1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
|
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.14: http://docutils.sourceforge.net/" />
<title>Package polexpr documentation</title>
<style type="text/css">
body{font-size: 14pt;}
/*
:Author: David Goodger (goodger@python.org)
:Id: $Id: html4css1.css 7952 2016-07-26 18:15:59Z milde $
:Copyright: This stylesheet has been placed in the public domain.
Default cascading style sheet for the HTML output of Docutils.
See http://docutils.sf.net/docs/howto/html-stylesheets.html for how to
customize this style sheet.
*/
/* used to remove borders from tables and images */
.borderless, table.borderless td, table.borderless th {
border: 0 }
table.borderless td, table.borderless th {
/* Override padding for "table.docutils td" with "! important".
The right padding separates the table cells. */
padding: 0 0.5em 0 0 ! important }
.first {
/* Override more specific margin styles with "! important". */
margin-top: 0 ! important }
.last, .with-subtitle {
margin-bottom: 0 ! important }
.hidden {
display: none }
.subscript {
vertical-align: sub;
font-size: smaller }
.superscript {
vertical-align: super;
font-size: smaller }
a.toc-backref {
text-decoration: none ;
color: black }
blockquote.epigraph {
margin: 2em 5em ; }
dl.docutils dd {
margin-bottom: 0.5em }
object[type="image/svg+xml"], object[type="application/x-shockwave-flash"] {
overflow: hidden;
}
/* Uncomment (and remove this text!) to get bold-faced definition list terms
dl.docutils dt {
font-weight: bold }
*/
div.abstract {
margin: 2em 5em }
div.abstract p.topic-title {
font-weight: bold ;
text-align: center }
div.admonition, div.attention, div.caution, div.danger, div.error,
div.hint, div.important, div.note, div.tip, div.warning {
margin: 2em ;
border: medium outset ;
padding: 1em }
div.admonition p.admonition-title, div.hint p.admonition-title,
div.important p.admonition-title, div.note p.admonition-title,
div.tip p.admonition-title {
font-weight: bold ;
font-family: sans-serif }
div.attention p.admonition-title, div.caution p.admonition-title,
div.danger p.admonition-title, div.error p.admonition-title,
div.warning p.admonition-title, .code .error {
color: red ;
font-weight: bold ;
font-family: sans-serif }
/* Uncomment (and remove this text!) to get reduced vertical space in
compound paragraphs.
div.compound .compound-first, div.compound .compound-middle {
margin-bottom: 0.5em }
div.compound .compound-last, div.compound .compound-middle {
margin-top: 0.5em }
*/
div.dedication {
margin: 2em 5em ;
text-align: center ;
font-style: italic }
div.dedication p.topic-title {
font-weight: bold ;
font-style: normal }
div.figure {
margin-left: 2em ;
margin-right: 2em }
div.footer, div.header {
clear: both;
font-size: smaller }
div.line-block {
display: block ;
margin-top: 1em ;
margin-bottom: 1em }
div.line-block div.line-block {
margin-top: 0 ;
margin-bottom: 0 ;
margin-left: 1.5em }
div.sidebar {
margin: 0 0 0.5em 1em ;
border: medium outset ;
padding: 1em ;
background-color: #ffffee ;
width: 40% ;
float: right ;
clear: right }
div.sidebar p.rubric {
font-family: sans-serif ;
font-size: medium }
div.system-messages {
margin: 5em }
div.system-messages h1 {
color: red }
div.system-message {
border: medium outset ;
padding: 1em }
div.system-message p.system-message-title {
color: red ;
font-weight: bold }
div.topic {
margin: 2em }
h1.section-subtitle, h2.section-subtitle, h3.section-subtitle,
h4.section-subtitle, h5.section-subtitle, h6.section-subtitle {
margin-top: 0.4em }
h1.title {
text-align: center }
h2.subtitle {
text-align: center }
hr.docutils {
width: 75% }
img.align-left, .figure.align-left, object.align-left, table.align-left {
clear: left ;
float: left ;
margin-right: 1em }
img.align-right, .figure.align-right, object.align-right, table.align-right {
clear: right ;
float: right ;
margin-left: 1em }
img.align-center, .figure.align-center, object.align-center {
display: block;
margin-left: auto;
margin-right: auto;
}
table.align-center {
margin-left: auto;
margin-right: auto;
}
.align-left {
text-align: left }
