summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/pgfplots/pgfplots.reference.tex
blob: af59f8e71093540281dad7ea024da2f985900042 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
% main=manual.tex

\section{Command Reference}
\subsection{The Axis-environments}
There is an axis environment for linear scaling, two for semi-logarithmic scaling and one for double-logarithmic scaling.
\begin{environment}{{axis}\oarg{options}}
	The axis environment for normal plots with linear axis scaling.

	The `|every linear axis|' style key can be modified with
\begin{codeexample}[code only]
\pgfplotsset{every linear axis/.append style={...}}
\end{codeexample}
to install styles specifically for linear axes. These styles can contain both \Tikz- and \PGFPlots\ options.
\end{environment}

\begin{environment}{{semilogxaxis}\oarg{options}}
The axis environment for logarithmic scaling of~$x$ and normal scaling of~$y$.
Use
\begin{codeexample}[code only]
\pgfplotsset{every semilogx axis/.append style={...}}
\end{codeexample}
to install styles specifically for the case with |xmode=log|, |ymode=normal|.
\end{environment}

\begin{environment}{{semilogyaxis}\oarg{options}}
The axis environment for normal scaling of~$x$ and logarithmic scaling of~$y$,

The style `|every semilogy axis|' will be installed for each such plot.
\end{environment}

\begin{environment}{{loglogaxis}\oarg{options}}
The axis environment for logarithmic scaling of both, $x$~and~$y$ axes,
As for the other axis possibilities, there is a style `|every loglog axis|' which is installed at the environment's beginning.
\end{environment}

\noindent
They are all equivalent to
\begin{codeexample}[code only]
\begin{axis}[
	xmode=log|normal,
	ymode=log|normal]
...
\end{axis}
\end{codeexample}
\noindent
with properly set variables `|xmode|' and `|ymode|' (see below).

\subsection{The Plot Command}
\label{sec:addplot}%
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[ymin=0,ymax=1,enlargelimits=false]
\addplot
	[blue!80!black,fill=blue,fill opacity=0.5] 
coordinates
{(0,0.1)    (0.1,0.15)  (0.2,0.5)   (0.3,0.62)
 (0.4,0.56) (0.5,0.58)  (0.6,0.65)  (0.7,0.6)
 (0.8,0.58) (0.9,0.55)  (1,0.52)} 
|- (axis cs:0,0) -- cycle;

\addplot
	[red,fill=red!90!black,opacity=0.5]
coordinates 
{(0,0.25)   (0.1,0.27)  (0.2,0.24)  (0.3,0.24)
 (0.4,0.26) (0.5,0.3)   (0.6,0.23)  (0.7,0.2)
 (0.8,0.15) (0.9,0.1)   (1,0.1)}
|- (axis cs:0,0) -- cycle;

\addplot[green!20!black] coordinates
	{(0,0.4) (0.2,0.75) (1,0.75)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}
\addplot plot
	[id=parable,domain=-5:5] 
	gnuplot{4*x**2 - 5} 
	node[pin=180:{$4x^2-5$}]{};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{command}{\addplot\oarg{style options} \textcolor{gray}{plot\oarg{behavior options}} \meta{input data} \meta{trailing path commands};}
This is the main plotting command, available within each axis environment.

It reads point coordinates from one of the available input sources specified by \meta{input data}, updates limits, remembers \meta{style options} for use in a legend (if any) and applies any necessary coordinate transformations (or logarithms).

The \meta{style options} can be omitted in which case the next entry from the |cycle list| will be inserted as \meta{style options}. These keys characterize the plot's type like linear interpolation, smooth plot, constant interpolation or bar plot and define colors, markers and line specifications. 

The optional \meta{behavior options} can be used to modify plot variants, for example to add error bars. They are described when needed.

The \meta{input data} is one of several coordinate input tools which are described in more detail below. Finally, if |\addplot| successfully processed all coordinates from \meta{input data}, it generates \Tikz-drawing commands (for example |plot coordinate {...}|). If \meta{trailing path commands} is not empty, these arguments are appended to the final drawing command.

\noindent
Some more details:
\begin{itemize}
	\item The style |/pgfplots/every axis plot| will be installed at the beginning of \meta{style options}. That means you can use
\begin{codeexample}[code only]
\pgfplotsset{every axis plot/.append style={...}}
\end{codeexample}
	to add options to all your plots - maybe to set line widths to |thick|. Furthermore, if you have more than one plot inside of an axis, you can also use
\begin{codeexample}[code only]
\pgfplotsset{every axis plot no 3/.append style={...}}
\end{codeexample}
	to modify options for the plot with number~$3$ only. The first plot has number~$0$.
	\item The \meta{style options} are remembered for the legend. Furthermore, they are available as `|current plot style|' as long as the path is not yet finished or in associated error bars.
	\item See subsection~\ref{sec:markers} for a list of available markers and line styles.
	\item For log plots, \PGFPlots\ will compute the natural logarithm $\log(\cdot)$ numerically. This works with normal fixed point numbers or in scientific notation. For example, the following numbers are valid input to |\addplot|.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{loglogaxis}
\addplot coordinates {
	(769,   1.6227e-04)
	(1793,  4.4425e-05)
	(4097,  1.2071e-05)
	(9217,  3.2610e-06)
	(2.2e5, 2.1E-6)
	(1e6,   0.00003341)
	(2.3e7, 0.00131415)
};
\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}
	You can represent arbitrarily small or very large numbers as long as its logarithm can be represented as a \TeX-length (up to about~$16384$). Of course, any coordinate~$x\le 0$ is not possible since the logarithm of a non-positive number is not defined. Such coordinates will be skipped automatically.

	\item For normal plots, \PGFPlots\ applies floating point arithmetics to support large or small numbers like 0.00000001234 or $1.234\cdot 10^{24}$. Its number range is much larger than \TeX's native support for numbers. The relative precision is at least~$5$ significant decimal digits for the mantisse. As soon as the axes limits are completely known, \PGFPlots\ applies a transformation which maps these floating point numbers into \TeX-precision using transformations
		\[ T_x(x) = 10^{s_x} \cdot x - a_x \text{ and } T_y(y) = 10^{s_y} \cdot y - a_y \]
	with properly chosen integers $s_x, s_y \in \Z$ and shifts $a_x,a_y\in \R$. Section~\ref{sec:disabledatascaling} contains a description of |disabledatascaling| and provides more details about the transformation.
	\index{Accuracy!Floating Point in \PGFPlots}%

	\item As a consequence of the coordinate parsing routines, you can't use the mathematical expression parsing method of \PGF\ as coordinates (that means: you will need to provide coordinates without suffixes like ``cm'' or ``pt'' and you can't invoke mathematical functions).
	
	\item If you did not specify axis limits for $x$ and $y$ manually, |\addplot| will compute them automatically. 
	The automatic computation of axis limits works as follows:
		\begin{enumerate}
			\item Every coordinate will be checked. Care has been taken to avoid \TeX's limited numerical capabilities.
			\item Since more than one |\addplot| command may be used inside of |\begin{axis}...\end{axis}|, all drawing commands will be postponed until |\end{axis}|.
		\end{enumerate}
\end{itemize}
\end{command}

\subsubsection{Coordinate Lists}
\label{pgfplots:providing:input}

\begin{addplotoperation}[]{coordinates}{\marg{coordinate list}}
The `|plot coordinates|' command is provided by \Tikz\ and reads its input data from a sequence of point coordinates.
\begin{codeexample}[code only]
\addplot plot coordinates {
	(0,0)
	(0.5,1)
	(1,2)
};
\end{codeexample}

You can also supply error coordinates (reliability bounds) if you are interested in error bars. Simply append the error coordinates with `|+- |\parg{ex,ey}' to the associated coordinate:
\begin{codeexample}[code only]
\addplot plot coordinates {
	(0,0)   +- (0.1,0)
	(0.5,1) +- (0.4,0.2)
	(1,2)
	(2,5)   +- (1,0.1)
};
\end{codeexample}
or 
\begin{codeexample}[code only]
\addplot plot coordinates {
	(1300,1e-6) +- (0.1,0.2)
	(2600,5e-7) +- (0.2,0.5)
	(4000,1e-7) +- (0.1,0.01)
};
\end{codeexample}
These error coordinates are only used in case of error bars, see section~\ref{sec:errorbars}. You will also need to configure whether these values denote absolute or relative errors.

The coordinates as such can be numbers as |+5|, |-1.2345e3|, |35.0e2|, |0.00000123| or |1e2345e-8|. They are not limited to \TeX's precision.

Furthermore, |plot coordinates| allows to define ``meta data'' for each coordinate. The interpretation of meta data depends on the visualization technique: for scatter plots, meta data can be used to define colors or style associations for every point (see page~\pageref{pgfplots:scatterclasses} for an example). Meta data (if any) must be provided after the coordinates and after error bar bounds (if any) in square brackets:
\begin{codeexample}[code only]
\addplot plot coordinates {
	(1300,1e-6) [1]
	(2600,5e-7) [2]
	(4000,1e-7) [3]
};
\end{codeexample}
Please refer to the documentation of |scatter src| on page~\pageref{pgfplots:scatter:src} for more information about per point meta data.
\end{addplotoperation}

\subsubsection{Reading Coordinates From Files}

\begin{addplotoperation}[]{file}{\marg{name}}
\PGFPlots\ supports two ways to read plot coordinates of external files, and one of them is the \Tikz-command `|plot file|'. It is to be used like
\begin{codeexample}[code only]
\addplot plot file {datafile.dat};
\end{codeexample}
where \marg{name} is a text file with at least two columns which will be used as $x$ and $y$ coordinates. Lines starting with `|%|' or `|#|' are ignored. Such files are often generated by \textsc{gnuplot}:
\begin{codeexample}[code only]
#Curve 0, 20 points
#x y type
0.00000 0.00000 i
0.52632 0.50235 i
1.05263 0.86873 i
1.57895 0.99997 i
...
9.47368 -0.04889 i
10.00000 -0.54402 i
\end{codeexample}
This listing has been copied from~\cite[section~16.4]{tikz}.

Plot file accepts one optional argument,

\begin{codeexample}[code only]
\addplot file[skip first] {datafile.dat};
\end{codeexample}

\noindent
which allows to skip over a non-comment header line. This allows to read the same input files as |plot table| by skipping over column names. Please note that comment lines do not count as lines here.

The input method |plot file| can also read meta data for every coordinate. As already explained for |plot coordinates| (see above), meta data can be used to change colors or other style parameters for every marker separately. Now, if |scatter src| is set to |explicit| or to |explicit symbolic| and the input method is |plot file|, one further element will be read from disk - for every line. Meta data is always the last element which is read. See page~\pageref{pgfplots:scatter:src} for information and examples about per point meta data and page~\pageref{pgfplots:scatterclasses} for an application example using |scatter/classes|.


Plot file is very similar to |plot table|: you can achieve the same effect with
\begin{codeexample}[code only]
\addplot table[x index=0,y index=0,header=false] {datafile.dat};
\end{codeexample}
\noindent Due to its simplicity, |plot file| is slightly faster while |plot table| allows higher flexibility.

Technical note: every opened file will be protocolled into your log file.
\end{addplotoperation}

\subsubsection{Reading Coordinates From Tables}

\begin{addplotoperation}[]{table}{\oarg{column selection}\marg{file}}
\PGFPlots\ comes with a new plotting command, the `|plot table|' macro. It's usage is similar in spirit to `|plot file|', but its flexibility is higher. Given a data file like
\begin{codeexample}[code only]
dof     L2              Lmax            maxlevel
5       8.31160034e-02  1.80007647e-01  2
17      2.54685628e-02  3.75580565e-02  3
49      7.40715288e-03  1.49212716e-02  4
129     2.10192154e-03  4.23330523e-03  5
321     5.87352989e-04  1.30668515e-03  6
769     1.62269942e-04  3.88658098e-04  7
1793    4.44248889e-05  1.12651668e-04  8
4097    1.20714122e-05  3.20339285e-05  9
9217    3.26101452e-06  8.97617707e-06  10
\end{codeexample}
one may want to plot `|dof|' versus `|L2|' or `|dof|' versus `|Lmax|'. This can be done by
\begin{codeexample}[code only]
\begin{tikzpicture}
\begin{loglogaxis}[
	xlabel=Dof,
	ylabel=$L_2$ error]
\addplot table[x=dof,y=L2] {datafile.dat};
\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}
or
\begin{codeexample}[code only]
\begin{tikzpicture}
\begin{loglogaxis}[
	xlabel=Dof,
	ylabel=$L_infty$ error]
\addplot table[x=dof,y=Lmax] {datafile.dat};
\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}
Alternatively, you can load the table \emph{once} and use it \emph{multiple} times:
\begin{codeexample}[code only]
\pgfplotstableread{datafile.dat}\table
...
\addplot table[x=dof,y=L2] from \table;
...
\addplot table[x=dof,y=Lmax] from \table;
...
\end{codeexample}
I am not really sure how much time can be saved, but it works anyway. As a rule of thumb, decide as follows:
\begin{enumerate}
	\item If tables contain few rows and many columns, the |from |\meta{\textbackslash macro} framework will be more efficient.
	\item If tables contain more than~$200$ data points (rows), you should always use file input (and reload if necessary).
\end{enumerate}

If you do prefer to access columns by column indices instead of column names (or your tables do not have column names), you can also use
\begin{codeexample}[code only]
\addplot table[x index=2,y index=3] {datafile.dat};
\addplot table[x=dof,y index=2] {datafile.dat};
\end{codeexample}

Summary and remarks:
\begin{itemize}
	\item Use |plot table[x=|\marg{column name}|,y=|\marg{column name}|]| to access column names. Those names are case sensitive and need to exist.
	\item Use |plot table[x index=|\marg{column index}|,y index=|\marg{column index}|]| to access column indices. Indexing starts with~$0$. You may also use an index for~$x$ and a column name for~$y$.
	\item Use |plot table[header=false] |\marg{file name} if your input file has no column names. Otherwise, the first non-comment line is checked for column names: if all entries are numbers, they are treated as numerical data; if one of them is not a number, all are treated as column names.
	\item It is possible to read error coordinates from tables as well. Simply add options `|x error|', `|y error|' or `|x error index|'/`|y error index|' to \marg{source columns}. See section~\ref{sec:errorbars} for details about error bars.
	\item It is possible to read per point meta data (usable in |scatter src|, see page~\pageref{pgfplots:scatter:src}) as has been discussed for |plot coordinates| and |plot file| above. The meta data column can be provided using the |meta| key (or the |meta index| key).
	\item Use |plot table[|\meta{source columns}|] from |\marg{\textbackslash macro} to use a pre--read table. Tables can be read using
\begin{codeexample}[code only]
\pgfplotstableread{datafile.dat}\macroname.
\end{codeexample}
		The keyword `|from|' can be omitted.

