputs of the shape
<tt class="docutils literal">A/B[N]</tt> (<a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> internal notation). This means that it probably
will have to be expressed in terms of macros from <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> package.</p>
<p>Example:</p>
<pre class="literal-block">
\def\foo#1{\xintMul{#1}{\the\numexpr\index*\index\relax}}
</pre>
<p>(or with <tt class="docutils literal"><span class="pre">\xintSqr{\index}</span></tt>) to replace <tt class="docutils literal">n</tt>-th coefficient
<tt class="docutils literal">f_n</tt> by <tt class="docutils literal">f_n*n^2</tt>.</p>
</blockquote>
</div>
<div class="section" id="polreducecoeffs-polname">
<span id="polreducecoeffs"></span><h2><a class="toc-backref" href="#id78"><tt class="docutils literal">\PolReduceCoeffs{polname}</tt></a></h2>
<blockquote>
About the same as <tt class="docutils literal"><span class="pre">\PolMapCoeffs{\xintIrr}{polname}</span></tt> (but
maintaining a <tt class="docutils literal">[0]</tt> postfix for speedier <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> parsing when
polynomial function is used for computations.) This is a
one-argument macro, working 'in-place'.</blockquote>
</div>
<div class="section" id="id15">
<span id="id14"></span><h2><a class="toc-backref" href="#id79"><tt class="docutils literal"><span class="pre">\PolReduceCoeffs*{polname}</span></tt></a></h2>
<blockquote>
<p>This starred variant leaves un-touched the decimal exponent in the
internal representation of the fractional coefficients, i.e. if a
coefficient is internally <tt class="docutils literal">A/B[N]</tt>, then <tt class="docutils literal">A/B</tt> is reduced to
smallest terms, but the <tt class="docutils literal">10^N</tt> part is kept as is. Note: if the
polynomial is freshly defined directly via <a class="reference internal" href="#polfromcsv">\PolFromCSV</a> its coefficients might still be internally in some
format like <tt class="docutils literal">1.5e7</tt>; the macro will anyhow always first do the
needed conversion to strict format <tt class="docutils literal">A/B[N]</tt>.</p>
<p>Evaluations with polynomials treated by this can be much faster than
with those handled by the non-starred variant
<a class="reference internal" href="#polreducecoeffs-polname">\PolReduceCoeffs{polname}</a>: as the numerators and denominators
remain smaller, this proves very beneficial in favorable cases
(especially when the coefficients are decimal numbers) to the
expansion speed of the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> macros used internally by
<a class="reference internal" href="#polevalat">\PolEval</a>.</p>
</blockquote>
</div>
<div class="section" id="polmakemonic-polname">
<span id="polmakemonic"></span><h2><a class="toc-backref" href="#id80"><tt class="docutils literal">\PolMakeMonic{polname}</tt></a></h2>
<blockquote>
Divides by the leading coefficient. It is recommended to execute
<a class="reference internal" href="#id15">\PolReduceCoeffs*{polname}</a> immediately afterwards. This is not
done automatically, due to the case the original polynomial had integer
coefficients and we want to keep the leading one as common
denominator.</blockquote>
</div>
</div>
<div class="section" id="expandable-macros">
<h1><a class="toc-backref" href="#id81">Expandable macros</a></h1>
<p>All these macros expand completely in two steps except <tt class="docutils literal">\PolToExpr</tt>
and <tt class="docutils literal">\PolToFloatExpr</tt> (and their auxiliaries) which need a
<tt class="docutils literal">\write</tt>, <tt class="docutils literal">\edef</tt> or a <tt class="docutils literal"><span class="pre">\csname...\endcsname</span></tt> context.</p>
<div class="section" id="poleval-polname-atexpr-numerical-expression">
<span id="polevalatexpr"></span><h2><a class="toc-backref" href="#id82"><tt class="docutils literal"><span class="pre">\PolEval{polname}\AtExpr{numerical</span> expression}</tt></a></h2>
<blockquote>
It boils down to
<tt class="docutils literal">\xinttheexpr polname(numerical <span class="pre">expression)\relax</span></tt>.</blockquote>
</div>
<div class="section" id="poleval-polname-at-fraction">
<span id="polevalat"></span><h2><a class="toc-backref" href="#id83"><tt class="docutils literal"><span class="pre">\PolEval{polname}\At{fraction}</span></tt></a></h2>
<blockquote>
<p>Evaluates the polynomial at value <tt class="docutils literal">fraction</tt> which must be in (or
expand to) a format acceptable to the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> macros.</p>
<div class="admonition attention">
<p class="first admonition-title">Attention!</p>
<p>Meaning was changed at <tt class="docutils literal">0.4</tt>. Formerly <tt class="docutils literal"><span class="pre">\PolEval{P}\At{foo}</span></tt>
accepted for <tt class="docutils literal">foo</tt> an expression which was handled by
<tt class="docutils literal">\xintexpr</tt>. See <a class="reference internal" href="#poleval-polname-atexpr-numerical-expression">\PolEval{polname}\AtExpr{numerical
expression}</a>.</p>
<p class="last">In particular, to use an <tt class="docutils literal">\xintexpr</tt> user-declared variable (or
e.g. the variables as defined by <a class="reference external" href="PolSturmIsolateZeros">\PolSturmIsolateZeros</a>) one <strong>must</strong> use the <tt class="docutils literal">\AtExpr</tt> syntax.</p>
</div>
</blockquote>
</div>
<div class="section" id="polevalreduced-polname-atexpr-numerical-expression">
<span id="polevalreducedatexpr"></span><h2><a class="toc-backref" href="#id84"><tt class="docutils literal"><span class="pre">\PolEvalReduced{polname}\AtExpr{numerical</span> expression}</tt></a></h2>
<blockquote>
Boils down to <tt class="docutils literal">\xinttheexpr reduce(polname(numerical <span class="pre">expression))\relax</span></tt>.</blockquote>
</div>
<div class="section" id="polevalreduced-polname-at-fraction">
<span id="polevalreducedat"></span><h2><a class="toc-backref" href="#id85"><tt class="docutils literal"><span class="pre">\PolEvalReduced{polname}\At{fraction}</span></tt></a></h2>
<blockquote>
<p>Evaluates the polynomial at value <tt class="docutils literal">fraction</tt> which must be in (or
expand to) a format acceptable to the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> macros, and produce
an irreducible fraction.</p>
<div class="admonition attention">
<p class="first admonition-title">Attention!</p>
<p class="last">Meaning was changed at <tt class="docutils literal">0.4</tt>. Formerly the evaluation point
could be given as an expression.</p>
</div>
</blockquote>
</div>