.align-center {
clear: both ;
text-align: center }
.align-right {
text-align: right }
/* reset inner alignment in figures */
div.align-right {
text-align: inherit }
/* div.align-center * { */
/* text-align: left } */
.align-top {
vertical-align: top }
.align-middle {
vertical-align: middle }
.align-bottom {
vertical-align: bottom }
ol.simple, ul.simple {
margin-bottom: 1em }
ol.arabic {
list-style: decimal }
ol.loweralpha {
list-style: lower-alpha }
ol.upperalpha {
list-style: upper-alpha }
ol.lowerroman {
list-style: lower-roman }
ol.upperroman {
list-style: upper-roman }
p.attribution {
text-align: right ;
margin-left: 50% }
p.caption {
font-style: italic }
p.credits {
font-style: italic ;
font-size: smaller }
p.label {
white-space: nowrap }
p.rubric {
font-weight: bold ;
font-size: larger ;
color: maroon ;
text-align: center }
p.sidebar-title {
font-family: sans-serif ;
font-weight: bold ;
font-size: larger }
p.sidebar-subtitle {
font-family: sans-serif ;
font-weight: bold }
p.topic-title {
font-weight: bold }
pre.address {
margin-bottom: 0 ;
margin-top: 0 ;
font: inherit }
pre.literal-block, pre.doctest-block, pre.math, pre.code {
margin-left: 2em ;
margin-right: 2em }
pre.code .ln { color: grey; } /* line numbers */
pre.code, code { background-color: #eeeeee }
pre.code .comment, code .comment { color: #5C6576 }
pre.code .keyword, code .keyword { color: #3B0D06; font-weight: bold }
pre.code .literal.string, code .literal.string { color: #0C5404 }
pre.code .name.builtin, code .name.builtin { color: #352B84 }
pre.code .deleted, code .deleted { background-color: #DEB0A1}
pre.code .inserted, code .inserted { background-color: #A3D289}
span.classifier {
font-family: sans-serif ;
font-style: oblique }
span.classifier-delimiter {
font-family: sans-serif ;
font-weight: bold }
span.interpreted {
font-family: sans-serif }
span.option {
white-space: nowrap }
span.pre {
white-space: pre }
span.problematic {
color: red }
span.section-subtitle {
/* font-size relative to parent (h1..h6 element) */
font-size: 80% }
table.citation {
border-left: solid 1px gray;
margin-left: 1px }
table.docinfo {
margin: 2em 4em }
table.docutils {
margin-top: 0.5em ;
margin-bottom: 0.5em }
table.footnote {
border-left: solid 1px black;
margin-left: 1px }
table.docutils td, table.docutils th,
table.docinfo td, table.docinfo th {
padding-left: 0.5em ;
padding-right: 0.5em ;
vertical-align: top }
table.docutils th.field-name, table.docinfo th.docinfo-name {
font-weight: bold ;
text-align: left ;
white-space: nowrap ;
padding-left: 0 }
/* "booktabs" style (no vertical lines) */
table.docutils.booktabs {
border: 0px;
border-top: 2px solid;
border-bottom: 2px solid;
border-collapse: collapse;
}
table.docutils.booktabs * {
border: 0px;
}
table.docutils.booktabs th {
border-bottom: thin solid;
text-align: left;
}
h1 tt.docutils, h2 tt.docutils, h3 tt.docutils,
h4 tt.docutils, h5 tt.docutils, h6 tt.docutils {
font-size: 100% }
ul.auto-toc {
list-style-type: none }
</style>
</head>
<body>
<div class="document" id="package-polexpr-documentation">
<h1 class="title">Package polexpr documentation</h1>
<!-- comment: -*- fill-column: 72; mode: rst; -*- -->
<div class="section" id="first-examples">
<h1>First Examples</h1>
<p>The syntax is:</p>
<pre class="literal-block">
\poldef <name>(x):=<expression in variable x>;
</pre>
<p>where in place of <tt class="docutils literal">x</tt> an arbitrary <em>dummy variable</em> is authorized
(i.e. per default any of <tt class="docutils literal"><span class="pre">[a..z|A..Z]</span></tt>; more letters can be declared
under Unicode engines.) One can also issue:</p>
<pre class="literal-block">
\PolDef{name}{expression in variable x}
</pre>
<p>which admits an optional first argument to modify the variable letter
from its default <tt class="docutils literal">x</tt>.</p>
<dl class="docutils">
<dt><tt class="docutils literal">\poldef <span class="pre">f(x):=</span> <span class="pre">1-x+x^2;</span></tt></dt>
<dd>defines polynomial <tt class="docutils literal">f</tt>. Polynomial names must start with a letter
and may contain letters, digits, and underscores. The variable must