	\item The accepted input format of those tables is as follows:
		\begin{itemize}
			\item Columns are usually separated by white spaces (at least one tab or space).

			 If you need other column separation characters, you can use the 

			\declare{col sep}|=|\mchoice{space,comma,colon,semicolon,braces} 

			option which is documented in all detail in the manual for \PGFPlotstable\ which is part of \PGFPlots.
			\item Any line starting with `\#' or `\%' is ignored.
			\item The first line will be checked if it contains numerical data. If there is a column in the first line which is \emph{no} number, the complete line is considered to be a header which contains column names. Otherwise it belongs to the numerical data and you need to access column indices instead of names.

			\item There is future support for a second header line which must start with `|$flags |'. Currently, such a line is ignored. It may be used to provide number formatting hints like precision and number format if those tables shall be typeset using |\pgfplotstabletypeset| (see the manual for \PGFPlotstable).
			\item The accepted number format is the same as for `|plot coordinates|', see above.
			\item If you omit column selectors, the default is to plot the first column against the second. That means |plot table| does exactly the same job as |plot file| for this case.
		\end{itemize}
	\item It \emph{is} possible to create new columns out of existing ones, see the \PGFPlotstable\ manual section ``Postprocessing Data in New Columns''.

	In this context, you should consider using the key |read completely|, see below.
	\item Technical note: every opened file will be protocolled into your log file.
\end{itemize}
\end{addplotoperation}

\begin{pgfplotskey}{table/header=\mchoice{true,false} (initially true)}
	Allows to disable header identification for |plot table|. See above.
\end{pgfplotskey}
\begin{pgfplotsxykeylist}{table/\x=\marg{column name},
	table/\x\ index=\marg{column index}}
	These keys define the sources for |plot table|. If both, column names and column indices are given, column names are preferred. Column indexing starts with~$0$. The initial setting is to use |x index=0| and |y index=1|. 

	Please note that column \emph{aliases} will be considered if unknown column names are used. Please refer to the manual of \PGFPlotstable\ which comes with this package.
\end{pgfplotsxykeylist}
\begin{pgfplotsxykeylist}{%
	table/\x\ error=\marg{column name},
	table/\x\ error index=\marg{column index}}
	These keys define input sources for error bars with explicit error values. Please see section~\ref{sec:errorbars} for details.
\end{pgfplotsxykeylist}
\begin{pgfplotsxykeylist}{%
	table/meta=\marg{column name},
	table/meta index=\marg{column index}}
	These keys define input sources for per point meta data. Please see page~\pageref{pgfplots:scatter:src} for details about meta data or the documentation for |plot coordinates| and |plot file| for further information.
\end{pgfplotsxykeylist}
\begin{key}{/pgfplots/table/col sep=\mchoice{space,comma,semicolon,colon,braces} (initially space)}
	Allows to choose column separators for |plot table|. Please refer to the manual of \PGFPlotstable\ which comes with this package for details about |col sep|.
\end{key}
\begin{key}{/pgfplots/table/read completely=\marg{true,false} (initially false)}
	Allows to customize |\addplot table|\marg{file name} such that it always reads the entire table into memory.

	This key has just one purpose, namely to create postprocessing columns on-the-fly and to plot those columns afterwards. This ``lazy evaluation'' which creates missing columns on-the-fly is documented in the \PGFPlotstable\ manual (in section ``Postprocessing Data in New Columns'').

	\paragraph{Attention:} Usually, |\addplot table| only picks required entries, requiring linear runtime complexity. As soon as |read completely| is activated, tables are loaded completely into memory. Due to datastructures issues (``macro append runtime''), the runtime complexity for |read completely| is $O(N^2)$ where $N$ is the number of rows. Thus: use this feature only for ``small'' tables.
\end{key}

\subsubsection{Computing Coordinates with Mathematical Expressions}

\begin{addplotoperation}[]{expression \marg{math expr}}{}
	This input method allows to provide mathematical expressions which will be sampled. But unlike |plot gnuplot|, the expressions are evaluated using the math parser of \PGF, no external program is required.

	Plot expression samples |x| from the interval $[a,b]$ where $a$ and $b$ are specified with the |domain| key. The number of samples can be configured with |samples=|\meta{N} as for plot gnuplot.

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}
	\addplot expression {x^2 + 4};
	\addplot expression {-5*x^3 - x^2};
\end{axis}
\end{tikzpicture}
\end{codeexample}

Please note that \PGF's math parser uses degrees for trigonometric functions:
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}
	\addplot expression[domain=0:360]
		{sin(x)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\noindent If you want to use radians, use 
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}
	\addplot expression[domain=-pi:pi] 
		{sin(deg(x))};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\noindent to convert the radians to degrees. The plot expression parser also accepts some more options like |samples at=|\marg{coordinate list} or |domain=|\meta{first}|:|\meta{last} which are described below.

\paragraph{Remarks}
\begin{enumerate} 
	\item What really goes on is a loop which assigns the current sample coordinate to the macro |\x|. \PGFPlots\ defines a math constant |x| which always has the same value as |\x|.

	In short: it is the same whether you write |\x| or just |x| inside of math expressions.

	The variable name can be customized using |variable=\t|, for example. Then, |x| will be the same as |\t| (there won't be a short-hand name for user defined variable names).
\index{x@\texttt{\textbackslash x} In Coordinate Expressions}%
%\index{y@\texttt{\textbackslash y} In Coordinate Expressions}%

	\item The complete set of math expressions can be found in the \PGF\ manual. The most important mathematical operations are
	|+|, |-|, |*|, |/|, |abs|, |round|, |floor|, |mod|, |<|, |>|, |max|, |min|, |sin|, |cos|, |tan|, |deg| (conversion from radians to degrees), |rad| (conversion from degrees to radians), |atan|, |asin|, |acos|, |cot|, |sec|, |cosec|, |exp|, |ln|, |sqrt|, the constanst |pi| and |e|, |^| (power operation), |factorial|\footnote{Starting with \PGF\ versions newer than $2.00$, you can use the postfix operator \texttt{!} instead of \texttt{factorial}.}, |rand| (random between $-1$ and $1$), |rnd| (random between $0$ and $1$), number format conversions |hex|, |Hex|, |oct|, |bin| and some more. The math parser has been written by Mark Wibrow and Till Tantau~\cite{tikz}, the FPU routines have been developed as part of \PGFPlots. The documentation for both parts can be found in~\cite{tikz}.
	
	Please note, however, that trigonometric functions are defined in degrees. The character `|^|' is used for exponentiation (not `|**|' as in gnuplot).

	\item If the $x$ axis is logarithmic, samples will be drawn logarithmically.

	\item Please note that plot expression does not allow per point meta data.
\end{enumerate}

\paragraph{About the precision and number range:}
\index{Accuracy!High Precision for Plot Expression}%
\index{Errors!dimension too large}%
	\index{Precision}\index{Floating Point Unit} Starting with version 1.2, |plot expression| uses a floating point unit. The FPU provides the full data range of scientific computing with a relative precision between $10^{-4}$ and $10^{-6}$. The |/pgf/fpu| key provides some more details. 

	In case the |fpu| does not provide the desired mathematical function or is too slow\footnote{Or in case you find a bug$\dotsc$}, you should consider using the |plot gnuplot| method which invokes the external, freely available program |gnuplot| as desktop calculator. 

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{loglogaxis}[
		title={$\frac{1}{x^2}$}]
	\addplot[blue]
		expression[domain=1:1e30] 
		{x^-2};
	\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{semilogyaxis}[
		title={$e^x$ logarithmically plotted}]
	\addplot[blue]
		expression[domain=1:700] 
		{exp(x)};
	\end{semilogyaxis}
\end{tikzpicture}
\end{codeexample}
\end{addplotoperation}

\begin{addplotoperation}[]{\marg{math expression}}{}
	Use

	|\addplot |\marg{math expression}|;|

	as short-hand equivalent for

	|\addplot expression |\marg{math expression}|;|
\end{addplotoperation}

\begin{addplotoperation}[]{(\meta{$x$ expression},\meta{$y$ expression})}{}
	A variant of |\addplot expression| which allows to provide different coordinate expressions for the $x$ and $y$ coordinates. This can be used to generate parameterized plots.

	Please note that |\addplot (\x,\x^2)| is equivalent to |\addplot expression {\x^2}|.

	Note further that since the complete point expression is surrounded by round braces, you can't use round braces for either \meta{$x$ expression} or \meta{$y$ expression}. You will need to introduce curly braces additionally to round braces.
\end{addplotoperation}

\begin{key}{/pgfplots/domain=\meta{start}:\meta{end} (initially [-5:5])}
	 Determines the plotted range. This is not necessarily the same as the axis limits (which are configured with the |xmin|/|xmax| options). 

	 This option is used for |plot expression| and for |plot gnuplot|.

	 The |domain| key won't be used if |samples at| is specified; |samples at| has higher precedence.

	 \paragraph{Remark for \Tikz-users:} |/pgfplots/domain| and |/tikz/domain| are independent options. Please prefer the \PGFPlots\ variant (i.e. provide |domain| to an axis, |\pgfplotsset| or a plot command). Since older versions also accepted something like |\begin{tikzpicture}[domain=|$\dotsc$|]|, this syntax is also accepted as long as no \PGFPlots\ |domain| key is set.
\end{key}

\begin{key}{/pgfplots/samples=\marg{number} (initially 25)}
	 Sets the number of sample points for |plot expression| and |plot gnuplot|.

	 The |samples| key won't be used if |samples at| is specified; |samples at| has higher precedence.

	The same special treatment of |/tikz/samples| and |/pgfplots/samples| as for the |domain| key applies here. See above for details.
\end{key}

\begin{pgfplotskey}{samples at=\marg{coordinate list}}
	Sets the $x$ coordinates for |plot expression| explicitly. This overrides |domain| and |samples|.

	The \marg{coordinate list} is a |\foreach| expression, that means it can contain a simple list of coordinates (comma--separated) but also complex |...| expressions like\footnote{Unfortunately, the |...| is somewhat restrictive when it comes to extended accuracy. So, if you have particularly small or large numbers (or a small distance), you have to provide a comma--separated list (or use the \texttt{domain} key).}
\begin{codeexample}[code only]
\pgfplotsset{samples at={5e-5,7e-5,10e-5,12e-5}}
\pgfplotsset{samples at={-5,-4.5,...,5}}
\pgfplotsset{samples at={-5,-3,-1,-0.5,0,...,5}}
\end{codeexample}

	The same special treatment of |/tikz/samples at| and |/pgfplots/samples at| as for the |domain| key applies here. See above for details.

	\paragraph{Attention:} |samples at| overrides |domain|, even if |domain| has been set \emph{after} |samples at|! Use |samples at={}| to clear \marg{coordinate list} and re-activate |domain|.
\end{pgfplotskey}

\subsubsection{Computing Coordinates with Mathematical Expressions (gnuplot)}

\begin{addplotoperation}[]{gnuplot}{\marg{gnuplot code}}
In contrast to |plot expression|, the |plot gnuplot| command employs the external program |gnuplot| to compute coordinates. The resulting coordinates are written to a text file which will be plotted with |plot file|. \PGF\ checks whether coordinates need to be re-generated and calls |gnuplot| whenever necessary (this is usually the case if you change the number of samples, the argument to |plot gnuplot| or the plotted domain\footnote{Please note that \PGFPlots\ produces slightly different files than \Tikz\ when used with |plot gnuplot| (it configures high precision output). You should use different ids to avoid conflicts in such a case.}).