<div class="section" id="polfloateval-polname-atexpr-numerical-expression">
<span id="polfloatevalatexpr"></span><h2><a class="toc-backref" href="#id86"><tt class="docutils literal"><span class="pre">\PolFloatEval{polname}\AtExpr{numerical</span> expression}</tt></a></h2>
<blockquote>
<p>Boils down to <tt class="docutils literal">\xintthefloatexpr polname(numerical <span class="pre">expression)\relax</span></tt>.</p>
<p>This is done via a Horner Scheme (see <a class="reference internal" href="#poldef">\poldef</a> and
<a class="reference internal" href="#polgenfloatvariant-polname">\PolGenFloatVariant{polname}</a>), with already rounded
coefficients. <a class="footnote-reference" href="#id19" id="id17">[2]</a> To use the <em>exact coefficients</em> with <em>exactly
executed</em> additions and multiplications, just insert it in the float
expression as in this example: <a class="footnote-reference" href="#id20" id="id18">[3]</a></p>
<pre class="literal-block">
\xintthefloatexpr 3.27*\xintexpr f(2.53)\relax^2\relax
</pre>
<p>The <tt class="docutils literal">f(2.53)</tt> is exactly computed then rounded at the time of
getting raised to the power <tt class="docutils literal">2</tt>. Moving the <tt class="docutils literal">^2</tt> inside, that
operation would also be treated exactly.</p>
<div class="admonition attention">
<p class="first admonition-title">Attention!</p>
<p class="last">At <tt class="docutils literal">polexpr 0.3</tt>, polynoms were automatically also prepared for
use in floating point contexts. This got dropped at <tt class="docutils literal">0.4</tt> for
optimization purposes. See <a class="reference internal" href="#polgenfloatvariant-polname">\PolGenFloatVariant{polname}</a>.</p>
</div>
<table class="docutils footnote" frame="void" id="id19" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id17">[2]</a></td><td>Anyway each floating point operation starts by rounding its
operands to the floating point precision.</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="id20" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id18">[3]</a></td><td>The <tt class="docutils literal">\xintexpr</tt> here could be <tt class="docutils literal">\xinttheexpr</tt> but that
would be less efficient. Cf. <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> documentation about
nested expressions.</td></tr>
</tbody>
</table>
</blockquote>
</div>
<div class="section" id="polfloateval-polname-at-fraction">
<span id="polfloatevalat"></span><h2><a class="toc-backref" href="#id87"><tt class="docutils literal"><span class="pre">\PolFloatEval{polname}\At{fraction}</span></tt></a></h2>
<blockquote>
<p>Evaluates the polynomial at value <tt class="docutils literal">fraction</tt> which must be in (or
expand to) a format acceptable to the <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> macros, and produces
a floating point number.</p>
<div class="admonition attention">
<p class="first admonition-title">Attention!</p>
<p class="last">Meaning was changed at <tt class="docutils literal">0.4</tt>. Formerly the evaluation point
could be given as an expression.</p>
</div>
</blockquote>
</div>
<div class="section" id="polifcoeffisplusorminusone-a-b">
<span id="polifcoeffisplusorminusone"></span><h2><a class="toc-backref" href="#id88"><tt class="docutils literal"><span class="pre">\PolIfCoeffIsPlusOrMinusOne{A}{B}</span></tt></a></h2>
<blockquote>
<p>This macro is a priori undefined.</p>
<p>It is defined via the default <a class="reference internal" href="#poltypesetcmd-raw-coeff">\PolTypesetCmd{raw_coeff}</a> to be
used if needed in the execution of <a class="reference internal" href="#poltypesetmonomialcmd">\PolTypesetMonomialCmd</a>,
e.g. to insert a <tt class="docutils literal">\cdot</tt> in front of <tt class="docutils literal"><span class="pre">\PolVar^{\PolIndex}</span></tt> if
the coefficient is not plus or minus one.</p>
<p>The macro will execute <tt class="docutils literal">A</tt> if the coefficient has been found to be
plus or minus one, and <tt class="docutils literal">B</tt> if not.</p>
</blockquote>
</div>
<div class="section" id="polleadingcoeff-polname">
<span id="polleadingcoeff"></span><h2><a class="toc-backref" href="#id89"><tt class="docutils literal">\PolLeadingCoeff{polname}</tt></a></h2>
<blockquote>
Expands to the leading coefficient.</blockquote>
</div>
<div class="section" id="polnthcoeff-polname-number">
<span id="polnthcoeff"></span><h2><a class="toc-backref" href="#id90"><tt class="docutils literal"><span class="pre">\PolNthCoeff{polname}{number}</span></tt></a></h2>
<blockquote>
It expands to the raw <tt class="docutils literal">N</tt>-th coefficient (<tt class="docutils literal">0/1[0]</tt> if the index
number is out of range). With <tt class="docutils literal"><span class="pre">N=-1</span></tt>, <tt class="docutils literal"><span class="pre">-2</span></tt>, ... expands to the
leading coefficients.</blockquote>
</div>
<div class="section" id="poldegree-polname">
<span id="poldegree"></span><h2><a class="toc-backref" href="#id91"><tt class="docutils literal">\PolDegree{polname}</tt></a></h2>
<blockquote>
It expands to the degree. This is <tt class="docutils literal"><span class="pre">-1</span></tt> if zero polynomial but this
may change in future. Should it then expand to <tt class="docutils literal"><span class="pre">-\infty</span></tt> ?</blockquote>
</div>
<div class="section" id="poltoexpr-polname">
<span id="poltoexpr"></span><h2><a class="toc-backref" href="#id92"><tt class="docutils literal">\PolToExpr{polname}</tt></a></h2>
<blockquote>
<p>Expands <a class="footnote-reference" href="#id22" id="id21">[4]</a> to <tt class="docutils literal"><span class="pre">coeff_N*x^N+...</span></tt> (descending powers.)</p>
<table class="docutils footnote" frame="void" id="id22" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id21">[4]</a></td><td>in a <tt class="docutils literal">\write</tt>, <tt class="docutils literal">\edef</tt>, or <tt class="docutils literal"><span class="pre">\csname...\endcsname</span></tt>, but
not under <tt class="docutils literal"><span class="pre">\romannumeral-`0</span></tt>.</td></tr>
</tbody>
</table>
<p>By default zero coefficients are skipped (issue <tt class="docutils literal">\poltoexpralltrue</tt> to
get all of them in output).</p>
<p>By default, no <tt class="docutils literal">+</tt> sign before negative coefficients, for
compliance with Maple input format (but see
<a class="reference internal" href="#poltoexprtermprefix-raw-coeff">\PolToExprTermPrefix{raw_coeff}</a>.) Also, like the default
behaviour of <a class="reference internal" href="#poltypeset-polname">\PolTypeset{polname}</a>, does not print (for the non