be a single letter. The colon character is optional. The semi-colon
at end of expression is mandatory.</dd>
<dt><tt class="docutils literal"><span class="pre">\PolDef{f}{1-x+x^2}</span></tt></dt>
<dd>does the same as <tt class="docutils literal">\poldef <span class="pre">f(x):=</span> <span class="pre">1-x+x^2;</span></tt> To use another letter
than <tt class="docutils literal">x</tt> in the expression, one must pass it as an extra optional
argument to <tt class="docutils literal">\PolDef</tt>. Useful if the semi-colon has been assigned
some non-standard catcode by some package.</dd>
<dt><tt class="docutils literal"><span class="pre">\PolLet{g}{f}</span></tt></dt>
<dd>saves a copy of <tt class="docutils literal">f</tt> under name <tt class="docutils literal">g</tt>.</dd>
<dt><tt class="docutils literal">\poldef <span class="pre">f(z):=</span> <span class="pre">f(z)^2;</span></tt></dt>
<dd>redefines <tt class="docutils literal">f</tt> in terms of itself.</dd>
<dt><tt class="docutils literal">\poldef <span class="pre">f(T):=</span> <span class="pre">f(f(T));</span></tt></dt>
<dd>again redefines <tt class="docutils literal">f</tt> in terms of its (new) self.</dd>
<dt><tt class="docutils literal">\poldef <span class="pre">k(z):=</span> <span class="pre">f(z)-g(g(z)^2)^2;</span></tt></dt>
<dd>should now define the zero polynomial... Let's check:
<tt class="docutils literal">\[ k(z) = <span class="pre">\PolTypeset[z]{k}</span> \]</tt></dd>
<dt><tt class="docutils literal"><span class="pre">\PolDiff{f}{df_dx}</span></tt></dt>
<dd>sets <tt class="docutils literal">df_dx</tt> to the derivative of <tt class="docutils literal">f</tt>.</dd>
<dt><tt class="docutils literal"><span class="pre">\PolDiff{df_dx}{f_xx}</span></tt></dt>
<dd>obtains second derivative.</dd>
<dt><tt class="docutils literal"><span class="pre">\PolDiff[3]{f}{d3f_dx3}</span></tt></dt>
<dd>computes directly the third derivative. Its name does not have to be
chosen so complicated <tt class="docutils literal">:)</tt>, but the right quote <tt class="docutils literal">'</tt> is not
allowed in polynomial names (currently).</dd>
</dl>
<pre class="literal-block">
$f(z) = \PolTypeset[z]{f} $\newline
$f'(z) = \PolTypeset[z]{df_dx}$\newline
$f''(z) = \PolTypeset[z]{f_xx}$\newline
$f'''(z)= \PolTypeset[z]{d3f_dx3}$\par
</pre>
<div class="admonition important">
<p class="first admonition-title">Important</p>
<p>The package does not currently know rational functions: <tt class="docutils literal">/</tt> in
a parsed polynomial expression does the Euclidean quotient:</p>
<pre class="literal-block">
(1-x^2)/(1-x)
</pre>
<p>does give <tt class="docutils literal">1+x</tt> but</p>
<pre class="literal-block">
(1/(1-x))*(1-x^2)
</pre>
<p>evaluates to zero. This will work as expected:</p>
<pre class="last literal-block">
\poldef k(x):= (x-1)(x-2)(x-3)(x-4)/(x^2-5x+4);
</pre>
</div>
<div class="admonition attention">
<p class="first admonition-title">Attention!</p>
<p class="last"><tt class="docutils literal">1/2 x</tt> skips the space and is treated like <tt class="docutils literal"><span class="pre">1/(2x)</span></tt> because of
the tacit multiplication rules of xintexpr. But this means it gives
zero! Thus one must use <tt class="docutils literal">(1/2)x</tt> or <tt class="docutils literal">1/2*x</tt> or <tt class="docutils literal"><span class="pre">(1/2)*x</span></tt> for
disambiguation: <tt class="docutils literal"><span class="pre">x-1/2*x^2+1/3*x^3...</span></tt></p>
</div>
<p>After:</p>
<pre class="literal-block">
\poldef f1(x):= 25(x-1)(x^2-2)(x-3)(x-4)(x-5);%
\poldef f2(x):= 37(x-1)(x^2-2)(x-6)(x-7)(x-8);%
</pre>
<p>the macro call <tt class="docutils literal"><span class="pre">\PolGCD{f1}{f2}{k}</span></tt> sets <tt class="docutils literal">k</tt> to the (unitary) GCD of
<tt class="docutils literal">f1</tt> and <tt class="docutils literal">f2</tt>.</p>
<dl class="docutils">
<dt><tt class="docutils literal">\PolToExpr{k}</tt></dt>
<dd>will thus (expandably) give in this case <tt class="docutils literal"><span class="pre">2-2*x^1-1*x^2+1*x^3</span></tt>.