The differences between |plot expression| and |plot gnuplot| are:
\begin{itemize}
	\item |plot expression| does not require any external programs and requires no additional command line options.
	\item |plot expression| does not produce a lot of temporary files.
	\item |plot gnuplot| uses radians for trigonometric functions while |plot expression| has degrees.
	\item |plot gnuplot| is faster.
	\item |plot gnuplot| has a larger mathematical library.
	\item |plot gnuplot| has a higher accuracy. However, starting with version 1.2, this is no longer a great problem. The new floating point unit for \TeX\ provides reasonable accuracy and the same data range as |gnuplot|.
\end{itemize}

Since system calls are a potential danger, they need to be enabled explicitly using command line options, for example
\begin{codeexample}[code only]
pdflatex -shell-escape filename.tex.
\end{codeexample}
Sometimes it is called |shell-escape| or |enable-write18|. Sometimes one needs two slashes -- that all depends on your \TeX\ distribution.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}
\addplot plot[id=sin] 
	gnuplot{sin(x)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{semilogyaxis}
\addplot plot[id=exp,domain=0:10] 
	gnuplot{exp(x)};
\end{semilogyaxis}
\end{tikzpicture}
\end{codeexample}

The \meta{style options} determine the appearance of the plotted function; these parameters also affect the legend. The \meta{behavior options} are specific to the gnuplot interface. These options are described in all detail in \cite[section~18.6]{tikz}. A short summary is shown below.

Please note that |plot gnuplot| does not allow per point meta data.

Please refer to \cite[section~18.6]{tikz} for more details about |plot function| and the |gnuplot| interaction.
\end{addplotoperation}

\begin{addplotoperation}[]{function}{\marg{gnuplot code}}
	Use

	|\addplot function |\marg{gnuplot code}|;|

	as alias for

	|\addplot gnuplot |\marg{gnuplot code}|;|
\end{addplotoperation}

\begin{key}{/tikz/id=\marg{unique string identifier}}
	 A unique identifier for the current plot. It is used to generate temporary filenames for |gnuplot| output.
\end{key}

\begin{key}{/tikz/prefix=\marg{file name prefix}}
	 A common path prefix for temporary filenames (see \cite[section~18.6]{tikz} for details).
\end{key}

\begin{key}{/tikz/raw gnuplot}
	 Disables the use of |samples| and |domain|.
\end{key}

\subsubsection{Using External Graphics as Plot Sources}

\begin{addplotoperation}[]{graphics}{\marg{file name}}
	This plot type allows to extend the plotting capabilities of \PGFPlots\ beyond its own limitations. The idea is to generate the graphics as such (for example, a contour plot, a shaded surface or a large point cluster) with an external program like Matlab (tm) or |gnuplot|. The graphics, however, should \emph{not} contain an axis or descriptions. Then, we use |\includegraphics| and an \PGFPlots\ axis which fits exactly on top of the imported graphics.

	Of course, one could do this manually by providing proper scales and such. The operation |plot graphics| is intended so simplify this process. However the \emph{main difficulty} is to get images with correct bounding box. Typically, you will have to adjust bounding boxes manually.

	Let's start with an example: Suppose we use, for example, matlab to generate a surface plot like
\begin{codeexample}[code only]
[X,Y] = meshgrid( linspace(-3,3,500) );
surf( X,Y, exp(-(X - Y).^2 - X.^2 ) );
shading flat; view(0,90); axis off; 
print -dpng external1
\end{codeexample}
	\noindent which is then found in |external1.png|. The |surf| command of Matlab generates the surface, the following commands disable the axis descriptions, initialise the desired view and export it. Viewing the image in any image tool, we see a lot of white space around the surface -- Matlab has a particular weakness in producing tight bounding boxes, as far as I know. Well, no problem: use your favorite image editor and crop the image (most image editors can do this automatically). We could use the free ImageMagick command
	
	|convert -trim external1.png external1.png|

	to get a tight bounding box. Then, we use

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[enlargelimits=false,axis on top]
		\addplot graphics
			[xmin=-3,xmax=3,ymin=-3,ymax=3] 
			{external1};
	\end{axis}
\end{tikzpicture}
\end{codeexample}
\noindent to load the graphics\footnote{Please note that I don't have a Matlab license, so I used \texttt{gnuplot} to produce an equivalent replacement graphics.} just as if we would have drawn it with \PGFPlots. The |axis on top| simply tells \PGFPlots\ to draw the axis on top of any plots (see its description).

Our first test was successful -- and not difficult at all because graphics programs can automatically compute the bounding box. There are a couple of free tools available which can compute tight bounding boxes for |.eps| or |.pdf| graphics:
\begin{enumerate}
	\item The free vector graphics program |inkscape| can help here. Its feature ``File $\gg$ Document Properties: Fit page to selection'' computes a tight bounding box around every picture element. 

	However, some images may contain a rectanglar path which is as large as the bounding box (Matlab (tm) computes such |.eps| images). In this case, use the ``Ungroup'' method as often as necessary and remove such a path.

	Finally, save as |.eps|.

	However, |inkscape| appears to have problems with postscript fonts -- it substitutes them. This doesn't pose problems in this application because fonts shouldn't be part of such images -- the descriptions will be drawn by \PGFPlots.

	\item The tool |pdfcrop| removes surrounding whitespace in |.pdf| images and produces quite good bounding boxes.
\end{enumerate}

\paragraph{Adjusting bounding boxes manually}
In case you don't have tools at hand to provide correct bounding boxes, you can still use \TeX\ to set the bounding box manually. Some viewers like |gv| provide access to low--level image coordinates. The idea is to determine the number of units which need to be removed and communicate these units to |\includegraphics|.

Let's follow this approach in a further example. 

	We use |gnuplot| to draw a (relatively stupid) example data set. The gnuplot script
\begin{codeexample}[code only]
set samples 30000
set parametric
unset border
unset xtics
unset ytics
set output "external2.eps"
set terminal postscript eps color
plot [t=0:1] rand(0),rand(0) with dots notitle lw 5
\end{codeexample}
\noindent generates |external2.eps| with a uniform random sample of size $30000$. As before, we import this scatter plot into \PGFPlots\ using |plot graphics|. Again, the bounding box is too large, so we need to adjust it (|gnuplot| can do this automatically, but we do it anyway to explain the mechanisms):

Using |gv|, I determined that the bounding box needs to be shifted |12| units to the left and |9| down. Furthermore, the right end is |12| units too far off and the top area has about |8| units space wasted. This can be provided to the |trim| option of |\includegraphics|, and we use |clip| to clip the rest away: 
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[axis on top,title=Graphics Import]
		\addplot graphics
			[xmin=0,xmax=1,ymin=0,ymax=1,
			% trim=left bottom right top
			includegraphics={trim=12 9 12 8,clip}]
			{external2};
		\addplot coordinates {(0,0) (1,1)};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

	So, |plot graphics| takes a graphics file along with options which can be passed to |\includegraphics|. Furthermore, it provides the information how to embed the graphics into an axis. The axis can contain any other |\addplot| command as well and will be resized properly.


\paragraph{Details about \texttt{plot graphics}:}
	The loaded graphics file is drawn with
	
	|\node[/pgfplots/plot graphics/node] {\includegraphics[|\meta{options}|]|\marg{file name}|};|

	where the |node| style is a configurable style. The node is placed at the coordinate designated by |xmin|, |ymin|. 
	
	The \meta{options} are any arguments provided to the |includegraphics| key (see below) and |width| and |height| determined such that the graphics fits exactly into the rectangle denoted by the |xmin|, |ymin| and |xmax|, |ymax| coordinates.

	The scaling will thus ignore the aspect ratio of the external image and prefer the one used by \PGFPlots. You will need to provide |width| and |height| to the \PGFPlots\ axis to change its scaling. Use the |scale only axis| key in such a case.
\end{addplotoperation}
\begin{pgfplotsxykeylist}{
	plot graphics/\x min=\marg{coordinate},
	plot graphics/\x max=\marg{coordinate}}
	These keys are required for |plot graphics| and provide information about the external data range. The graphics will be squeezed between these coordinates. 
\end{pgfplotsxykeylist}
\begin{pgfplotskey}{plot graphics/includegraphics=\marg{options}}
	A list of options which will be passed as--is to |\includegraphics|. Interesting options include the |trim=|\meta{left} \meta{bottom} \meta{right} \meta{top} key which reduces the bounding box and |clip| which discards everything outside of the bounding box. The scaling options won't have any effect, they will be overwritten by \PGFPlots.
\end{pgfplotskey}
\begin{stylekey}{/pgfplots/plot graphics/node}
	A predefined style used for the node containing the graphics. The predefined value is
\begin{codeexample}[code only]
\pgfplotsset{
	plot graphics/node/.style={
		transform shape,
		inner sep=0pt,
		outer sep=0pt,
		every node/.style={},
		anchor=south west,
		at={(0pt,0pt)},
		rectangle
	}
}
\end{codeexample}
\end{stylekey}
\begin{pgfplotskey}{plot graphics}
	This key belongs to the public low--level plotting interface. You won't need it in most cases.

	This key is similar to |sharp plot| or |smooth| or |const plot|: it installs a low--level plot--handler which expects exactly two points: the lower left corner and the upper right one. The graphics will be drawn between them. The graphics file name is expected as value of the |/pgfplots/plot graphics/src| key. The other keys described above need to be set correctly (excluding the limits, these are ignored at this level of abstraction). This key can be used independent of an axis.
\end{pgfplotskey}
	
\begin{command}{\addplot+\oarg{style options} \textcolor{gray}{\dots};}
Does the same like |\addplot[|\meta{style options}|] ...;| except that \meta{style options} is \emph{appended} to the arguments which would have been taken for |\addplot ...| (the element of the default list).

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}
\addplot {sin(deg(x))};
\end{axis}
\end{tikzpicture}

\begin{tikzpicture}
\begin{axis}
\addplot+[only marks] {sin(deg(x))};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{command}

\subsection{Accessing Axis Coordinates for Annotations}
\label{sec:axis:coords}%
\begin{coordinatesystem}{axis cs}
\PGFPlots\ provides a new coordinate system for use inside of an axis, the ``axis coordinate system'', |axis cs|.

It can be used to draw any \Tikz-graphics at axis coordinates. It is used like
\begin{codeexample}[code only]
\draw 
   (axis cs:18943,2.873391e-05) 
|- (axis cs:47103,8.437499e-06);
\end{codeexample}
\begin{codeexample}[]
\tikzstyle{every pin}=[fill=white,
	draw=black,
	font=\footnotesize]
\begin{tikzpicture}
	\begin{loglogaxis}[
		xlabel={\textsc{Dof}},
		ylabel={$L_2$ Error}]

	\addplot coordinates {
		(11,     6.887e-02)
		(71,     3.177e-02)
		(351,    1.341e-02)
		(1471,   5.334e-03)
		(5503,   2.027e-03)
		(18943,  7.415e-04)
		(61183,  2.628e-04)
		(187903, 9.063e-05)
		(553983, 3.053e-05)
	};

	\node[coordinate,pin=above:{Bad!}] 
		at (axis cs:5503,2.027e-03) {};
	\node[coordinate,pin=left:{Good!}] 
		at (axis cs:187903,9.063e-05)	{};
	\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{loglogaxis}[
	xlabel=\textsc{Dof},
	ylabel=$L_2$ Error
]
\draw 
		(axis cs:1793,4.442e-05)
	|-  (axis cs:4097,1.207e-05)
	node[near start,left] 
	{$\frac{dy}{dx} = -1.58$};

\addplot coordinates {
	(5,    8.312e-02)
	(17,   2.547e-02)
	(49,   7.407e-03)
	(129,  2.102e-03)
	(321,  5.874e-04)
	(769,  1.623e-04)
	(1793, 4.442e-05)
	(4097, 1.207e-05)
	(9217, 3.261e-06)
};
\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}

\paragraph{Attention:} Whenever you draw additional graphics, consider using |axis cs|! It applies any logarithms, data scaling transformations or whatever \PGFPlots\ usually does!
\end{coordinatesystem}

\begin{predefinednode}{current plot begin}
	This coordinate will be defined for every plot and can be used is \meta{trailing path commands} or after a plot. It is the first coordinate of the current plot.	
\end{predefinednode}

\begin{predefinednode}{current plot end}
	This coordinate will be defined for every plot. It is the last coordinate of the current plot.	
\end{predefinednode}

\subsection{Legend Commands}
\label{pgfplots:sec:legendcmds}

\begin{command}{\addlegendentry\marg{name}}
Adds a single legend entry to the legend list. This will also enable legend drawing.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}
\addplot[smooth,mark=*,blue] coordinates {
	(0,2)
	(2,3)
	(3,1)
};
\addlegendentry{Case 1}

\addplot[smooth,color=red,mark=x]
	coordinates {
		(0,0)
		(1,1)
		(2,1)
		(3,2)
	};
\addlegendentry{Case 2}
\end{axis}
\end{tikzpicture}
\end{codeexample}
It does not matter where |\addlegendentry| commands are placed, only the sequence matters. You will need one |\addlegendentry| for every |\addplot| command.