constant terms) coefficients equal to plus or minus one. The degree
one monomial is output as <tt class="docutils literal">x</tt>, not <tt class="docutils literal">x^1</tt>. Complete customization is
possible, see next macros.</p>
<p>Of course <tt class="docutils literal">\PolToExpr{f}</tt> can be inserted in a <tt class="docutils literal">\poldef</tt>, as the
latter expands token by token, hence will force complete expansion
of <tt class="docutils literal">\PolToExpr{f}</tt>, but a simple <tt class="docutils literal">f(x)</tt> is more efficient for
the identical result.</p>
</blockquote>
<div class="section" id="poltoexproneterm-raw-coeff-number">
<span id="poltoexproneterm"></span><h3><a class="toc-backref" href="#id93"><tt class="docutils literal"><span class="pre">\PolToExprOneTerm{raw_coeff}{number}</span></tt></a></h3>
<blockquote>
<p>This two argument expandable command takes care of the monomial and
its coefficient. The default definition is done in order for
coefficients of absolute value <tt class="docutils literal">1</tt> not be printed explicitely
(except of course for the constant term). Also by default, the
monomial of degree one is <tt class="docutils literal">x</tt> not <tt class="docutils literal">x^1</tt>, and <tt class="docutils literal">x^0</tt> is skipped.</p>
<p>For compatibility with Maple input requirements, by default a <tt class="docutils literal">*</tt>
always precedes the <tt class="docutils literal">x^number</tt>, except if the coefficient is a one
or a minus one. See <a class="reference internal" href="#poltoexprtimes">\PolToExprTimes</a>.</p>
</blockquote>
</div>
<div class="section" id="poltoexpronetermstylea-raw-coeff-number">
<span id="poltoexpronetermstylea"></span><h3><a class="toc-backref" href="#id94"><tt class="docutils literal"><span class="pre">\PolToExprOneTermStyleA{raw_coeff}{number}</span></tt></a></h3>
<blockquote>
Holds the default package meaning of
<a class="reference internal" href="#poltoexproneterm-raw-coeff-number">\PolToExprOneTerm{raw_coeff}{number}</a>.</blockquote>
</div>
<div class="section" id="poltoexpronetermstyleb-raw-coeff-number">
<span id="poltoexpronetermstyleb"></span><h3><a class="toc-backref" href="#id95"><tt class="docutils literal"><span class="pre">\PolToExprOneTermStyleB{raw_coeff}{number}</span></tt></a></h3>
<blockquote>
<p>For output in this style:</p>
<pre class="literal-block">
2*x^11/3+3*x^8/7-x^5−x^4/4−x^3−x^2/2−2*x+1
</pre>
<p>issue <tt class="docutils literal">\let\PolToExprOneTerm\PolToExprOneTermStyleB</tt> before usage of
<tt class="docutils literal">\PolToExpr</tt>. Note that then <tt class="docutils literal">\PolToExprCmd</tt> isn't used at all.
To revert to package default, issue
<tt class="docutils literal">\let\PolToExprOneTerm\PolToExprOneTermStyleA</tt>.</p>
<p>To suppress the <tt class="docutils literal">*</tt>'s, cf. <a class="reference internal" href="#poltoexprtimes">\PolToExprTimes</a>.</p>
</blockquote>
</div>
<div class="section" id="poltoexprcmd-raw-coeff">
<span id="poltoexprcmd"></span><h3><a class="toc-backref" href="#id96"><tt class="docutils literal">\PolToExprCmd{raw_coeff}</tt></a></h3>
<blockquote>
It is the one-argument macro used by the package definition of
<tt class="docutils literal">\PolToExprOneTerm</tt> for the coefficients themselves (when not
equal to plus or minus one), and it defaults to
<tt class="docutils literal"><span class="pre">\xintPRaw{\xintRawWithZeros{#1}}</span></tt>. One will have to redefine it
to <tt class="docutils literal"><span class="pre">\xintIrr{#1}</span></tt> or to <tt class="docutils literal"><span class="pre">\xintPRaw{\xintIrr{#1}}</span></tt> to obtain in the
output forcefully reduced coefficients.</blockquote>
</div>
<div class="section" id="poltoexprtermprefix-raw-coeff">
<span id="poltoexprtermprefix"></span><h3><a class="toc-backref" href="#id97"><tt class="docutils literal">\PolToExprTermPrefix{raw_coeff}</tt></a></h3>
<blockquote>
Defined identically as <a class="reference internal" href="#poltypesetcmdprefix-raw-coeff">\PolTypesetCmdPrefix{raw_coeff}</a>. It
prefixes with a plus sign for non-negative coefficients, because
they don't carry one by themselves.</blockquote>
</div>
<div class="section" id="id23">
<span id="poltoexprvar"></span><h3><a class="toc-backref" href="#id98"><tt class="docutils literal">\PolToExprVar</tt></a></h3>
<blockquote>
This expands to the variable to use in output (it does not have to
be a single letter, may be an expandable macro.) Initial definition
is <tt class="docutils literal">x</tt>.</blockquote>
</div>
<div class="section" id="id24">
<span id="poltoexprtimes"></span><h3><a class="toc-backref" href="#id99"><tt class="docutils literal">\PolToExprTimes</tt></a></h3>
<blockquote>
This expands to the symbol used for multiplication of an
<tt class="docutils literal"><span class="pre">x^{number}</span></tt> by the corresponding coefficient. The default is
<tt class="docutils literal">*</tt>. Redefine the macro to expand to nothing to get rid of it (but
this will give output incompatible with some professional computer
algebra software).</blockquote>
</div>
</div>
<div class="section" id="id26">
<span id="id25"></span><h2><a class="toc-backref" href="#id100"><tt class="docutils literal"><span class="pre">\PolToExpr*{polname}</span></tt></a></h2>
<blockquote>
Expands to <tt class="docutils literal"><span class="pre">coeff_0+coeff_1*x+coeff_2*x^2+...</span></tt> (ascending powers).
Customizable like <a class="reference internal" href="#poltoexpr-polname">\PolToExpr{polname}</a> via the same macros.</blockquote>
</div>
<div class="section" id="poltofloatexpr-polname">
<span id="poltofloatexpr"></span><h2><a class="toc-backref" href="#id101"><tt class="docutils literal">\PolToFloatExpr{polname}</tt></a></h2>
<blockquote>
<p>Similar to <a class="reference internal" href="#poltoexpr-polname">\PolToExpr{polname}</a> but uses <a class="reference external" href="\PolToFloatExprCmd{raw_coeff}">\PolToFloatExprCmd</a>
which by default rounds and converts the coefficients to floating
point format.</p>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p>It is not necessary to have issued
<a class="reference internal" href="#polgenfloatvariant-polname">\PolGenFloatVariant{polname}</a>. The rounded coefficients are
not easily recoverable from the <tt class="docutils literal">\xintfloatexpr</tt> polynomial
function hence <tt class="docutils literal">\PolToFloatExprCmd</tt> operates from the <em>exact</em>
coefficients anew.</p>
<p class="last">Attention that both macros obey the prevailing float precision.