This is useful for console or file output (the syntax is Maple- and
PSTricks-compatible; currently the letter <tt class="docutils literal">x</tt> in output is not
customizable, but this can easily be added if requested from author.)</dd>
</dl>
</div>
<div class="section" id="non-expandable-macros">
<h1>Non-expandable macros</h1>
<dl class="docutils">
<dt><tt class="docutils literal">\poldef <span class="pre">name(letter):=</span> polynomial expression using letter;</tt></dt>
<dd><p class="first">This evaluates the polynomial expression and stores the coefficients
in a private structure accessible later via other package macros,
under the user-chosen <tt class="docutils literal">name</tt>. Of course previously defined
polynomials are allowed in a new expression. Names must start with a
letter and are constituted of letters, digits and underscore
characters. See Examples above.</p>
<p>As a side effect the function <tt class="docutils literal">name()</tt> is recognized as a genuine
<tt class="docutils literal"><span class="pre">\xintexpr...\relax</span></tt> function for (exact) numerical evaluation. It
computes values not according to the original expression but via
the Horner scheme corresponding to the polynomial coefficients.</p>
<p class="last">The original expression is lost after parsing, and in particular
the package provides no way to typeset it. This has to be done
manually, if needed.</p>
</dd>
<dt><tt class="docutils literal"><span class="pre">\PolDef{name}{P(x)}</span></tt></dt>
<dd>Does the same but the variable is assumed to be <tt class="docutils literal">x</tt>. To use
another letter, pass it as first optional argument:
<tt class="docutils literal"><span class="pre">\PolDef[X]{name}{P(X)}</span></tt>.</dd>
<dt><tt class="docutils literal"><span class="pre">\PolLet{g}{f}</span></tt></dt>
<dd>Makes a copy of already defined polynomial f to new one g. Same
effect as <tt class="docutils literal"><span class="pre">\PolDef{g}{f(x)}</span></tt> but faster.</dd>
<dt><tt class="docutils literal"><span class="pre">\PolAssign{f}\toarray\Array</span></tt></dt>
<dd><p class="first">Defines a one-argument expandable macro <tt class="docutils literal"><span class="pre">\Array{#1}</span></tt> which expands
to the (raw) #1th polynomial coefficient.</p>
<ul class="last simple">
<li>Attention, coefficients here are indexed starting at 1.</li>
<li>With #1=-1, -2, ..., <tt class="docutils literal"><span class="pre">\Array{#1}</span></tt> returns leading coefficients.</li>
<li>With #1=0, returns the number of coefficients, i.e. <tt class="docutils literal">1 + deg f</tt>
for non-zero polynomials.</li>
<li>Out-of-range #1's return <tt class="docutils literal">0/1[0]</tt>.</li>
</ul>
</dd>
<dt><tt class="docutils literal"><span class="pre">\PolGet{f}\fromarray\Array</span></tt></dt>
<dd><p class="first">Does the converse operation to <tt class="docutils literal"><span class="pre">\PolAssign{f}\toarray\Array</span></tt>. No
error checks on validity of coefficients as numbers. Each
<tt class="docutils literal">\Array{index}</tt> is expanded in an <tt class="docutils literal">\edef</tt> before being assigned
to a coefficient. Leading zero coefficients are removed from the
polynomial.</p>
<p>(contrived) Example:</p>
<pre class="literal-block">
\xintAssignArray{1}{-2}{5}{-3}\to\foo
\PolGet{f}\fromarray\foo
</pre>
<p class="last">This will define <tt class="docutils literal">f</tt> as would have <tt class="docutils literal">\poldef <span class="pre">f(x):=1-2x+5x^2-3x^3;</span></tt>.