Optional argument are accepted with|\addlegendentry|\oarg{key-value-list}|{...}|. This does mainly affect some keys affecting the legend layout, support is very limited.

Using |\addlegendentry| disables the key |legend entries|.
\end{command}



\label{sec:legenddef}%
\begin{command}{\legend\marg{list}}
You can use |\legend|\marg{list} to assign a complete legend.
\begin{codeexample}[code only]
\legend{$d=2$,$d=3$,$d=4$,$d=5$,$d=6$}
\end{codeexample}
The argument of |\legend| is a comma--separated list of entries, one for each plot. It is processed using the \PGF-foreach command\footnote{Older versions of \PGFPlots\ used \texttt{\textbackslash legend\{first\textbackslash\textbackslash second\textbackslash\textbackslash third\textbackslash\textbackslash\}} instead of comma--separated lists. This syntax is still accepted.}.
The short marker/line combination shown in legends is acquired from the \marg{style options} argument of |\addplot|.

Using |\legend| overwrites any other existing legend entries.
\end{command}

\subsubsection{Legend Appearance}
The legend appearance can be configured with the help of several styles and options. These options are described in section~\ref{pgfplots:sec:legendopts}, under Axis Descriptions.

\subsubsection{\texttt{\textbackslash label} and \texttt{\textbackslash ref} for Legend Creation}
\PGFPlots\ offers a |\label| and |\ref| feature for \LaTeX\ to assemble a legend manually, for example as part of the figure caption. These references work as usual \LaTeX\ references: a |\label| remembers where and what needs to be referenced and a |\ref| expands to proper text. In context of plots, a |\label| remembers the plot specification of one plot and a |\ref| expands to the small image which would also be used inside of legends.
\begin{codeexample}[]
\begin{tikzpicture}[baseline]
\begin{axis}
	\addplot+[only marks] 
		expression[samples=15,
			error bars/y dir=both,
			error bars/y fixed=2.5]
		{3*x+2.5*rand};
	\label{pgfplots:label1}

	\addplot+[mark=none] {3*x};
	\label{pgfplots:label2}

	\addplot {4*cos(deg(x))};
	\label{pgfplots:label3}
\end{axis}
\end{tikzpicture}
\end{codeexample}
\begin{codeexample}[code only]
The picture shows the estimations \ref{pgfplots:label1} which are subjected to noise.
It appears the model \ref{pgfplots:label2} fits the data appropriately. 
Finally, \ref{pgfplots:label3} is only here to get three examples.
\end{codeexample}
\noindent The picture shows the estimations \ref{pgfplots:label1} which are subjected to noise.
It appears the model \ref{pgfplots:label2} fits the data appropriately. 
Finally, \ref{pgfplots:label3} is only here to get three examples.

\begin{command}{\label\marg{label name}}
	When used after |\addplot|, this command creates a \LaTeX\ label named \marg{label name}\footnote{This feature is \emph{only} available in \LaTeX, sorry.}. If this label is cross-referenced with |\ref|\marg{label name} somewhere, the associated plot specification will be inserted.
\begin{codeexample}[]
Label3 = \ref{pgfplots:label3}; 
Label2 = \ref{pgfplots:label2}
\end{codeexample}
	The label is assembled using |legend image code| and the plot style of the last plot. Any \PGFPlots\ option is expanded until only \Tikz\ (or \pgfname) options remain; these options are used to get an independant label\footnote{Please note that you can't use the label/ref mechanism in conjunction with image externalization as this will (naturally) lead to undefined references.}.

	More precisely, the small image generated by |\ref|\marg{label name} is 
\begin{codeexample}[code only]
\tikz[/pgfplots/every crossref picture] {...}
\end{codeexample}
	\noindent where the contents is determined by |legend image code| and the plot style.
\end{command}

\begin{command}{\ref\marg{label name}}
	Can be used to reference a labeled, single plot. See the example above.

	This will also work together with |hyperref| links and |\pageref|.
\end{command}

\begin{key}{/pgfplots/refstyle=\marg{label name}}
	Can be used to set the \emph{styles} of a labeled, single plot. This allows to write
\begin{codeexample}[code only]
\addplot[/pgfplots/refstyle={pgfplots:label2}]
\end{codeexample}
	\noindent somewhere. Please note that it may be easier to define a style with |.style|.
\end{key}

\begin{stylekey}{/pgfplots/every crossref picture}
	A style which will be used by the cross-referencing feature for plots. The default is
\begin{codeexample}[code only]
\pgfplotsset{every crossref picture/.style={baseline,yshift=0.3em}}
\end{codeexample}
\end{stylekey}


\subsection{Closing Plots}
\begin{command}{\closedcycle}
	Provide |\closedcycle| as \meta{trailing path commands} after |\addplot| to draw a closed line from the last plot coordinate to the first one.
	
	Use |\closedcycle| whenevery you intend to fill the area under a plot.

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}
	\addplot {x^2+2} \closedcycle;
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}
	\addplot+[fill] {x^2+2} \closedcycle;
	\end{axis}
\end{tikzpicture}
\end{codeexample}
	In case of stacked plots, |\closedcycle| connects the current plot with the previous plot instead of connecting with the $x$~axis\footnote{The implementation for stacked plots requires some additional logic to determine the filled area: \lstinline{\\closedcycle} will produce a |plot coordinates| command with \emph{reversed} coordinates of the previous plot. This is usually irrelevant for end users, but it assumes that the plot's type is symmetric. Since constant plots are inherently unsymmetric, \lstinline{\\closedcycle} will use \texttt{const plot mark right} as reversed sequence for \texttt{const plot mark left}.}.
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[stack plots=y]
	\addplot+[fill] coordinates 
		{(0,1) (1,1) (2,2) (3,2)} \closedcycle;
	\addplot+[fill] coordinates 
		{(0,1) (1,1) (2,2) (3,2)} \closedcycle;
	\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{command}

\subsection{Other Commands}
\begin{command}{\autoplotspeclist}
This command should no longer be used, although it will be kept as technical implementation detail. Please use the `|cycle list|' option, section~\ref{sec:cycle:list}.
\end{command}

\begin{command}{\pgfmathlogtologten\meta{number}}
Assigns the result of $\meta{number}/\log(10)$ to |\pgfmathresult|.
\end{command}

\begin{command}{\logten}
Expands to the constant $\log(10)$. Useful for logplots because $\log(10^i) = i\log(10)$. This command is only available inside of an \Tikz-picture.
\end{command}

\begin{command}{\pgfmathprintnumber\marg{number}}
Generates pretty--printed output\footnote{This method was previously \texttt{\textbackslash prettyprintnumber}. It's functionality has been included into \PGF\ and the old command is now deprecated.} for \marg{number}. This method is used for every tick label.

The number is printed using the current number printing options, see section~\ref{sec:number:printing} for the different number styles, rounding precision and rounding methods.
\end{command}

\begin{command}{\plotnum}
	Inside of |\addplot| or any associated style, option or command, |\plotnum| expands to the current plot's number, starting with~$0$.
\end{command}

\begin{command}{\numplots}
	Inside of any of the axis environments, associated style, option or command, |\numplots| expands to the total number of  plots.
\end{command}

\begin{command}{\coordindex}
	Inside of an |\addplot| command, this macro expands to the number of the actual coordinate (starting with~$0$).

	It is useful together with |x filter| or |y filter| to (de-)select coordinates.
\end{command}

\begin{command}{\pgfplotstableread\marg{file}}
	Please refer to the manual of \PGFPlotstable, |pgfplotstable.pdf|, which is part of the \PGFPlots-bundle.
\end{command}
\begin{command}{\pgfplotstabletypeset\marg{\textbackslash macro}}
	Please refer to the manual of \PGFPlotstable, |pgfplotstable.pdf|, which is part of the \PGFPlots-bundle.
\end{command}

\section{Option Reference}
There are several required and even more optional arguments to modify axes. They are used like
\begin{codeexample}[code only]
\begin{tikzpicture}
\begin{axis}[key=value,key2=value2]
...
\end{axis}
\end{tikzpicture}
\end{codeexample}
\noindent
The overall appeareance can be changed with
\begin{codeexample}[code only]
\pgfplotsset{every axis/.append style={line width=1pt}}
\end{codeexample}
\noindent
for example. There are several other styles predefined to modify the appearance, see section~\ref{sec:styles}.

\begin{command}{\pgfplotsset\marg{key-value-list}}
	Defines or sets all options in \marg{key-value-list}.
	
	It is a shortcut for |\pgfqkeys{/pgfplots}|\marg{key-value-list}, that means it inserts the prefix |/pgfplots| to any option which has no full path.

	This command can be used to define default options for the complete document or a part of the document. For example, 
\begin{codeexample}[code only]
\pgfplotsset{
	cycle list={%
		{red, mark=*}, {blue,mark=*},
		{red, mark=x}, {blue,mark=x},
		{red, mark=square*}, {blue,mark=square*},
		{red, mark=triangle*}, {blue,mark=triangle*},
		{red, mark=diamond*}, {blue,mark=diamond*},
		{red, mark=pentagon*}, {blue,mark=pentagon*}
	},
	legend style={
		at={(0.5,-0.2)},
		anchor=north,
		legend columns=2,
		cells={anchor=west},
		font=\footnotesize,
		rounded corners=2pt,
	},
	xlabel=$x$,ylabel=$f(x)$
}
\end{codeexample}
	can be used to set document--wise styles for line specifications, the legend's style and axis labels.

	You can also define new styles (collections of key--value--pairs) with |.style| and |.append style|.
\begin{codeexample}[code only]
\pgfplotsset{
	My Style 1/.style={xlabel=$x$, legend entries={1,2,3} },
	My Style 2/.style={xlabel=$X$, legend entries={4,5,6} }
\end{codeexample}
	The |.style| and |.append style| key handlers are described in section~\ref{sec:styles} in more detail.
\end{command}


\subsection{Pgfplots Options and \Tikz\ Options}
This section is more or less technical and can be skipped unless one really wants to know more about this topic.

\Tikz\ options and \PGFPlots\ options can be mixed inside of the axis arguments and in any of the associated styles. For example,
\begin{codeexample}[code only]
\pgfplotsset{every axis legend/.append style={
	legend columns=3,font=\Large}}
\end{codeexample}
\noindent
assigns the `|legend columns|' option (a pgfplots option) and uses `|font|' for drawing the legend (a \Tikz\ option).

The axis environments will process any known pgfplots options, and all `|every|'--styles will be parsed for pgfplots options. Every unknown option is supposed to be a \Tikz\ option and will be forward to the associated \Tikz\ drawing commands. For example, the `\lstinline{font=\Large}' above will be used as argument to the legend matrix, and the `\lstinline{font=\Large}' argument in 
\begin{codeexample}[code only]
\pgfplotsset{every axis label/.append style={
	ylabel=Error,xlabel=Dof,font=\Large}}
\end{codeexample}
will be used in the nodes for axis labels (but not the axis title, for example).

It is an error if you assign incompatible options to axis labels, for example `|xmin|' and `|xmax|' can't be set inside of `|every axis label|'.


\subsection{Plot Types}
\PGFPlots\ supports several two-dimensional line-plots like piecewise linear line plots, piecewise constant plots, smoothed plots, bar plots and comb plots. Most of them use the \PGF\ plot handler library directly, see \cite[section 18.8]{tikz}.

Plot types are part of the plot style, so they are set with options. The following list contains a short summary of the \PGF\ plot library, \cite[section 18.8]{tikz}.


\subsubsection{Linear Plots}
\begin{plottype}{sharp plot}
Linear (`sharp') plots are the default. Point coordinates are simply connected by straight lines. 
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}
	\addplot+[sharp plot] coordinates 
		{(0,0) (1,2) (2,3)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

The `|+|' here means to use the normal plot cycle list and append `|sharp plot|' to its option list.
\end{plottype}

\subsubsection{Smooth Plots}
\begin{plottype}{smooth}
Smooth plots interpolate smoothly between successive points.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}
	\addplot+[smooth] coordinates 
		{(0,0) (1,2) (2,3)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{plottype}

\subsubsection{Constant Plots}
Constant plots draw lines parallel to the $x$-axis to connect coordinates. The discontinuos edges may be drawn or not, and marks may be placed on left or right ends.

\begin{plottype}{const plot}
Connects all points with horizontal and vertical lines. Marks are placed left-handed on horizontal line segments, causing the plot to be right-sided continuous at all data points.