If it is changed between those macro calls, then a mismatch
exists between the coefficients as used in <tt class="docutils literal">\xintfloatexpr</tt> and
those output by <tt class="docutils literal">\PolToFloatExpr{polname}</tt>.</p>
</div>
</blockquote>
<div class="section" id="poltofloatexproneterm-raw-coeff-number">
<span id="poltofloatexproneterm"></span><h3><a class="toc-backref" href="#id102"><tt class="docutils literal"><span class="pre">\PolToFloatExprOneTerm{raw_coeff}{number}</span></tt></a></h3>
<blockquote>
Similar to <a class="reference external" href="\PolToExprOneTerm{raw_coeff}{number}">\PolToExprOneTerm</a>. But does not treat
especially coefficients equal to plus or minus one.</blockquote>
</div>
<div class="section" id="poltofloatexprcmd-raw-coeff">
<span id="id28"></span><h3><a class="toc-backref" href="#id103"><tt class="docutils literal">\PolToFloatExprCmd{raw_coeff}</tt></a></h3>
<blockquote>
<p>It is the one-argument macro used by <tt class="docutils literal">\PolToFloatExprOneTerm</tt>.
Its package definition is <tt class="docutils literal"><span class="pre">\xintFloat{#1}</span></tt>.</p>
<div class="admonition caution">
<p class="first admonition-title">Caution!</p>
<p>Currently (<a class="reference external" href="http://www.ctan.org/pkg/xint">xint</a> <tt class="docutils literal">1.2p</tt>) <tt class="docutils literal">\xintFloat{0}</tt> outputs <tt class="docutils literal">0.e0</tt>
which is perfectly acceptable input for Python, but not for
Maple. Thus, one should better leave the <a class="reference internal" href="#poltoexprallfalse">\poltoexprallfalse</a>
toggle to its default <tt class="docutils literal">\iffalse</tt> state, if one intends to use
the output in a Maple worksheet.</p>
<p>But even then the zero polynomial will cause a problem. Workaround:</p>
<pre class="literal-block">
\renewcommand\PolToFloatExprCmd[1]{\xintiiifZero{#1}{0.0}{\xintFloat{#1}}}
</pre>
<p class="last">Usage of <tt class="docutils literal">\xintiiifZero</tt> and not <tt class="docutils literal">\xintifZero</tt> is only for
optimization (I can't help it) because <tt class="docutils literal">#1</tt> is known to be
in <tt class="docutils literal">xintfrac</tt> raw format.</p>
</div>
</blockquote>
</div>
</div>
<div class="section" id="id30">
<span id="id29"></span><h2><a class="toc-backref" href="#id104"><tt class="docutils literal"><span class="pre">\PolToFloatExpr*{polname}</span></tt></a></h2>
<blockquote>
Typesets in ascending powers.</blockquote>
</div>
<div class="section" id="poltolist-polname">
<span id="poltolist"></span><h2><a class="toc-backref" href="#id105"><tt class="docutils literal">\PolToList{polname}</tt></a></h2>
<blockquote>
Expands to <tt class="docutils literal"><span class="pre">{coeff_0}{coeff_1}...{coeff_N}</span></tt> with <tt class="docutils literal">N</tt> = degree
(except zero polynomial which does give <tt class="docutils literal">{0/1[0]}</tt> and not an
empty output.)</blockquote>
</div>
<div class="section" id="poltocsv-polname">
<span id="poltocsv"></span><h2><a class="toc-backref" href="#id106"><tt class="docutils literal">\PolToCSV{polname}</tt></a></h2>
<blockquote>
Expands to <tt class="docutils literal">coeff_0, coeff_1, coeff_2, <span class="pre">.....,</span> coeff_N</tt>. Converse
to <a class="reference internal" href="#polfromcsv-polname-csv">\PolFromCSV</a>.</blockquote>
</div>
<div class="section" id="polsturmchainlength-sturmname">
<span id="polsturmchainlength"></span><h2><a class="toc-backref" href="#id107"><tt class="docutils literal">\PolSturmChainLength{sturmname}</tt></a></h2>
<blockquote>
<p>Returns the integer <tt class="docutils literal">N</tt> such that <tt class="docutils literal">sturmname_N</tt> is the last one
in the Sturm chain <tt class="docutils literal">sturmname_0</tt>, <tt class="docutils literal">sturmname_1</tt>, ...</p>
<p>See <a class="reference internal" href="#poltosturm-polname-sturmname">\PolToSturm{polname}{sturmname}</a>.</p>
</blockquote>
</div>
<div class="section" id="polsturmifzeroexactlyknown-sturmname-index-a-b">
<span id="polsturmifzeroexactlyknown"></span><h2><a class="toc-backref" href="#id108"><tt class="docutils literal"><span class="pre">\PolSturmIfZeroExactlyKnown{sturmname}{index}{A}{B}</span></tt></a></h2>
<blockquote>
<p>Executes <tt class="docutils literal">A</tt> if the <tt class="docutils literal">index</tt>th interval reduces to a singleton,
i.e. the root is known exactly, else <tt class="docutils literal">B</tt>.</p>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p><tt class="docutils literal">index</tt> may be a TeX count, or a <tt class="docutils literal">\value{latexcounter}</tt>, or a
numerical expression as parsable by <tt class="docutils literal">\numexpr</tt>: it does not
have to be given via explicit digits.</p>
<p class="last">This remark applies also to the other package macros with
<tt class="docutils literal">index</tt> being the name of the argument in this documentation.