However the coefficients are still in their original form (i.e.
they were not subjected to <tt class="docutils literal">\xintRaw</tt> or similar xintfrac macro.)</p>
</dd>
<dt><tt class="docutils literal"><span class="pre">\PolFromCSV{f}{comma</span> separated coefficients}</tt></dt>
<dd><p class="first">Defines a polynomial directly from the comma separated list (or a
macro expanding to such a list) of its coefficients, the constant
term being the first item. No validity checks. Spaces from the list
argument are trimmed. List items are expanded in an <tt class="docutils literal">\edef</tt>, but
currently left in their original form like e.g. <tt class="docutils literal">1.5e3</tt> which is
not converted to <tt class="docutils literal">15/1[2]</tt> <em>raw</em> xintfrac format (this may
change).</p>
<p>Leading zero coefficients are removed:</p>
<pre class="literal-block">
\PolFromCSV{J}{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
</pre>
<p>defines the zero polynomial, which has only one (zero) coefficient.</p>
<p class="last">See also expandable macro <tt class="docutils literal">\PolToCSV</tt>.</p>
</dd>
<dt><tt class="docutils literal">\PolTypeset{name}</tt></dt>
<dd><p class="first">Typesets in descending powers in math mode. It uses letter <tt class="docutils literal">x</tt> but
this can be changed via an optional argument:</p>
<pre class="literal-block">
\PolTypeset[z]{name}
</pre>
<p>By default zero coefficients are skipped (issue <tt class="docutils literal">\poltypesetalltrue</tt>
to get all of them in output).</p>
<p class="last">Macros <tt class="docutils literal">\PolTypesetCmd</tt>, <tt class="docutils literal">\PolTypesetPlus</tt>, <tt class="docutils literal">\PolTypesetMonomial</tt>
can help configure the output. See the package code.</p>
</dd>
<dt><tt class="docutils literal"><span class="pre">\PolTypeset*{name}</span></tt></dt>
<dd>Typesets in ascending powers. Change the letter from its default
<tt class="docutils literal">x</tt> by optional argument.</dd>
<dt><tt class="docutils literal"><span class="pre">\PolDiff{f1}{f2}</span></tt></dt>
<dd><p class="first">This sets f2 to the first derivative of <tt class="docutils literal">f1</tt>. It is allowed to
issue <tt class="docutils literal"><span class="pre">\PolDiff{f}{f}</span></tt>, effectively replacing <tt class="docutils literal">f</tt> by <tt class="docutils literal">f'</tt>.</p>
<p class="last">Coefficients of the result <tt class="docutils literal">f2</tt> are irreducible fractions
(see <a class="reference internal" href="#technicalities">Technicalities</a> for the whole story.)</p>
</dd>
<dt><tt class="docutils literal"><span class="pre">\PolDiff[N]{f1}{f2}</span></tt></dt>
<dd>This sets <tt class="docutils literal">f2</tt> to the <tt class="docutils literal">N</tt>-th derivative of <tt class="docutils literal">f1</tt>. Identical
arguments is allowed. With <tt class="docutils literal">N=0</tt>, same effect as
<tt class="docutils literal"><span class="pre">\PolLet{f2}{f1}</span></tt>. With negative <tt class="docutils literal">N</tt>, switches to using
<tt class="docutils literal">\PolAntiDiff</tt>.</dd>
<dt><tt class="docutils literal"><span class="pre">\PolAntiDiff{f1}{f2}</span></tt></dt>
<dd><p class="first">This sets <tt class="docutils literal">f2</tt> to the primitive of <tt class="docutils literal">f1</tt> vanishing at zero.</p>
<p class="last">Coefficients of the result <tt class="docutils literal">f2</tt> are irreducible fractions
(see <a class="reference internal" href="#technicalities">Technicalities</a> for the whole story.)</p>
</dd>
<dt><tt class="docutils literal"><span class="pre">\PolAntiDiff[N]{f1}{f2}</span></tt></dt>
<dd>This sets <tt class="docutils literal">f2</tt> to the result of <tt class="docutils literal">N</tt> successive integrations on
<tt class="docutils literal">f1</tt>. With negative <tt class="docutils literal">N</tt>, it switches to using <tt class="docutils literal">\PolDiff</tt>.</dd>
<dt><tt class="docutils literal"><span class="pre">\PolDivide{f1}{f2}{Q}{R}</span></tt></dt>