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}
\addplot+[const plot]
coordinates
{(0,0.1)    (0.1,0.15)  (0.2,0.5)   (0.3,0.62)
 (0.4,0.56) (0.5,0.58)  (0.6,0.65)  (0.7,0.6)
 (0.8,0.58) (0.9,0.55)  (1,0.52)};
\end{axis}
\end{tikzpicture}
\end{codeexample}


\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[ymin=0,ymax=1,enlargelimits=false]
\addplot
	[const plot,fill=blue,draw=black] 
coordinates
{(0,0.1)    (0.1,0.15)  (0.2,0.5)   (0.3,0.62)
 (0.4,0.56) (0.5,0.58)  (0.6,0.65)  (0.7,0.6)
 (0.8,0.58) (0.9,0.55)  (1,0.52)} 
	\closedcycle;
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{plottype}

\begin{plottype}{const plot mark left}
An alias for `|const plot|'.
\end{plottype}

\begin{plottype}{const plot mark right}
 A variant which places marks on the right of each line segment, causing plots to be left-sided continuous at coordinates.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}
\addplot+[const plot mark right]
coordinates
{(0,0.1)    (0.1,0.15)  (0.2,0.5)   (0.3,0.62)
 (0.4,0.56) (0.5,0.58)  (0.6,0.65)  (0.7,0.6)
 (0.8,0.58) (0.9,0.55)  (1,0.52)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{plottype}

\begin{plottype}{jump mark left}
A variant of `|const plot mark left|' which does not draw vertical lines.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[samples=8]
\addplot+[jump mark left] 
	expression[domain=-5:0] 
	{4*x^2 - 5};

\addplot+[jump mark right] 
	expression[domain=-5:0] 
	{0.7*x^3 + 50};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{plottype}

\begin{plottype}{jump mark right}
A variant of `|const plot mark right|' which does not draw vertical lines.
\end{plottype}

\subsubsection{Bar Plots}
Bar plots place horizontal or vertical bars at coordinates. Multiple bar plots in one axis can be stacked on top of each other or aligned next to each other.

\begin{plottype}{xbar}
	Places horizontal bars between the $(y=0)$ line and each coordinate.

	This option is used on a per-plot basis and configures only the visualization of coordinates. The figure-wide style |/pgfplots/xbar| also sets reasonable options for ticks, legends and multiple plots.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}
\addplot+[xbar] coordinates 
	{(4,0) (1,1) (2,2) 
	 (5,3) (6,4) (1,5)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
	Bars are centered at plot coordinates with width |bar width|. Using bar plots usually means more than just a different way of how to connect coordinates, for example to draw ticks outside of the axis, change the legend's appearance or introduce shifts if multiple |\addplot| commands appear.

	There is a preconfigured style for |xbar| which is installed automatically if you provide |xbar| as argument to the axis environment which provides this functionality.
% \usetikzlibrary{patterns}
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[xbar,enlargelimits=0.15]
\addplot
[draw=blue,pattern=horizontal lines light blue] 
coordinates
	{(10,5) (15,10) (5,15) (24,20) (30,25)};

\addplot
[draw=black,pattern=horizontal lines dark blue] 
coordinates 
	{(3,5) (5,10) (15,15) (20,20) (35,25)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
Here |xbar| yields |/pgfplots/xbar| because it is an argument to the axis, not to a single plot.

	Besides line-, fill- and colorstyles, bars can be configured with |bar width| and |bar shift|, see below.
\end{plottype}

\begin{stylekey}{/pgfplots/xbar=\marg{shift for multiple plots} (default 2pt)}
	This style sets |/tikz/xbar| \emph{and} some commonly used options concerning horizontal bars for the complete axis. This is automatically done if you provide |xbar| as argument to an axis argument, see above.

The |xbar| style defines shifts if multiple plots are placed into one axis. It draws bars adjacent to each other, separated by \marg{shift for multiple plots}. Furthermore, it sets the style |bar cycle list| and sets tick and legend appearance options.

The style is defined as follows.
\begin{codeexample}[code only]
/pgfplots/xbar/.style={
	bar cycle list,
	tick align=outside,
	/pgfplots/legend image code/.code=
		{\draw[##1,bar width=3pt,yshift=-0.2em,bar shift=0pt]
			plot coordinates {(0cm,0.8em) (2*\pgfplotbarwidth,0.6em)};},
	/pgf/bar shift={%
			% total width = n*w + (n-1)*skip
			% -> subtract half for centering
			-0.5*(\numplots*\pgfplotbarwidth + (\numplots-1)*#1)  + 
			% the '0.5*w' is for centering
			(.5+\plotnum)*\pgfplotbarwidth + \plotnum*#1},
	/tikz/xbar},
\end{codeexample}
The formular for |bar shift| assigns shifts dependend on the total number of plots and the current plot's number. It is designed to fill a total width of $n \cdot $|bar width|$ + (n-1) \cdot $\marg{shift for multiple plots}. The $0.5$ compensates for centering.
\end{stylekey}

\begin{plottype}{ybar}
	Like |xbar|, this option generates bar plots. It draws vertical bars between the ($x=0$) line and each input coordinate.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}
\addplot+[ybar] plot coordinates
	{(0,3) (1,2) (2,4) (3,1) (4,2)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
	The example above simply changes how input coordinates shall be visualized. As mentioned for |xbar|, one usually needs modified legends and shifts for multiple bars in the same axis.

	There is a predefined style which installs these customizations when provided to the axis-environment:
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	x tick label style={
		/pgf/number format/1000 sep=},
	ylabel=Population,
	enlargelimits=0.15,
	legend style={at={(0.5,-0.15)},
		anchor=north,legend columns=-1},
	ybar,
	bar width=7pt,
]
\addplot 
	coordinates {(1930,50e6) (1940,33e6)
		 (1950,40e6) (1960,50e6) (1970,70e6)};

\addplot 
	coordinates {(1930,38e6) (1940,42e6) 
		(1950,43e6) (1960,45e6) (1970,65e6)};

\addplot 
	coordinates {(1930,15e6) (1940,12e6) 
		(1950,13e6) (1960,25e6) (1970,35e6)};
\legend{Far,Near,Here}
\end{axis}
\end{tikzpicture}
\end{codeexample}
Here |ybar| yields |/pgfplots/ybar| because it is an argument to the axis, not to a single plot.

	As for |xbar|, the bar width and shift can be configured with |bar width| and |bar shift|.
\end{plottype}

\begin{stylekey}{/pgfplots/ybar=\marg{shift for multiple plots} (default 2pt)}
	As |/pgfplots/xbar|, this style sets the |/tikz/ybar| option to draw vertical bars, but it also provides commonly used options for vertical bars.

	If you supply |ybar| to an axis environment, |/pgfplots/ybar| will be chosen instead of |/tikz/ybar|.

	It changes the legend, draws ticks outside of the axis lines and draws multiple |\addplot| arguments adjacent to each other; block--centered at the $x$ coordinate and separated by \marg{shift for multiple plots}. Furthermore, it installs the style |bar cycle list|. It is defined similarly to |/pgfplots/xbar|.
\end{stylekey}

\begin{key}{/tikz/bar width=\marg{dimension} (initially 10pt)}
	Configures the width used by |xbar| and |ybar|. It is accepted to provide mathematical expressions.
\end{key}

\begin{key}{/tikz/bar shift=\marg{dimension} (initially 0pt)}
	Configures a shift for |xbar| and |ybar|. Use |bar shift| together with |bar width| to draw multiple bar plots into the same axis. It is accepted to provide mathematical expressions.
\end{key}


\begin{plottype}{ybar interval}
	This plot type produces vertical bars with width (and shift) relatively to intervals of coordinates.

	It is installed on a per-plot basis and configures \emph{only} the visualization of coordinates. See the style |/pgfplots/ybar interval| which configures the appearance of the complete figure.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}
\addplot+[ybar interval] plot coordinates
	{(0,2) (0.1,1) (0.3,0.5) (0.35,4) (0.5,3)
	 (0.6,2) (0.7,1.5) (1,1.5)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[ybar interval,
	xtick=data,
	xticklabel interval boundaries,
	x tick label style=
		{rotate=90,anchor=east}
	]
\addplot coordinates
	{(0,2) (0.1,1) (0.3,0.5) (0.35,4) (0.5,3)
	 (0.6,2) (0.7,1.5) (1,1.5)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	x tick label style={
		/pgf/number format/1000 sep=},
	ylabel=Population,
	enlargelimits=0.05,
	legend style={at={(0.5,-0.15)},
		anchor=north,legend columns=-1},
	ybar interval=0.7,
]
\addplot 
	coordinates {(1930,50e6) (1940,33e6)
		 (1950,40e6) (1960,50e6) (1970,70e6)};

\addplot 
	coordinates {(1930,38e6) (1940,42e6) 
		(1950,43e6) (1960,45e6) (1970,65e6)};

\addplot 
	coordinates {(1930,15e6) (1940,12e6) 
		(1950,13e6) (1960,25e6) (1970,35e6)};
\legend{Far,Near,Here}
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{plottype}

\begin{stylekey}{/pgfplots/ybar interval=\marg{relative width} (default 1)}
	A style which is intended to install options for |ybar interval| for a complete figure. This includes tick and legend appearance, management of multiple bar plots in one figure and a more adequate |cycle list| using the style |bar cycle list|.
\end{stylekey}

\begin{plottype}{xbar interval}
	As |ybar interval|, just for horizontal bars. 
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	xmin=0,xmax=53,
	ylabel=Age,
	xlabel=Quantity,
	y label style={yshift=0.7cm},
	enlargelimits=false,
	ytick=data,
	yticklabel interval boundaries,
	xbar interval,
]
\addplot
	coordinates {(10,5) (10.5,10) (15,13) 
		(24,18) (50,21) (23,25) (10,30) 
		(3,50) (3,70)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{plottype}

\begin{stylekey}{/pgfplots/xbar interval=\marg{relative width} (default 1)}
	A style which is intended to install options for |xbar interval| for a complete figure, see the style |/pgfplots/ybar interval| for details.
\end{stylekey}

\begin{pgfplotsxykey}{\x ticklabel interval boundaries}
	These are style keys which set |x tick label as interval| and configure the tick appearance to be \marg{start} -- \marg{end} for each tick interval.
\end{pgfplotsxykey}

\subsubsection{Comb Plots}
Comb plots are very similar to bar plots except that they employ single horizontal/vertical lines instead of rectangles.

\begin{plottype}{xcomb}
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}
\addplot+[xcomb] coordinates 
	{(4,0) (1,1) (2,2) 
	 (5,3) (6,4) (1,5)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{plottype}

\begin{plottype}{ycomb}
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}
\addplot+[ycomb] plot coordinates
	{(0,3) (1,2) (2,4) (3,1) (4,2)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{plottype}

\subsubsection{Stacked Plots}
\begin{pgfplotskey}{stack plots=\mchoice{x,y,false} (initially false)}
	Allows stacking of plots in either $x$ or $y$ direction. Stacking means to add either $x$- or $y$ coordinates of successive |\addplot| commands on top of each other.
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[stack plots=y]
	\addplot coordinates
		{(0,1) (1,1) (2,2) (3,2)};
	\addplot coordinates
		{(0,1) (1,1) (2,2) (3,2)};
	\addplot coordinates
		{(0,1) (1,1) (2,2) (3,2)};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

|stack plots| is particularly useful for bar plots. The following examples demonstrate its functionality. Normally, it is advisable to use the styles |ybar stacked| and |xbar stacked| which also set some other options.
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[stack plots=y,/tikz/ybar]
	\addplot coordinates
		{(0,1) (1,1) (2,3) (3,2) (4,1.5)};
	\addplot coordinates
		{(0,1) (1,1) (2,3) (3,2) (4,1.5)};
	\addplot coordinates
		{(0,1) (1,1) (2,3) (3,2) (4,1.5)};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[ybar stacked]
	\addplot coordinates
		{(0,1) (1,1) (2,3) (3,2) (4,1.5)};
	\addplot coordinates
		{(0,1) (1,1) (2,3) (3,2) (4,1.5)};
	\addplot coordinates
		{(0,1) (1,1) (2,3) (3,2) (4,1.5)};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[stack plots=x,/tikz/xbar]
	\addplot coordinates
		{(1,0) (2,1) (2,2) (3,3)};
	\addplot coordinates
		{(1,0) (2,1) (2,2) (3,3)};
	\addplot coordinates
		{(1,0) (2,1) (2,2) (3,3)};
	\end{axis}
\end{tikzpicture}
\end{codeexample}
\begin{codeexample}[]

\begin{tikzpicture}
	\begin{axis}[xbar stacked]
	\addplot coordinates
		{(1,0) (2,1) (2,2) (3,3)};
	\addplot coordinates
		{(1,0) (2,1) (2,2) (3,3)};
	\addplot coordinates
		{(1,0) (2,1) (2,2) (3,3)};
	\end{axis}
\end{tikzpicture}
\end{codeexample}
The current implementation for |stack plots| does \emph{not} interpolate missing coordinates. That means stacking will fail if the plots have different grids.
\end{pgfplotskey}

\begin{pgfplotskey}{stack dir=\mchoice{plus,minus} (initially plus)}
	Configures the direction of |stack plots|. The value |plus| will add coordinates of successive plots while |minus| subtracts them.
\end{pgfplotskey}

\begin{pgfplotskey}{reverse stacked plots=\mchoice{true,false} (initially true, default true)}
	Configures the sequence in which stacked plots are drawn. This is more or less a technical detail which should not be changed in any normal case.