There is also an out-of-range check done for some reasonable
error message (right before everything goes haywire).</p>
</div>
</blockquote>
</div>
<div class="section" id="polsturmisolatedzeroleft-sturmname-index">
<span id="polsturmisolatedzeroleft"></span><h2><a class="toc-backref" href="#id109"><tt class="docutils literal"><span class="pre">\PolSturmIsolatedZeroLeft{sturmname}{index}</span></tt></a></h2>
<blockquote>
Expands to the left end-point for the <tt class="docutils literal">index</tt>th interval
obtained via <a class="reference internal" href="#polsturmisolatezeros-sturmname">\PolSturmIsolateZeros{sturmname}</a> and possibly
refined afterwards.</blockquote>
</div>
<div class="section" id="polsturmisolatedzeroright-sturmname-index">
<span id="polsturmisolatedzeroright"></span><h2><a class="toc-backref" href="#id110"><tt class="docutils literal"><span class="pre">\PolSturmIsolatedZeroRight{sturmname}{index}</span></tt></a></h2>
<blockquote>
Expands to the right end-point for the <tt class="docutils literal">index</tt>th interval
obtained via <a class="reference internal" href="#polsturmisolatezeros-sturmname">\PolSturmIsolateZeros{sturmname}</a> and possibly
refined afterwards.</blockquote>
</div>
<div class="section" id="polsturmnbofisolatedzeros-sturmname">
<span id="polsturmnbofisolatedzeros"></span><h2><a class="toc-backref" href="#id111"><tt class="docutils literal">\PolSturmNbOfIsolatedZeros{sturmname}</tt></a></h2>
<blockquote>
Expands to the number of real roots of the polynomial
<tt class="docutils literal">&lt;sturmname&gt;_0</tt> (which is the number of distinct real roots of the
polynomial used to create the Sturm chain via
<a class="reference internal" href="#poltosturm-polname-sturmname">\PolToSturm{polname}{sturmname}</a>.</blockquote>
</div>
<div class="section" id="polintervalwidth-sturmname-index">
<span id="polintervalwidth"></span><h2><a class="toc-backref" href="#id112"><tt class="docutils literal"><span class="pre">\PolIntervalWidth{sturmname}{index}</span></tt></a></h2>
<blockquote>
The <tt class="docutils literal">10^E</tt> width of the current <tt class="docutils literal">index</tt>th root localization
interval. Output is in <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> raw <tt class="docutils literal">1/1[E]</tt> format (if not zero).</blockquote>
</div>
<div class="section" id="macros-for-use-within-execution-of-polprintintervals">
<h2><a class="toc-backref" href="#id113">Macros for use within execution of <tt class="docutils literal">\PolPrintIntervals</tt></a></h2>
<p>More precisely, they can be used within the replacement texts of the
<a class="reference internal" href="#polprintintervalsprintleftendpoint">\PolPrintIntervalsPrintLeftEndPoint</a>, etc, macros.</p>
<div class="section" id="id31">
<span id="polprintintervalstheendpoint"></span><h3><a class="toc-backref" href="#id114"><tt class="docutils literal">\PolPrintIntervalsTheEndPoint</tt></a></h3>
<blockquote>
Within a custom <a class="reference internal" href="#polprintintervalsprintleftendpoint">\PolPrintIntervalsPrintLeftEndPoint</a>, custom
<a class="reference internal" href="#polprintintervalsprintrightendpoint">\PolPrintIntervalsPrintRightEndPoint</a>, or custom
<a class="reference internal" href="#polprintintervalsprintexactzero">\PolPrintIntervalsPrintExactZero</a> this macro expands to the left
or right end point of the considered interval. Serves as default
replacement for <a class="reference internal" href="#polprintintervalsprintleftendpoint">\PolPrintIntervalsPrintLeftEndPoint</a> , etc...</blockquote>
</div>
<div class="section" id="id32">
<span id="polprintintervalstheindex"></span><h3><a class="toc-backref" href="#id115"><tt class="docutils literal">\PolPrintIntervalsTheIndex</tt></a></h3>
<blockquote>
Within a custom <a class="reference internal" href="#polprintintervalsprintleftendpoint">\PolPrintIntervalsPrintLeftEndPoint</a>, custom
<a class="reference internal" href="#polprintintervalsprintrightendpoint">\PolPrintIntervalsPrintRightEndPoint</a>, or custom
<a class="reference internal" href="#polprintintervalsprintexactzero">\PolPrintIntervalsPrintExactZero</a> this macro expands to the index
of the considered interval. For example if user wants to print the
corresponding end points in red, the index value can thus be tested
in the replacement text of <a class="reference internal" href="#polprintintervalsprintleftendpoint">\PolPrintIntervalsPrintLeftEndPoint</a> and
the other two similar macros.</blockquote>
</div>
<div class="section" id="polifendpointispositive-a-b">
<span id="polifendpointispositive"></span><h3><a class="toc-backref" href="#id116"><tt class="docutils literal"><span class="pre">\PolIfEndPointIsPositive{A}{B}</span></tt></a></h3>
<blockquote>
Within a custom <a class="reference internal" href="#polprintintervalsprintleftendpoint">\PolPrintIntervalsPrintLeftEndPoint</a>, custom
<a class="reference internal" href="#polprintintervalsprintrightendpoint">\PolPrintIntervalsPrintRightEndPoint</a>, or custom
<a class="reference internal" href="#polprintintervalsprintexactzero">\PolPrintIntervalsPrintExactZero</a> this macro executes <tt class="docutils literal">A</tt> if
the considered interval end-point is positive, else <tt class="docutils literal">B</tt>.</blockquote>
</div>
<div class="section" id="polifendpointisnegative-a-b">
<span id="polifendpointisnegative"></span><h3><a class="toc-backref" href="#id117"><tt class="docutils literal"><span class="pre">\PolIfEndPointIsNegative{A}{B}</span></tt></a></h3>
<blockquote>
Within a custom <a class="reference internal" href="#polprintintervalsprintleftendpoint">\PolPrintIntervalsPrintLeftEndPoint</a>, custom
<a class="reference internal" href="#polprintintervalsprintrightendpoint">\PolPrintIntervalsPrintRightEndPoint</a>, or custom
<a class="reference internal" href="#polprintintervalsprintexactzero">\PolPrintIntervalsPrintExactZero</a> this macro executes <tt class="docutils literal">A</tt> if
the considered interval end-point is negative, else <tt class="docutils literal">B</tt>.</blockquote>
</div>
<div class="section" id="polifendpointiszero-a-b">
<span id="polifendpointiszero"></span><h3><a class="toc-backref" href="#id118"><tt class="docutils literal"><span class="pre">\PolIfEndPointIsZero{A}{B}</span></tt></a></h3>
<blockquote>
Within a custom <a class="reference internal" href="#polprintintervalsprintleftendpoint">\PolPrintIntervalsPrintLeftEndPoint</a>, custom
<a class="reference internal" href="#polprintintervalsprintrightendpoint">\PolPrintIntervalsPrintRightEndPoint</a>, or custom
<a class="reference internal" href="#polprintintervalsprintexactzero">\PolPrintIntervalsPrintExactZero</a> this macro executes <tt class="docutils literal">A</tt> if
the considered interval end-point is zero, else <tt class="docutils literal">B</tt>.</blockquote>
</div>
</div>
<div class="section" id="poldectostring-decimal-number">