<dd>This sets <tt class="docutils literal">Q</tt> and <tt class="docutils literal">R</tt> to be the quotient and remainder in the
Euclidean division of <tt class="docutils literal">f1</tt> by <tt class="docutils literal">f2</tt>.</dd>
<dt><tt class="docutils literal"><span class="pre">\PolGCD{f}{g}{k}</span></tt></dt>
<dd>This sets <tt class="docutils literal">k</tt> to be the G.C.D. It is a unitary polynomial except
if both <tt class="docutils literal">f</tt> and <tt class="docutils literal">g</tt> vanish, then <tt class="docutils literal">k</tt> is the zero polynomial.</dd>
<dt><tt class="docutils literal"><span class="pre">\PolMapCoeffs{\macro}{name}</span></tt></dt>
<dd><p class="first">It modifies each coefficient of the defined polynomial via the
<em>expandable</em> macro <tt class="docutils literal">\macro</tt>. The degree is adjusted as necessary
if some leading coefficients vanish after the operation. In
replacement text of <tt class="docutils literal">\macro</tt>, <tt class="docutils literal">\index</tt> expands to the
coefficient index (which is defined to be zero for the constant
term).</p>
<p>Notice that <tt class="docutils literal">\macro</tt> will have to handle inputs of the shape
<tt class="docutils literal">A/B[N]</tt> (xintfrac internal notation). This means that it probably
will have to be expressed in terms of macros from xintfrac package.</p>
<p>Example:</p>
<pre class="literal-block">
\def\foo#1{\xintMul{#1}{\the\numexpr\index*\index\relax}}
</pre>
<p class="last">(or with <tt class="docutils literal"><span class="pre">\xintSqr{\xindex}</span></tt>) to replace <tt class="docutils literal">n</tt>-th coefficient
<tt class="docutils literal">f_n</tt> by <tt class="docutils literal">f_n*n^2</tt>.</p>
</dd>
<dt><tt class="docutils literal">\PolReduceCoeffs{name}</tt></dt>
<dd>About the same as <tt class="docutils literal"><span class="pre">\PolMapCoeffs{\xintIrr}{name}</span></tt> (but adds
<tt class="docutils literal">[0]</tt> postfix which speeds up xintfrac operations when
evaluating.)</dd>
</dl>
</div>
<div class="section" id="expandable-macros">
<h1>Expandable macros</h1>
<p>All these macros expand completely in two steps except <tt class="docutils literal">\PolToExpr</tt>
which needs a <tt class="docutils literal">\write</tt>, <tt class="docutils literal">\edef</tt> or a <tt class="docutils literal"><span class="pre">\csname...\endcsname</span></tt> context.</p>
<dl class="docutils">
<dt><tt class="docutils literal"><span class="pre">\PolEval{name}\At{value}</span></tt></dt>
<dd>It boils down to <tt class="docutils literal">\xinttheexpr <span class="pre">reduce(name(value))\relax</span></tt>.</dd>
<dt><tt class="docutils literal"><span class="pre">\PolNthCoeff{name}{N}</span></tt></dt>
<dd>It expands to the raw <tt class="docutils literal">N</tt>-th coefficient (<tt class="docutils literal">0/1[0]</tt> if index is
out of range). With <tt class="docutils literal"><span class="pre">N=-1</span></tt>, <tt class="docutils literal"><span class="pre">-2</span></tt>, ... expands to the leading
coefficients.</dd>
<dt><tt class="docutils literal">\PolDegree{name}</tt></dt>
<dd>It expands to the degree. This is <tt class="docutils literal"><span class="pre">-1</span></tt> if zero polynomial but this
may change in future. Should it then expand to <tt class="docutils literal"><span class="pre">-\infty</span></tt> ?</dd>
<dt><tt class="docutils literal">\PolToExpr{f}</tt></dt>
<dd><p class="first">Expands to <tt class="docutils literal">f_0 + f_1*x + f_2*x^2 + ...</tt> (ascending powers). <a class="footnote-reference" href="#id3" id="id1">[1]</a>,
<a class="footnote-reference" href="#id4" id="id2">[2]</a></p>
<table class="docutils footnote" frame="void" id="id3" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id1">[1]</a></td><td>in a <tt class="docutils literal">\write</tt>, <tt class="docutils literal">\edef</tt>, or <tt class="docutils literal"><span class="pre">\csname...\endcsname</span></tt>, but