	The motivation is as follows: suppose multiple |\addplot| commands are stacked on top of each other and they are processed in the order of appearance. Than, the second plot could easily draw its lines (or fill area) on top of the first one - hiding its marker or line completely. Therefor, \PGFPlots\ reverses the sequence of drawing commands.

	This has the side-effect that any normal \Tikz-paths inside of an axis will also be processed in reverse sequence.
\end{pgfplotskey}

\begin{stylekey}{/pgfplots/xbar stacked=\mchoice{plus,minus} (default plus)}
	A figure-wide style which enables stacked horizontal bars (i.e. |xbar| and |stack plots=x|). It also adjusts the legend and tick appearance and assigns a useful |cycle list|.
\end{stylekey}
\begin{stylekey}{/pgfplots/ybar stacked=\mchoice{plus,minus} (default plus)}
	A figure-wide style which enables stacked vertical bars (i.e. |ybar| and |stack plots=y|). It also adjusts the legend and tick appearance and assigns a useful |cycle list|.
\end{stylekey}

\begin{stylekey}{/pgfplots/xbar interval stacked=\mchoice{plus,minus} (default plus)}
	A style similar to |/pgfplots/xbar stacked| for the interval based bar plot variant.
\end{stylekey}
\begin{stylekey}{/pgfplots/ybar interval stacked=\mchoice{plus,minus} (default plus)}
	A style similar to |/pgfplots/ybar stacked| for the interval based bar plot variant.
\end{stylekey}

\subsubsection{Area Plots}
Area plots are a combination of |\closedcycle| and |stack plots|. They can be combined with any other plot type.

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[
		stack plots=y,
		area style,
		enlarge x limits=false]
	\addplot coordinates
		{(0,1) (1,1) (2,2) (3,2)} 
		\closedcycle;
	\addplot coordinates
		{(0,1) (1,1) (2,2) (3,2)}
		\closedcycle;
	\addplot coordinates
		{(0,1) (1,1) (2,2) (3,2)}
		\closedcycle;
	\end{axis}
\end{tikzpicture}
\end{codeexample}
\noindent
Area plots may need modified legends, for example using the |area legend| key. Furthermore, one may want to consider the |axis on top| key such that filled areas do not overlap ticks and grid lines. 

\begin{stylekey}{/pgfplots/area style}
	A style which sets
\begin{codeexample}[code only]
\pgfplotsset{
	/pgfplots/area style/.style={%
		area cycle list,
		area legend,
		axis on top,
	}}
\end{codeexample}
\end{stylekey}

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[
		const plot,
		stack plots=y,
		area style,
		enlarge x limits=false]
	\addplot coordinates
		{(0,1) (1,1) (2,2) (3,2)} 
		\closedcycle;
	\addplot coordinates
		{(0,1) (1,1) (2,2) (3,2)}
		\closedcycle;
	\addplot coordinates
		{(0,1) (1,1) (2,2) (3,2)}
		\closedcycle;
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[
		smooth,
		stack plots=y,
		area style,
		enlarge x limits=false]
	\addplot coordinates
		{(0,1) (1,1) (2,2) (3,2)} 
		\closedcycle;
	\addplot coordinates
		{(0,1) (1,1) (2,2) (3,2)}
		\closedcycle;
	\addplot coordinates
		{(0,1) (1,1) (2,2) (3,2)}
		\closedcycle;
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\pgfplotstableread{pgfplots.timeseries.dat}\table
\pgfplotstabletypeset\table
\end{codeexample}
\begin{codeexample}[]
\pgfplotstableread
	{pgfplots.timeseries.dat}
	{\table}

\begin{tikzpicture}
	\begin{axis}[
		ymin=0,
		minor tick num=4,
		enlarge x limits=false,
		axis on top,
		every axis plot post/.append style=
			{mark=none},
		const plot,
		legend style={
			area legend,
			at={(0.5,-0.15)},
			anchor=north,
			legend columns=-1}]

	\addplot[draw=blue,fill=blue!30!white]
	 table[x=time,y=1minload] from \table
		\closedcycle;
	\addplot table[x=time,y=nodes] from \table;
	\addplot table[x=time,y=cpus] from \table;
	\addplot table[x=time,y=processes] 
		from \table;
	\legend{1min load,nodes,cpus,processes}
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[width=4cm]
\pgfplotstableread{pgfplots.timeseries.dat}\table

\begin{tikzpicture}
	\begin{axis}[
		ymin=0,
		minor tick num=4,
		enlarge x limits=false,
		const plot,
		axis on top,
		stack plots=y,
		cycle list={%
			{blue!70!black,fill=blue},%
			{blue!60!white,fill=blue!30!white},%
			{draw=none,fill={rgb:red,138;green,82;blue,232}},%
			{red,thick}%
		},
		ylabel={Mem [GB]},
		legend style={
			area legend,
			at={(0.5,-0.15)},
			anchor=north,
			legend columns=2}]

	\addplot table[x=time,y=memused]      from \table \closedcycle;
	\addplot table[x=time,y=memcached]    from \table \closedcycle;
	\addplot table[x=time,y=membuf]       from \table \closedcycle;
	\addplot plot[stack plots=false]
			 table[x=time,y=memtotal]     from \table;
	\legend{Memory used,Memory cached,Memory buffered,Total memory}
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\subsubsection{Scatter Plots}
The most simple scatter plots produce the same as the line plots above -- but they contain only markers. They are enabled using the |only marks| key of \Tikz.
\begin{plottype}{only marks}
Draws a simple scatter plot: all markers have the same appearance.
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[enlargelimits=false]
	\addplot+[only marks] 
		expression[samples=400]
		{rand};
	\end{axis}
\end{tikzpicture}
\end{codeexample}
	The |only marks| visualization style simply draws marks at every coordinate. Marks can be set with |mark=|\meta{mark name} and marker options like size and color can be specified using the |mark options=|\marg{style options} key (or by modifying the |every mark| style). The available markers along with the accepted style options can be found in section~\ref{sec:markers} on page~\pageref{sec:markers}.
\end{plottype}

\label{pgfplots:scatter}
More sophisticated scatter plots change the marker appearance for each data point. An example is that marker colors depend on the magnitude of function values $f(x)$ or other provided coordinates. The term ``scatter plot'' will be used for this type of plots in the following sections.

Scatter plots require ``source'' coordinates. These source coordinates can be the $y$ coordinate, or explicitly provided additional values.

\begin{plottype}{scatter}
	Enables marker appearance modifications. The default implementation acquires ``source coordinates'' for every data point (see |scatter src| below) and maps them linearly into the current color map. The resulting color is used as draw and fill color of the marker.

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}
	\addplot+[scatter,only marks] 
		expression[samples=50,scatter src=y]
		{x-x^2};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

	The key |scatter| is simply a boolean variable which enables marker modifications. It applies only to markers and it can be combined with any other plot type.

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}
	\addplot+[scatter] 
		expression[samples=50,scatter src=y]
		{x^3};
	\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{plottype}

Scatter plots can be configured using a set of options. One of them is mandatory, the rest allows fine grained control over marker appearance options.

\label{pgfplots:scatter:src}
\begin{pgfplotskey}{scatter src=\mchoice{none,x,y,z,explicit,explicit symbolic} (initially none)}
	This key is necessary for any scatter plot. It needs to be provided as \marg{behavior option} for |\addplot| to configure the value used to determine marker appearances.

	Usually, |scatter src| provides input data (numeric or string type) which is used to determine colors and other style options for markers.
	The default configuration expects numerical data which is mapped linearly into the current color map.

	The choices |x|, |y| and |z| will use either the $x$, $y$ or $z$ coordinates to determine marker options\footnote{The coordinates are used after any coordinate filters, logarithms or stacked-plot computations have been applied.}. The choice |explicit| expects the scatter source data as additional coordinate from the coordinate input streams (see section~\ref{pgfplots:providing:input} for how to provide input meta data or below for some small examples). They will be treated as numerical data. Finally, |explicit symbolic| also expects scatter source data as additional meta information for each input coordinate, but it treats them as strings,  not as numerical data. Consequently, no arithmetics is performed. It is task of the scatter plot style to do sometthing with it. See, for example, the |scatter/classes| style below.

	Here are examples for how to provide data for the choices |explicit| and |explicit symbolic|.
\begin{codeexample}[code only]
\begin{tikzpicture}
	\begin{axis}
		% provide color data explicitly using [<data>]
		% behind coordinates:
		\addplot+[scatter]
			[scatter src=explicit]
			coordinates {
				(0,0) [1.0e10]
				(1,2) [1.1e10]
				(2,3) [1.2e10]
				(3,4) [1.3e10]
				% ...
			};

        % Assumes a datafile.dat like
        % xcolname  ycolname    colordata
        % 0         0           0.001
        % 1         2           0.3
        % 2         2.1         0.4
        % 3         3           0.5
        % ...
        % the file may have more columns.
		\addplot+[scatter]
			[scatter src=explicit]
			table[x=xcolname,y=ycolname,meta=colordata] 
				{datafile.dat};

        % Assumes a datafile.dat like
        % 0         0           0.001
        % 1         2           0.3
        % 2         2.1         0.4
        % 3         3           0.5
        % ...
        % the first three columns will be used here:
		\addplot+[scatter]
			[scatter src=explicit]
			file {datafile.dat};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

	Please note that |scatter src|$\neq$|none| results in computational work even if |scatter=false|.
\end{pgfplotskey}

\begin{stylekey}{/pgfplots/scatter/use mapped color=\marg{options for each marker} (initially draw=mapped color!80!black,fill=mapped color)}
	This style is installed by default. When active, it recomputes the color |mapped color| for every processed point coordinate by transforming the |scatter src| coordinates into the current colormap linearly. Then, it evaluates the options provided as \marg{options for each marker} which are expected to depend on |mapped color|.

	The user interface for colormaps is described in section~\ref{pgfplots:colormap}.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[title=Default arguments]
\addplot+[scatter]
	expression[scatter src=y]
	{2*x+3};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	title=Black fill color and varying draw color,
	scatter/use mapped color=
		{draw=mapped color,fill=black}]
\addplot+[scatter]
	expression[scatter src=y]
	{2*x+3};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	title=Black draw color and varying fill color,
	scatter/use mapped color=
		{draw=black,fill=mapped color}]
\addplot+[scatter]
	expression[scatter src=y]
	{2*x+3};
\end{axis}
\end{tikzpicture}
\end{codeexample}
	This key is actually a style which redefines |@pre marker code| and |@post marker code| (see below).
\end{stylekey}

\label{pgfplots:scatterclasses}
\begin{stylekey}{/pgfplots/scatter/classes=\marg{styles for each classname}}
	A scatter plot style which visualizes points using several classes. The style assumes that every point coordinate has a class label attached, that means the choice |scatter src=explicit symbolic| is assumed\footnote{If \texttt{scatter src} is not \texttt{explicit symbolic}, we expect a numeric argument which is rounded to the nearest integer. The resulting integer is used a class label. If that fails, the numeric argument is truncated to the nearest integer. If that fails as well, the point has no label.}. A class label can be a number, but it can also be a symbolic constant. Given class labels for every point, \marg{styles for each classname} contains a comma-separated list which associates appearance options to each class label.

	If you need different |scatter/classes| arguments per plot, they must be given as \marg{behavior option}, not as style option.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[scatter/classes={
	a={mark=square*,blue},%
	b={mark=triangle*,red},%
	c={mark=o,draw=black}}]

	% \addplot[] is better than \addplot+[] here:
	% it avoids scalings of the cycle list
	\addplot[scatter,only marks] 
		plot[scatter src=explicit symbolic]
		coordinates {
			(0.1,0.15)  [a]
			(0.45,0.27) [c]
			(0.02,0.17) [a]
			(0.06,0.1)  [a]
			(0.9,0.5)   [b]
			(0.5,0.3)   [c]
			(0.85,0.52) [b]
			(0.12,0.05) [a]
			(0.73,0.45) [b]
			(0.53,0.25) [c]
			(0.76,0.5)  [b]
			(0.55,0.32) [c]
		};
\end{axis}
\end{tikzpicture}
\end{codeexample}
In this example, the coordinate |(0.1,0.15)| has the associated label `|a|' while |(0.45,0.27)| has the label `|c|' (see section~\ref{sec:addplot} for details about specifying point meta data). Now, The argument to |scatter/classes| contains styles for every label -- for label `|a|', square markers will be drawn in color blue. 

\begin{codeexample}[code only]
\begin{tikzpicture}
\begin{axis}[scatter/classes={
	0={mark=square*,blue},%
	1={mark=triangle*,red},%
	2={mark=o,draw=black,fill=black}}]

	% Assumes datafile.dat looks like
	% x             y               label
    % 5.000000e-01  7.500000e-01    1
    % 1.000000e+00  6.718750e-01    2
    % 1.000000e+00  5.597630e-01    2
    % 5.000000e-01  1.250000e-01    2
    % 1.000000e+00  6.603350e-01    0
    % 5.000000e-01  0.000000e+00    0
    % 0.000000e+00  5.000000e-01    0
    % 1.000000e+00  0.000000e+00    2
    % 5.000000e-01  1.250000e-01    1
    % 1.000000e+00  6.213180e-01    1
	% ...
    \addplot[scatter,only marks]
			table[scatter src=explicit symbolic,x index=x,y index=y,meta=label]
			{datafile.dat}
        ;
\end{axis}
\end{tikzpicture}
\end{codeexample}

In general, the format of \marg{styles for each classname} is a comma separated list of \meta{label}|=|\marg{style options}.