<span id="poldectostring"></span><h2><a class="toc-backref" href="#id119"><tt class="docutils literal">\PolDecToString{decimal number}</tt></a></h2>
<blockquote>
<p>This is a utility macro to print decimal numbers. It has been
backported to <a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> (release <tt class="docutils literal">1.3</tt> of <tt class="docutils literal">2018/03/01</tt>) under
the name <tt class="docutils literal">\xintDecToString</tt>, and the <tt class="docutils literal">polexpr</tt> macro is simply
now an alias to it.</p>
<p>For example
<tt class="docutils literal"><span class="pre">\PolDecToString{123.456e-8}</span></tt> will expand to <tt class="docutils literal">0.00000123456</tt>
and <tt class="docutils literal"><span class="pre">\PolDecToString{123.450e-8}</span></tt> to <tt class="docutils literal">0.00000123450</tt> which
illustrates that trailing zeros are not trimmed. To trim trailing
zeroes, one can use <tt class="docutils literal"><span class="pre">\PolDecToString{\xintREZ{#1}}</span></tt>.</p>
<p>The exact behaviour of this macro may evolve in future releases of
<a class="reference external" href="http://www.ctan.org/pkg/xint">xint</a>.</p>
</blockquote>
</div>
</div>
<div class="section" id="booleans-with-default-setting-as-indicated">
<h1><a class="toc-backref" href="#id120">Booleans (with default setting as indicated)</a></h1>
<div class="section" id="xintverbosefalse">
<h2><a class="toc-backref" href="#id121"><tt class="docutils literal">\xintverbosefalse</tt></a></h2>
<blockquote>
<p>This is actually an <a class="reference external" href="http://www.ctan.org/pkg/xint">xintexpr</a> configuration. Setting it to
<tt class="docutils literal">true</tt> triggers the writing of information to the log when new
polynomials are defined.</p>
<div class="admonition caution">
<p class="first admonition-title">Caution!</p>
<p class="last">The macro meanings as written to the log are to be considered
unstable and undocumented internal structures.</p>
</div>
</blockquote>
</div>
<div class="section" id="poltypesetallfalse">
<h2><a class="toc-backref" href="#id122"><tt class="docutils literal">\poltypesetallfalse</tt></a></h2>
<blockquote>
If <tt class="docutils literal">true</tt>, <a class="reference internal" href="#poltypeset-polname">\PolTypeset{polname}</a> will also typeset the vanishing
coefficients.</blockquote>
</div>
<div class="section" id="poltoexprallfalse">
<h2><a class="toc-backref" href="#id123"><tt class="docutils literal">\poltoexprallfalse</tt></a></h2>
<blockquote>
If <tt class="docutils literal">true</tt>, <a class="reference internal" href="#poltoexpr-polname">\PolToExpr{polname}</a> and <a class="reference internal" href="#poltofloatexpr-polname">\PolToFloatExpr{polname}</a> will
also include the vanishing coefficients in their outputs.</blockquote>
</div>
</div>
<div class="section" id="technicalities">
<h1><a class="toc-backref" href="#id124">Technicalities</a></h1>
<ul>
<li><p class="first">The catcode of the semi-colon is reset temporarily by <a class="reference internal" href="#poldef">\poldef</a> macro in case some other package (for example the French
babel module) may have made it active. This will fail though if the
whole thing was already part of a macro argument, in such cases one
can use <a class="reference internal" href="#id2">\PolDef{f}{P(x)}</a>
rather. The colon in <tt class="docutils literal">:=</tt> may be active with no consequences.</p>
</li>
<li><p class="first">During execution of polynomial operations by <tt class="docutils literal">\poldef</tt> (but not
during the initial purely numerical parsing of the expression), the
<a class="reference external" href="http://www.ctan.org/pkg/xint">xintfrac</a> macro <tt class="docutils literal">\xintAdd</tt> is temporarily patched to always express
<tt class="docutils literal">a/b + c/d</tt> with <tt class="docutils literal">lcm(b,d)</tt> as denominator. Indeed the current
(xint 1.2p) <tt class="docutils literal">\xintAdd</tt> uses <tt class="docutils literal"><span class="pre">(ad+bc)/bd</span></tt> formula except if <tt class="docutils literal">b</tt>
divides <tt class="docutils literal">d</tt> or <tt class="docutils literal">d</tt> divides <tt class="docutils literal">b</tt>, which quickly leads in real life
to big denominators.</p>
<p>It is probable that this convention will be backported as default
behaviour of xintfrac's <tt class="docutils literal">\xintAdd</tt> in a future xint release. When this
change is merged, there will be an impact on coefficients computed by
<tt class="docutils literal">\poldef</tt> because the change will apply even to the pure numerical
evaluations arising during the initial stage of the parsing. Of course
the coefficients are still the same rational numbers, only
representation as fractions may change.</p>
</li>
<li><p class="first">As a consequence of previous rule, user-chosen common denominators
survive addition and multiplications:</p>
<pre class="literal-block">
\poldef P(x):= 1/2 + 2/2*x + 3/2*x^3 + 4/2*x^4;
\poldef Q(x):= 1/3 + (2/3)x + (3/3)x^3 + (4/3)x^4;
\poldef PQ(x):= P(x)Q(x);
</pre>
<p>gives the polynomial:</p>
<pre class="literal-block">
1/6+4/6*x^1+4/6*x^2+6/6*x^3+20/6*x^4+16/6*x^5+9/6*x^6+24/6*x^7+16/6*x^8
</pre>
<p>where all coefficients have the same denominator 6 (which in this
example is the least common multiple of the denominators of the
reduced coefficients.)</p>
</li>
<li><p class="first"><a class="reference internal" href="#poldiff-polname-1-polname-2">\PolDiff{polname_1}{polname_2}</a> always applies <tt class="docutils literal">\xintIrr</tt> to the
resulting coefficients, except that the <em>power of ten</em> part <tt class="docutils literal">[N]</tt>
(for example an input in scientific notation such as <tt class="docutils literal">1.23e5</tt> gives
<tt class="docutils literal">123/1[3]</tt> internally in xintfrac) is not taken into account in the
reduction of the fraction. This is tentative and may change.</p>
<p>Same remark for <a class="reference internal" href="#polantidiff-polname-1-polname-2">\PolAntiDiff{polname_1}{polname_2}</a>.</p>
</li>
<li><p class="first">If <tt class="docutils literal">f</tt> was created from comma separated values by macro
<a class="reference internal" href="#polfromcsv-polname-csv">\PolFromCSV{polname}{&lt;csv&gt;}</a>, then the coefficients will be in
the output of <a class="reference internal" href="#poltolist-polname">\PolToList{polname}</a> and <a class="reference internal" href="#poltocsv-polname">\PolToCSV{polname}</a> in
the same format as originally in input: a <tt class="docutils literal">1.3e2</tt> will again be a
<tt class="docutils literal">1.3e2</tt>.</p>
<p>In contrast when such coefficients are used in a <tt class="docutils literal">\poldef</tt> (or
<tt class="docutils literal">\PolDef</tt>) expression, they get transformed during the parsing to
the xintfrac <em>raw</em> format.