not under <tt class="docutils literal"><span class="pre">\romannumeral-`0</span></tt>.</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="id4" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id2">[2]</a></td><td>the letter <tt class="docutils literal">x</tt> is (in this release) not customizable.</td></tr>
</tbody>
</table>
<p>By default zero coefficients are skipped (issue <tt class="docutils literal">\poltoexprtrue</tt> to
get all of them in output).</p>
<p>No <tt class="docutils literal">+</tt> sign before negative coefficients, for compliance with Maple
input format. This means though that parsing the result back via
naive delimited macros is difficult, see <tt class="docutils literal">\PolToList</tt> and <tt class="docutils literal">\PolToCSV</tt>
for more low-level formats making it easier to get expandably some
output of one's choice, which may possibly be parsed later on by
other macros of one's design, or from other packages.</p>
<p>Of course <tt class="docutils literal">\PolToExpr{f}</tt> can be inserted in a poldef, as the
latter expands token by token, hence will force complete expansion
of <tt class="docutils literal">\PolToExpr{f}</tt>, but simply <tt class="docutils literal">f(x)</tt> will be more efficient for the
identical result.</p>
<p class="last"><tt class="docutils literal">\PolToExprCmd</tt> is the one-argument macro used by <tt class="docutils literal">\PolToExpr</tt> for the
coefficients, it defaults to <tt class="docutils literal"><span class="pre">\xintPRaw{\xintRawWithZeros{#1}}</span></tt>. One
will have to redefine it to use <tt class="docutils literal"><span class="pre">\xintIrr{#1}</span></tt> in place of
<tt class="docutils literal"><span class="pre">\xintRawWithZeros{#1}</span></tt> to get in output reduced coefficients.</p>
</dd>
<dt><tt class="docutils literal">\PolToList{f}</tt></dt>
<dd>Expands to <tt class="docutils literal"><span class="pre">{f_0}{f_1}...{f_N}</span></tt> with <tt class="docutils literal">N</tt> = degree of f (except
zero polynomial which does give <tt class="docutils literal">{0/1[0]}</tt> and not an empty
output.)</dd>
<dt><tt class="docutils literal">\PolToCSV{f}</tt></dt>
<dd>Expands to <tt class="docutils literal">f_0, f_1, f_2, <span class="pre">.....,</span> f_N</tt>. Converse to
<tt class="docutils literal">\PolFromCSV</tt>.</dd>
</dl>
</div>
<div class="section" id="technicalities">
<h1>Technicalities</h1>
<ul>
<li><p class="first">The catcode of the semi-colon is reset temporarily by <tt class="docutils literal">\poldef</tt> macro in
case some other package (for example the French babel module) may have
made it active. This will fail though if the whole thing was already
part of a macro argument, in such cases one can use <tt class="docutils literal">\PolDef</tt> rather.
The colon in <tt class="docutils literal">:=</tt> may be active with no consequences.</p>
</li>
<li><p class="first">Beware the <tt class="docutils literal">1/2 x</tt> problem: as mentioned above, it will be give zero due
to the tacit multiplication rules of <tt class="docutils literal">\xintexpr</tt> and to the fact that
the package will do the Euclidean division of <tt class="docutils literal">1</tt> by polynomial <tt class="docutils literal">2x</tt>.</p>
</li>
<li><p class="first">During execution of polynomial operations by <tt class="docutils literal">\poldef</tt> (but not
during the initial purely numerical parsing of the expression), the
xintfrac macro <tt class="docutils literal">\xintAdd</tt> is temporarily patched to always express
<tt class="docutils literal">a/b + c/d</tt> with <tt class="docutils literal"><span class="pre">l.c.m.(b,d)</span></tt> as denominator. Indeed the current
(xint 1.2p) <tt class="docutils literal">\xintAdd</tt> uses <tt class="docutils literal"><span class="pre">(ad+bc)/bd</span></tt> formula except if <tt class="docutils literal">b</tt>
divides <tt class="docutils literal">d</tt> or <tt class="docutils literal">d</tt> divides <tt class="docutils literal">b</tt>, which quickly leads in real life
to big denominators.</p>
<p>It is probable that this convention will be backported as default