\paragraph{Attention:} The keys |every mark| and |mark options| have \emph{no effect} when used inside of \marg{styles for each classname}! So, instead of assigning |mark options|, you can simply provide the options directly. They apply only to markers anyway.
\end{stylekey}

\begin{pgfplotsxycodekeylist}{
	scatter/@pre marker code,
	scatter/@post marker code}
	These two keys constitute the public low-level interface which determines the marker appearance depending on the scatter source coordinates.

	Redefining them allows fine grained control even over marker types, linestyles and colors.

	The scatter plot algorithm works as follows:
\begin{enumerate} 
\item The scatter source coordinates form a data stream whose data limits are computed additionally to the axis limits. This step is skipped for |symbolic| meta data.
\item Before any markers are drawn, a linear coordinate transformation from these data limits to the interval $[0.0,1000.0]$ is initialised. 
\item Every scatter source coordinate\footnote{During the evaluation, the public macros \texttt{\textbackslash pgfplotspointmeta} and \texttt{\textbackslash pgfplotspointmetarange} indicate the source coordinate and the source coordinate range in the format $a:b$ (for log--axis, they are given in fixed point representation and for linear axes in floating point).} will be transformed linearly and the result is available as macro |\pgfplotspointmetatransformed| $ \in [0.0,1000.0]$.

The decision is thus based on per thousands of the data range. The transformation is skipped for |symbolic| meta data (and the meta data is simply contained in the mentioned macro).
\item The code of |scatter/@pre marker code| is evaluated (without arguments).
\item The standard code which draws markers is evaluated.
\item The code of |scatter/@post marker code| is evaluated (without arguments).
\end{enumerate}
	The idea is to generate a set of appearance keys which depends on |\pgfplotspointmetatransformed|. Then, a call to |\scope|\oarg{generated keys} as |@pre| code and the associated |\endscope| as |@post| code will draw markers individually using \oarg{generated keys}.

A technical example is shown below. It demonstrates how to write user defined routines, in this case a three--class system\footnote{Please note that you don't need to copy this particular example: the multiple--class example is also available as predefined style \texttt{scatter/classes}.}.
\begin{codeexample}[]
\begin{tikzpicture}
% Low-Level scatter plot interface Example: 
% use three different marker classes 
% 0% - 30%   : first class
% 30% - 60%  : second class
% 60% - 100% : third class
\begin{axis}[
scatter/@pre marker code/.code={%
   \ifdim\pgfplotspointmetatransformed pt<300pt
      \def\markopts{mark=square*,fill=blue}%
   \else
      \ifdim\pgfplotspointmetatransformed pt<600pt
         \def\markopts{mark=triangle*,fill=orange}%
      \else
         \def\markopts{mark=pentagon*,fill=red}%
      \fi
   \fi
   \expandafter\scope\expandafter[\markopts]
},%
scatter/@post marker code/.code={%
   \endscope
}]

\addplot+[scatter]
   expression[scatter src=y,samples=40]
   {sin(deg(x))};
   
\end{axis}
\end{tikzpicture}
\end{codeexample}
Please note that |\ifdim| compares \TeX\ lengths, so the example employs the suffix |pt| for any number used in this context. That doesn't change the semantics.

\end{pgfplotsxycodekeylist}

\subsubsection{Interrupted Plots}
\index{Interrupted Plots}%
Sometimes it is desireable to draw parts of a single plot separately, without connection between the parts (discontinuities). There is limited support for such an application.
\label{pgfplots:interrupt}
\begin{pgfplotskey}{/pgfplots/forget plot=\marg{true,false} (initially false)}
	This key tells \PGFPlots\ to add a plot without changing cycle list position and legends. This key is described in all detail on page~\pageref{pgfplots:forgetplot}.

	However, it can be used to get the interesting effect of ``interrupted plot'', so it is also discussed here:
\begin{codeexample}[width=4cm]
\begin{tikzpicture}
\begin{axis}[
	width=10cm, height=210pt,
	xmin=-4.7124, xmax=4.7124,
	ymin=-10, ymax=10,
	xtick={-4.7124,-1.5708,...,10},
	xticklabels={$-\frac32 \pi$,$-\pi/2$,$\pi/2$,$\frac32 \pi$},
	axis x line=center,axis y line=center,
	no markers,
	samples=100]

% Use gnuplot as calculator here. The first two plots won't be counted:
\addplot gnuplot[id=tan0,forget plot,domain=-1.5*pi+0.003:-0.5*pi-0.003] {tan(x)};
\addplot gnuplot[id=tan1,forget plot,domain=-0.5*pi+0.003: 0.5*pi-0.003] {tan(x)};
\addplot gnuplot[id=tan2,            domain= 0.5*pi+0.003: 1.5*pi-0.003] {tan(x)};
\legend{$\tan(x)$}
\end{axis}
\end{tikzpicture}
\end{codeexample}
	
	The interesting part is in the |\addplot| commands. The |id| is specific to the gnuplot interface (and can be omitted). The |domain| option defines separate domains for every plot part. Due to the |forget plot| key, the |cycle list| position is not updated so all three plots use the same line specification. Furthermore, only the last command affects the legend (and advances the cycle list).

	\paragraph{Remark:} The |forget plot| feature is \emph{not very sophisticated}. In particular, it has the following \textbf{restrictions}:
	\begin{enumerate}
		\item Besides the |cycle list| side--effect, no styles are communicated between successive plots.
		\item It won't work together with |stack plots|.
	\end{enumerate}
\end{pgfplotskey}

\subsection{Markers and Linestyles}
\label{sec:markers}%
The following options of \Tikz\ are available to plots.
\subsubsection{Markers}
This list is copied from~\cite[section~29]{tikz}:
\begingroup
\newenvironment{longdescription}[0]{%
	\begin{list}{}{%
		\leftmargin=4.3cm
		\setlength{\labelwidth}{4.3cm}%
		\renewcommand{\makelabel}[1]{\hfill\textbf{\texttt{##1}}}%
	}%
}{%
	\end{list}%
}%
\def\showit#1{%
	\tikz\draw[%
		gray,
		thin,
		mark options={fill=yellow!80!black,draw=black,scale=2},
		x=0.8cm,y=0.3cm,
		#1]
	plot coordinates {(0,0) (1,1) (2,0) (3,1)};%
}%
\begin{longdescription}
	\item[mark=*] \showit{mark=*}
	\item[mark=x] \showit{mark=x}
	\item[mark=+] \showit{mark=+}
%	\item[mark=ball] \showit{mark=ball}
\end{longdescription}
And with |\usetikzlibrary{plotmarks}|:
\begin{longdescription}
	\item[mark=$-$] \showit{mark=-}
	\item[mark=$\vert$] \showit{mark=|}
	\item[mark=o] \showit{mark=o}
	\item[mark=asterisk] \showit{mark=asterisk}
	\item[mark=star] \showit{mark=star}
	\item[mark=oplus] \showit{mark=oplus}
	\item[mark=oplus*] \showit{mark=oplus*}
	\item[mark=otimes] \showit{mark=otimes}
	\item[mark=otimes*] \showit{mark=otimes*}
	\item[mark=square] \showit{mark=square}
	\item[mark=square*] \showit{mark=square*}
	\item[mark=triangle] \showit{mark=triangle}
	\item[mark=triangle*] \showit{mark=triangle*}
	\item[mark=diamond] \showit{mark=diamond}
	\item[mark=diamond*] \showit{mark=diamond*}
	\item[mark=pentagon] \showit{mark=pentagon}
	\item[mark=pentagon*] \showit{mark=pentagon*}
	\item[mark=text] \showit{mark=text,every mark/.append style={scale=0.5}} 

	This marker is special as it can be configured freely. The character (or even text) used is configured by a set of variables, see below.
\end{longdescription}
All these options have been drawn with the additional options
\begin{codeexample}[code only]
\draw[
	gray,
	thin,
	mark options={%
		scale=2,fill=yellow!80!black,draw=black
	}
]
\end{codeexample}
Please see section~\ref{sec:colors} for how to change draw- and fill colors.

\begin{key}{/pgf/text mark=\marg{text} (initially p)}
	Changes the text shown by |mark=text|.

	With |/pgf/text mark=m|: \pgfkeys{/pgf/text mark=m}\showit{mark=text,every mark/.append style={scale=0.5}}

	With |/pgf/text mark=A|: \pgfkeys{/pgf/text mark=A}\showit{mark=text,every mark/.append style={scale=0.5}}

	There is no limitation about the number of characters or whatever. In fact, any \TeX\ material can be inserted as \marg{text}, including images.
\end{key}
\begin{key}{/pgf/text mark/style=\marg{options for \texttt{mark=text}}}
	Defines a set of options which control the appearance of |mark=text|.

	If |/pgf/text mark/as node=false| (the default), \marg{options} is provided as argument to |\pgftext| -- which provides only some basic keys like |left|, |right|, |top|, |bottom|, |base| and |rotate|.

	If |/pgf/text mark/as node=true|, \marg{options} is provided as argument to |\node|. This means you can provide a very powerful set of options including |anchor|, |scale|, |fill|, |draw|, |rounded corners| etc. 
\end{key}
\begin{key}{/pgf/text mark/as node=\mchoice{true,false} (initially false)}
	Configures how |mark=text| will be drawn: either as |\node| or as |\pgftext|.

	The first choice is highly flexible and possibly slow, the second is very fast and usually enough.
\end{key}

\begin{key}{/tikz/mark size=\marg{dimension}}
	This \Tikz\ option allows to set marker sizes to \marg{dimension}. For circular markers, \marg{dimension} is the radius, for other plot marks it is about half the width and height.
\end{key}
\begin{key}{/tikz/every mark}
	This \Tikz\ style can be reconfigured to set marker appearance options like colors or transformations like scaling or rotation. \PGFPlots\ appends its cycle list options to this style.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[y=2cm]
	\addplot coordinates 
		{(-2,0) (-1,1) (0,0) (1,1) (2,0)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\tikzset{every mark/.append style={scale=2}}
\begin{tikzpicture}
\begin{axis}[y=2cm]
	\addplot coordinates 
		{(-2,0) (-1,1) (0,0) (1,1) (2,0)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{key}

\begin{stylekey}{/pgfplots/every axis plot post (initially {})}
The |every axis plot post| style can be used to overwrite parts (or all) of the drawing styles which are assigned for plots.
\begin{codeexample}[]
% Overwrite any cycle list:
\pgfplotsset{
  every axis plot post/.append style={
   mark=triangle,
   every mark/.append style={rotate=90}}}
\begin{tikzpicture}
\begin{axis}[y=2cm]
	\addplot coordinates 
		{(-2,0) (-1,1) (0,0) (1,1) (2,0)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{stylekey}

\begin{stylekey}{/pgfplots/no markers}
	A style which appends |mark=none| to |every axis plot post|, which disables markers for every plot (even if the cycle list contains markers). 
\end{stylekey}

\begin{key}{/tikz/mark options=\marg{options}}
	Resets |every mark| to \marg{options}.
\end{key}

Markers paths are not subjected to clipping as other parts of the figure. Markers are either drawn completely or not at all.

\Tikz\ offers more options for marker fine tuning, please refer to~\cite{tikz} for details.

\subsubsection{Line Styles}
\def\showit#1{%
	\tikz\draw[%
		black,
		x=0.8cm,y=0.3cm,
		#1]
	plot coordinates {(0,0) (1,1) (2,0) (3,1)};%
}%
The following line styles are predefined in \Tikz.
\begin{stylekey}{/tikz/solid}
	 \showit{style=solid}
\end{stylekey}

\begin{stylekey}{/tikz/dotted}
	 \showit{style=dotted}
\end{stylekey}

\begin{stylekey}{/tikz/densely dotted}
	 \showit{style=densely dotted}
\end{stylekey}

\begin{stylekey}{/tikz/loosely dotted}
	 \showit{style=loosely dotted}
\end{stylekey}

\begin{stylekey}{/tikz/dashed}
	 \showit{style=dashed}
\end{stylekey}

\begin{stylekey}{/tikz/densely dashed}
	 \showit{style=densely dashed}
\end{stylekey}

\begin{stylekey}{/tikz/loosely dashed}
	 \showit{style=loosely dashed}
\end{stylekey}
\noindent since these styles apply to markers as well, you may want to consider using 
\begin{codeexample}[code only]
\pgfplotsset{
	every mark/.append style={solid}
}
\end{codeexample}
\noindent in marker styles.