This <em>raw</em> format speeds up expansion of xintfrac macros for numerical
evaluations.</p>
</li>
<li><p class="first">Currently, the package stores all coefficients from index <tt class="docutils literal">0</tt> to
index equal to the polynomial degree inside a single macro, as a list.
This data structure is obviously very inefficient for polynomials of
high degree and few coefficients (as an example with <tt class="docutils literal">\poldef
<span class="pre">f(x):=x^1000</span> + x^500;</tt> the subsequent definition <tt class="docutils literal">\poldef <span class="pre">g(x):=</span>
<span class="pre">f(x)^2;</span></tt> will do of the order of 1,000,000 multiplications and
additions involvings only zeroes... which does take time). This
may change in the future.</p>
</li>
<li><p class="first">As is to be expected internal structures of the package are barely
documented and unstable. Don't use them.</p>
</li>
</ul>
</div>
<div class="section" id="change-log">
<h1><a class="toc-backref" href="#id125">CHANGE LOG</a></h1>
<ul>
<li><p class="first">v0.1 (2018/01/11): initial release. Features:</p>
<ul class="simple">
<li>The <a class="reference internal" href="#poldef">\poldef</a> parser itself,</li>
<li>Differentiation and anti-differentiation,</li>
<li>Euclidean division and GCDs,</li>
<li>Various utilities such as <a class="reference internal" href="#polfromcsv">\PolFromCSV</a>,
<a class="reference internal" href="#polmapcoeffs">\PolMapCoeffs</a>,
<a class="reference internal" href="#poltocsv">\PolToCSV</a>, <a class="reference internal" href="#poltoexpr">\PolToExpr</a>, ...</li>
</ul>
<p>Only one-variable polynomials so far.</p>
</li>
<li><p class="first">v0.2 (2018/01/14)</p>
<ul class="simple">
<li>Fix: <tt class="docutils literal">&quot;README thinks \numexpr recognizes ^ operator&quot;</tt>.</li>
<li>Convert README to reStructuredText markup.</li>
<li>Move main documentation from README to separate <tt class="docutils literal">polexpr.txt</tt> file.</li>
<li>Provide <tt class="docutils literal">polexpr.html</tt> as obtained via <a class="reference external" href="http://docutils.sourceforge.net/docs/index.html">DocUtils</a> <tt class="docutils literal">rst2html.py</tt>.</li>
<li>Convert README to (CTAN compatible) Markdown markup.</li>
</ul>
<p>Due to lack of available time the test suite might not be extensive
enough. Bug reports are very welcome!</p>
</li>
<li><p class="first">v0.3 (2018/01/17)</p>
<ul>
<li><p class="first">bug fixes:</p>
<ul>
<li><p class="first">the <tt class="docutils literal">0.1</tt> <a class="reference internal" href="#polevalat">\PolEval</a> accepted expressions for its second
argument, but this was removed by mistake at <tt class="docutils literal">0.2</tt>. Restored.</p>
<p><strong>Attention</strong>: at <tt class="docutils literal">0.4</tt> this has been reverted again, and
<a class="reference internal" href="#polevalatexpr">\PolEval{P}\AtExpr{foo}</a> syntax is needed for
using expressions in the second argument.</p>
</li>
</ul>
</li>
<li><p class="first">incompatible or breaking changes:</p>
<ul class="simple">
<li><a class="reference internal" href="#poltoexpr">\PolToExpr</a> now by default uses <em>descending</em>
powers (it also treats differently coefficients equal to 1 or -1.)
Use <a class="reference internal" href="#id25">\PolToExpr*</a> for <em>ascending</em> powers.</li>
<li><a class="reference internal" href="#polevalat">\PolEval</a> reduced the output to smallest terms,
but as this is costly with big fractions and not needed if e.g.
wrapped in an <tt class="docutils literal">\xintRound</tt> or <tt class="docutils literal">\xintFloat</tt>, this step has been
removed; the former meaning is available as <a class="reference internal" href="#polevalreducedat">\PolEvalReduced</a>.</li>
</ul>
</li>
<li><p class="first">new (or newly documented) macros:</p>
<ul class="simple">
<li><a class="reference internal" href="#poltypesetcmd">\PolTypesetCmd</a></li>
<li><a class="reference internal" href="#poltypesetcmdprefix">\PolTypesetCmdPrefix</a></li>
<li><a class="reference internal" href="#poltypesetmonomialcmd">\PolTypesetMonomialCmd</a></li>
<li><a class="reference internal" href="#polevalreducedat">\PolEvalReducedAt</a></li>
<li><a class="reference internal" href="#poltofloatexpr">\PolToFloatExpr</a></li>
<li><a class="reference internal" href="#poltoexproneterm">\PolToExprOneTerm</a></li>
<li><a class="reference internal" href="#poltofloatexproneterm">\PolToFloatExprOneTerm</a></li>
<li><a class="reference internal" href="#poltoexprcmd">\PolToExprCmd</a></li>
<li><a class="reference internal" href="#id28">\PolToFloatExprCmd</a></li>
<li><a class="reference internal" href="#poltoexprtermprefix">\PolToExprTermPrefix</a></li>
<li><a class="reference internal" href="#poltoexprvar">\PolToExprVar</a></li>
<li><a class="reference internal" href="#poltoexprtimes">\PolToExprTimes</a></li>
</ul>
</li>
<li><p class="first">improvements:</p>
<ul>
<li><p class="first">documentation has a table of contents, internal hyperlinks,
standardized signature notations and added explanations.</p>
</li>
<li><p class="first">one can do <tt class="docutils literal"><span class="pre">\PolLet{g}={f}</span></tt> or <tt class="docutils literal"><span class="pre">\PolLet{g}{f}</span></tt>.</p>
</li>
<li><p class="first"><tt class="docutils literal">\PolToExpr{f}</tt> is highly customizable.</p>
</li>
<li><p class="first"><a class="reference internal" href="#poldef">\poldef</a> and other defining macros prepare the polynomial
functions for usage within <tt class="docutils literal">\xintthefloatexpr</tt> (or
<tt class="docutils literal">\xintdeffloatvar</tt>). Coefficients are pre-rounded to the
floating point precision. Indispensible for numerical algorithms,
as exact fractions, even reduced, quickly become very big. See the
documentation about how to use the exact polynomials also in
floating point context.</p>
<p><strong>Attention</strong>: this has been reverted at <tt class="docutils literal">0.4</tt>. The macro
<a class="reference internal" href="#polgenfloatvariant">\PolGenFloatVariant</a> must be used for
generation floating point polynomial functions.</p>
</li>
</ul>
</li>
</ul>
</li>
<li><p class="first">v0.3.1 (2018/01/18)</p>