behaviour of xintfrac's <tt class="docutils literal">\xintAdd</tt> in a future xint release. When this
change is merged, there will be an impact on coefficients computed by
<tt class="docutils literal">\poldef</tt> because the change will apply even to the pure numerical
evaluations arising during the initial stage of the parsing. Of course
the coefficients are still the same rational numbers, only
representation as fractions may change.</p>
</li>
<li><p class="first">As a consequence of previous rule, user-chosen common denominators
survive addition and multiplications:</p>
<pre class="literal-block">
\poldef P(x):= 1/2 + 2/2*x + 3/2*x^3 + 4/2*x^4;
\poldef Q(x):= 1/3 + (2/3)x + (3/3)x^3 + (4/3)x^4;
\poldef PQ(x):= P(x)Q(x);
</pre>
<p>gives the polynomial:</p>
<pre class="literal-block">
1/6+4/6*x^1+4/6*x^2+6/6*x^3+20/6*x^4+16/6*x^5+9/6*x^6+24/6*x^7+16/6*x^8
</pre>
<p>where all coefficients have the same denominator 6 (which in this
example is the <tt class="docutils literal">l.c.m</tt> of the denominators of the reduced coefficients.)</p>
</li>
<li><p class="first"><tt class="docutils literal">\PolDiff</tt> always applies <tt class="docutils literal">\xintIrr</tt> to the resulting coefficients, except
that the <em>power of ten</em> part <tt class="docutils literal">[N]</tt> (for example an input in scientific
notation such as <tt class="docutils literal">1.23e5</tt> gives <tt class="docutils literal">123/1[3]</tt> internally in xintfrac) is not
taken into account in the reduction of the fraction. This is tentative
and may change.</p>
<p>Same remark for <tt class="docutils literal">\PolAntiDiff</tt>.</p>
</li>
<li><p class="first">If <tt class="docutils literal">f</tt> was created from comma separated values by macro PolFromCSV,
then the coefficients will be in the output of <tt class="docutils literal">\PolToList</tt> and
<tt class="docutils literal">\PolToCSV</tt> in the same format as originally in input: a <tt class="docutils literal">1.3e2</tt>
will again be a <tt class="docutils literal">1.3e2</tt>.</p>
<p>In contrast when such coefficients are used in a <tt class="docutils literal">\poldef</tt> (or
<tt class="docutils literal">\PolDef</tt>) expression, they get transformed during the parsing to
the xintfrac <em>raw</em> format. This is an unavoidable consequence of usage
by poldef of <tt class="docutils literal">\xintdeffunc</tt> which itself is based on <tt class="docutils literal">\xintexpr.</tt>
This <em>raw</em> format speeds up expansion of xintfrac macros for numerical
evaluations.</p>
</li>
<li><p class="first">Currently, the package does not as a result of <tt class="docutils literal">\poldef</tt> add to the TeX
memory an already pre-computed <em>array</em> structure for the polynomial
coefficients, as would be constructed by <tt class="docutils literal"><span class="pre">\PolAssign{f}\toarray\macro</span></tt>.
Such structures are used, but for internal calculations in temporarily
restricted scopes. Apart from the function <tt class="docutils literal">f()</tt> known to the
(numerical) <tt class="docutils literal">\xintexpr</tt> parser (whose meaning can be found in the log
file after xintverbosetrue), the data is (currently) stored in a
single other macro encapsulating the degree, and the coefficients as a
list. This may evolve in future.</p>
</li>
<li><p class="first">As is to be expected internal structures of the package are barely
documented and unstable. Don't use them.</p>
</li>
</ul>
</div>
<div class="section" id="releases">
<h1>RELEASES</h1>
<ul class="simple">
<li>0.1 (2018/01/11): initial release (files README, polexpr.sty).</li>
<li>0.2 (2018/01/14): documentation moved to polexpr.{txt,html}.</li>
</ul>
<p>Files of 0.2 release:</p>
<ul class="simple">
<li>README.md,</li>
<li>polexpr.sty (package file),</li>
<li>polexpr.txt (documentation),</li>
<li>polexpr.html (conversion via <a class="reference external" href="http://docutils.sourceforge.net/docs/index.html">DocUtils</a> rst2html.py)</li>
</ul>
<p>See README.md for the License and the change log.</p>
</div>
</div>
</body>
</html>
|