<p>Fixes two typos in example code included in the documentation.</p>
</li>
<li><p class="first">v0.4 (2018/02/16)</p>
<ul>
<li><p class="first">bug fixes:</p>
<ul class="simple">
<li>when Euclidean division gave a zero remainder, the internal
representation of this zero polynomial could be faulty; this
could cause mysterious bugs in conjunction with other package
macros such as <a class="reference internal" href="#polmapcoeffs">\PolMapCoeffs</a>.</li>
<li><a class="reference internal" href="#polgcd">\PolGCD</a> was buggy in case of first polynomial being
of lesser degree than the second one.</li>
</ul>
</li>
<li><p class="first">breaking changes:</p>
<ul>
<li><p class="first">formerly <a class="reference internal" href="#polevalat">\PolEval{P}\At{foo}</a> allowed <tt class="docutils literal">foo</tt> to
be an expression, which was transparently handled via
<tt class="docutils literal">\xinttheexpr</tt>. Now, <tt class="docutils literal">foo</tt> must be a fraction (or a macro
expanding to such) in the format acceptable by <tt class="docutils literal">xintfrac.sty</tt>
macros. Use <a class="reference internal" href="#polevalatexpr">\PolEval{P}\AtExpr{foo}</a> for more
general arguments using expression syntax. E.g., if <tt class="docutils literal">foo</tt> is the
name of a variable known to <tt class="docutils literal">\xintexpr</tt>.</p>
<p>The same holds for <a class="reference internal" href="#polevalreducedat">\PolEvalReduced</a>
and <a class="reference internal" href="#polfloatevalat">\PolFloatEval</a>.</p>
</li>
<li><p class="first">the <tt class="docutils literal">3.0</tt> automatic generation of floating point variants has
been reverted. Not only do <em>not</em> the package macros automatically
generate floating point variants of newly created polynomials,
they actually make pre-existing such variant undefined.</p>
<p>See <a class="reference internal" href="#polgenfloatvariant">\PolGenFloatVariant</a>.</p>
</li>
</ul>
</li>
<li><p class="first">new non-expandable macros:</p>
<ul class="simple">
<li><a class="reference internal" href="#polgenfloatvariant">\PolGenFloatVariant</a></li>
<li><a class="reference internal" href="#polgloballet">\PolGlobalLet</a></li>
<li><a class="reference internal" href="#poltypesetone">\PolTypesetOne</a></li>
<li><a class="reference internal" href="#polquo">\PolQuo</a></li>
<li><a class="reference internal" href="#polrem">\PolRem</a></li>
<li><a class="reference internal" href="#poltosturm">\PolToSturm</a></li>
<li><a class="reference internal" href="#id9">\PolToSturm*</a></li>
<li><a class="reference internal" href="#polsettosturmchainsignchangesat">\PolSetToSturmChainSignChangesAt</a></li>
<li><a class="reference internal" href="#polsettonbofzeroswithin">\PolSetToNbOfZerosWithin</a></li>
<li><a class="reference internal" href="#polsturmisolatezeros">\PolSturmIsolateZeros</a></li>
<li><a class="reference internal" href="#polrefineinterval">\PolRefineInterval*</a></li>
<li><a class="reference internal" href="#polrefineinterval-n">\PolRefineInterval[N]</a></li>
<li><a class="reference internal" href="#polensureintervallength">\PolEnsureIntervalLength</a></li>
<li><a class="reference internal" href="#polensureintervallengths">\PolEnsureIntervalLengths</a></li>
<li><a class="reference internal" href="#polprintintervals">\PolPrintIntervals</a></li>
<li><a class="reference internal" href="#polprintintervalsprintexactzero">\PolPrintIntervalsPrintExactZero</a></li>
<li><a class="reference internal" href="#polprintintervalsprintleftendpoint">\PolPrintIntervalsPrintLeftEndPoint</a></li>
<li><a class="reference internal" href="#polprintintervalsprintrightendpoint">\PolPrintIntervalsPrintRightEndPoint</a></li>
<li><a class="reference internal" href="#id14">\PolReduceCoeffs*</a></li>
<li><a class="reference internal" href="#polmakemonic">\PolMakeMonic</a></li>
</ul>
</li>
<li><p class="first">new expandable macros:</p>
<ul class="simple">
<li><a class="reference internal" href="#poltoexpronetermstylea">\PolToExprOneTermStyleA</a></li>
<li><a class="reference internal" href="#polifcoeffisplusorminusone">\PolIfCoeffIsPlusOrMinusOne</a></li>
<li><a class="reference internal" href="#polleadingcoeff">\PolLeadingCoeff</a></li>
<li><a class="reference internal" href="#polsturmchainlength">\PolSturmChainLength</a></li>
<li><a class="reference internal" href="#polsturmnbofisolatedzeros">\PolSturmNbOfIsolatedZeros</a></li>
<li><a class="reference internal" href="#polsturmifzeroexactlyknown">\PolSturmIfZeroExactlyKnown</a></li>
<li><a class="reference internal" href="#polsturmisolatedzeroleft">\PolSturmIsolatedZeroLeft</a></li>
<li><a class="reference internal" href="#polsturmisolatedzeroright">\PolSturmIsolatedZeroRight</a></li>
<li><a class="reference internal" href="#polprintintervalstheendpoint">\PolPrintIntervalsTheEndPoint</a></li>
<li><a class="reference internal" href="#polprintintervalstheindex">\PolPrintIntervalsTheIndex</a></li>
<li><a class="reference internal" href="#polifendpointispositive">\PolIfEndPointIsPositive</a></li>
<li><a class="reference internal" href="#polifendpointisnegative">\PolIfEndPointIsNegative</a></li>
<li><a class="reference internal" href="#polifendpointiszero">\PolIfEndPointIsZero</a></li>
<li><a class="reference internal" href="#polintervalwidth">\PolIntervalWidth</a></li>
<li><a class="reference internal" href="#poldectostring">\PolDecToString</a></li>
</ul>
</li>
<li><p class="first">improvements:</p>
<p>The main new feature is implementation of the <a class="reference external" href="https://en.wikipedia.org/wiki/Sturm%27s_theorem">Sturm algorithm</a>
for localization of the real roots of polynomials.</p>
</li>
</ul>
</li>
<li><p class="first">v0.4.1 (2018/03/01)</p>
<p>Synced with xint 1.3.</p>
</li>
</ul>
</div>
<div class="section" id="acknowledgments">
<h1><a class="toc-backref" href="#id126">Acknowledgments</a></h1>
<p>Thanks to Jürgen Gilg whose question about <a class="reference external" href="http://www.ctan.org/pkg/xint">xint</a> usage for
differentiating polynomials was the initial trigger leading to this
package, and to Jürgen Gilg and Thomas Söll for testing it on some
concrete problems.</p>
<p>Renewed thanks on occasion of <tt class="docutils literal">0.4</tt> release!</p>
<p>See README.md for the License.</p>
</div>
</div>
</body>
</html>