Besides linestyles, \PGF\ also offers (a lot of) arrow heads. Please refer to~\cite{tikz} for details.
\endgroup


\subsubsection{Font Size and Line Width}
Often, one wants to change line width and font sizes for plots. This can be done using the following options of \Tikz.

\begin{key}{/tikz/font=\marg{font name} (initially \textbackslash normalfont)}
	Sets the font which is to be used for text in nodes (like tick labels, legends or descriptions).

	A font can be any \LaTeX\ argument like |\footnotesize| or |\small\bfseries|\footnote{Con\TeX t and plain \TeX\ users need to provide other statements, of course.}.

	It may be useful to change fonts only for specific axis descriptions, for example using
\begin{codeexample}[code only]
\pgfplotsset{
	tick label style={font=\small},
	label style={font=\small},
	legend style={font=\footnotesize}
}
\end{codeexample}
\end{key}

\begin{key}{/tikz/line width=\marg{dimension} (initially 0.4pt)}
	Sets the line width. Please note that line widths for tick lines and grid lines are predefined, so it may be necessary to override the styles |every tick| and |every axis grid|.

	The |line width| key is changed quite often in \Tikz. You should use
\begin{codeexample}[code only]
\pgfplotsset{every axis/.append style={line width=1pt}}
\end{codeexample}
	or
\begin{codeexample}[code only]
\pgfplotsset{every axis/.append style={thick}}
\end{codeexample}
	to change the overall line width. To also adjust ticks and grid lines, one can use
\begin{codeexample}[code only]
\pgfplotsset{every axis/.append style={
	line width=1pt,
	tick style={line width=0.6pt}}}
\end{codeexample}
	or styles like
\begin{codeexample}[code only]
\pgfplotsset{every axis/.append style={
	thick,
	tick style={semithick}}}
\end{codeexample}
	The `|every axis plot|' style can be used to change line widths for plots only.
\end{key}

\begin{keylist}[/tikz]{ultra thin,very thin,semithick,thick,very thick,ultra thick}
	These \Tikz\ styles provide different predefined line widths.
\end{keylist}

This example shows the same plots as on page~\pageref{page:plotcoords:src} (using |\plotcoords| as place holder for the commands on page~\pageref{page:plotcoords:src}), with different line width and font size.
\begin{codeexample}[]
\pgfplotsset{every axis/.append style={
	font=\large,
	line width=1pt,
	tick style={line width=0.8pt}}}
\begin{tikzpicture}
	\begin{loglogaxis}[
		legend style={at={(0.03,0.03)},
			anchor=south west},
		xlabel=\textsc{Dof},
		ylabel=$L_2$ Error
	]
	% see above for this macro:
	\plotcoords
	\legend{$d=2$,$d=3$,$d=4$,$d=5$,$d=6$}
	\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\pgfplotsset{every axis/.append style={
	font=\footnotesize,
	thin,
	tick style={ultra thin}}}
\begin{tikzpicture}
	\begin{loglogaxis}[
		xlabel=\textsc{Dof},
		ylabel=$L_2$ Error
	]
	% see above for this macro:
	\plotcoords
	\legend{$d=2$,$d=3$,$d=4$,$d=5$,$d=6$}
	\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}

\subsubsection{Colors}
\label{sec:colors}
{%
\def\showcolorandname#1{%
	\showcolor{#1}~#1%
}%
\def\showcolor#1{%
	\tikz \draw[black,fill={#1}] (0,0) rectangle (1em,0.6em);%
}%
\PGF\ uses the color support of |xcolor|. Therefore, the main reference for how to specify colors is the |xcolor| manual~\cite{xcolor}. The \PGF\ manual~\cite{tikz} is the reference for how to select colors for specific purposes like drawing, filling, shading, patterns etc.\ This section contains a short overview over the specification of colors in~\cite{xcolor} (which is not limited to \PGFPlots).

The package |xcolor| defines a set of predefined colors, namely 
\showcolorandname{red},
\showcolorandname{green},
\showcolorandname{blue},
\showcolorandname{cyan},
\showcolorandname{magenta},
\showcolorandname{yellow},
\showcolorandname{black},
\showcolorandname{gray},
\showcolorandname{white},
\showcolorandname{darkgray},
\showcolorandname{lightgray},
\showcolorandname{brown},
\showcolorandname{lime},
\showcolorandname{olive},
\showcolorandname{orange},
\showcolorandname{pink},
\showcolorandname{purple},
\showcolorandname{teal},
\showcolorandname{violet}.

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[enlarge x limits=false]
	\addplot[red]
		expression[samples=500] {sin(deg(x))};

	\addplot[orange] 
		expression[samples=7] {sin(deg(x))};

	\addplot[teal,const plot] 
		expression[samples=14] {sin(deg(x))};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

Besides predefined colors, it is possible to \emph{mix} two (or more) colors. For example, \showcolorandname{red!30!white} contains $30\%$ of \showcolorandname{red} and $70\%$ of \showcolorandname{white}. Consequently, one can build \showcolorandname{red!70!white} to get $70\%$ red and $30\%$ white or \showcolorandname{red!10!white} for $10\%$ red and $90\%$ white. This mixing can be done with any color, \showcolorandname{red!50!green}, \showcolorandname{blue!50!yellow}.

A different type of color mixing is supported, which allows to take $100\%$ of \emph{each} component. For example, \showcolorandname{rgb,2:red,1;green,1} will add $1/2$ part \showcolorandname{red} and $1/2$ part \showcolorandname{green} and we reproduced the example from above. Using the denominator~$1$ instead of~$2$ leads to \showcolorandname{rgb,1:red,1;green,1} which uses $1$ part \showcolorandname{red} and $1$ part \showcolorandname{green}. Many programs allow to select pieces between $0,\dotsc,255$, so a denominator of $255$ is useful. Consequently, \showcolorandname{rgb,255:red,231;green,84;blue,121} uses $231/255$ red, $84/255$ green and $121/255$. This corresponds to the standard RGB color $(231,84,121)$. Other examples are \showcolorandname{rgb,255:red,32;green,127;blue,43}, \showcolorandname{rgb,255:red,178;green,127;blue,43}, \showcolorandname{rgb,255:red,169;green,178;blue,43}.

It is also possible to use RGB values, the HSV color model or the HTML color syntax directly. However, this requires some more programming. I suppose this is the fastest (and probably the most uncomfortable) method to use colors. For example, 
\begin{codeexample}[]
\definecolor{color1}{rgb}{1,1,0}
\tikz \fill[color1] 
	(0,0) rectangle (1em,0.6em);
\end{codeexample}
\noindent creates the color with $100\%$ red, $100\%$ green and $0\%$ blue;

\begin{codeexample}[]
\definecolor{color1}{HTML}{D0B22B}
\tikz \fill[color1] 
	(0,0) rectangle (1em,0.6em);
\end{codeexample}
\noindent creates the color with $208/255$ pieces red, $178/255$ pieces green and $43$ pieces blue, specified in standard HTML notation. Please refer to the |xcolor| manual~\cite{xcolor} for more details and color models.
}%

\begin{keylist}{
	/tikz/color=\marg{a color},
	/tikz/draw=\marg{stroke color},
	/tikz/fill=\marg{fill color}}
	These keys are (generally) used to set colors. Use |color| to set the color for both, drawing and filling. Instead of |color=|\marg{color name} you can simply write \marg{color name}. The |draw| and |fill| keys only set colors for stroking and filling, respectively.

	Use |draw=none| to disable drawing and |fill=none| to disable filling\footnote{Up to now, plot marks always have a stroke color (some also have a fill color). This restriction may be lifted in upcoming versions.}.% This does also work for markers.
%--------------------------------------------------
% \begin{codeexample}[]
% \begin{tikzpicture}
% 	\begin{axis}
% 	\addplot+[only marks,mark=square*,
% 		mark options={fill=red!50!white,draw=none}]
% 		{4*x^2 - 2*x +4 };
% 	\end{axis}
% \end{tikzpicture}
% \end{codeexample}
%-------------------------------------------------- 

	Since these keys belong to \Tikz, the complete documentation can be found in the \Tikz\ manual~\cite[Section ``Specifying a Color'']{tikz}.
\end{keylist}

\subsubsection{Color Maps}
\label{pgfplots:colormap}
\begin{pgfplotskey}{colormap name=\marg{color map name} (initially hot)}
	Changes the current color map to the already defined map named \marg{color map name}. The predefined color map is

	\begin{tabular}{>{\ttfamily}ll}
	hot & \pgfplotsshowcolormap{hot}\\
	\end{tabular}

	Further colormaps are described below.

	Colormaps can be used, for example, in scatter plots (see section~\ref{pgfplots:scatter}).

	You can use |colormap| to create new color maps (see below).
\end{pgfplotskey}

\begin{pgfplotskey}{colormap=\marg{name}\marg{color specification}}
	Defines a new colormap named \marg{name} according to \marg{color specification} and activates it using |colormap name=|\marg{name}.
	
	The syntax of \marg{color specification} is the same as those for \PGF\ shadings described in~\cite[VIII -- Shadings]{tikz}: it consists of a series of colors along with a length.
\begin{codeexample}[code only]
rgb(0cm)=(1,0,0); rgb(1cm)=(0,1,0); rgb255(2cm)=(0,0,255); gray(3cm)=(0.3);  color(4cm)=(green)
\end{codeexample}
\pgfplotsshowcolormapexample{rgb(0cm)=(1,0,0); rgb(1cm)=(0,1,0); rgb255(2cm)=(0,0,255); gray(3cm)=(0.3);  color(4cm)=(green)}

\noindent The single colors are separated by semicolons `|;|'. The length describes how much of the bar is occupied by the interval. Each entry has the form \meta{color model}|(|\meta{length}|)=(|\meta{arguments}|)|. The line above means that the left end of the colormap shall have RGB components $1,0,0$, indicating $100\%$ red and $0\%$ green and blue. The next entity starts at |1cm| and describes a color with $100\%$ green. The |rgb255| also expects three RGB components, but in the range $[0,255]$. Finally, |gray| specifies a color in parenthesis with the same value for each, R G and B and |color| accesses predefined colors.

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[
		colormap={bw}{gray(0cm)=(0); gray(1cm)=(1)}]
	\addplot+[scatter,only marks]
		plot[scatter src=y,domain=0:8,samples=100]
		{exp(x)};
	\end{axis}
\end{tikzpicture}
\end{codeexample}
The complete length of a colormap is irrelevant: it will be mapped linearly to an internal range anyway (for efficient interpolation). The only requirement is that the left end must be at |0|.

Available colormaps are shows below.

\paragraph{Remark:} Currently, only equidistant \marg{color specification}s are supported (each interval must have the same length).
\end{pgfplotskey}

\begin{stylekey}{/pgfplots/colormap/hot}
	A style which installs the colormap

	|{color(0cm)=(blue); color(1cm)=(yellow); color(2cm)=(orange); color(3cm)=(red)}|

	\pgfplotsshowcolormap{hot}

	This is the preconfigured colormap.
\end{stylekey}

\begin{stylekey}{/pgfplots/colormap/bluered}
	A style which installs the colormap

	|{rgb255(0cm)=(0,0,180); rgb255(1cm)=(0,255,255); rgb255(2cm)=(100,255,0); |

	|rgb255(3cm)=(255,255,0); rgb255(4cm)=(255,0,0); rgb255(5cm)=(128,0,0)}|,

	\pgfplotsshowcolormap{bluered}

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[colormap/bluered]
	\addplot+[scatter]
		expression[scatter src=x,samples=50]
		{sin(deg(x))};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

	\paragraph{Remark:} 
	The style |bluered| (re-)defines the colormap and activates it. \TeX\ will be slightly faster if you call |\pgfplotsset{colormap/bluered}| in the preamble (to create the colormap once) and use |colormap name=bluered| whenever you need it. This remark holds for every colormap style which follows. But you can simply ignore this remark.
\end{stylekey}

\begin{stylekey}{/pgfplots/colormap/cool}
	A style which installs the colormap

	|{rgb255(0cm)=(255,255,255); rgb255(1cm)=(0,128,255); rgb255(2cm)=(255,0,255)}|

	\pgfplotsshowcolormap{cool}
\end{stylekey}

\begin{stylekey}{/pgfplots/colormap/greenyellow}
	A style which installs the colormap

	|{rgb255(0cm)=(0,128,0); rgb255(1cm)=(255,255,0)}|

	\pgfplotsshowcolormap{greenyellow}
\end{stylekey}

\begin{stylekey}{/pgfplots/colormap/redyellow}
	A style which installs the colormap

	|{rgb255(0cm)=(255,0,0); rgb255(1cm)=(255,255,0)}|

	\pgfplotsshowcolormap{redyellow}
\end{stylekey}

\begin{stylekey}{/pgfplots/colormap/blackwhite}
	A style which installs the colormap

	|{gray(0cm)=(0); gray(1cm)=(1)}|

	\pgfplotsshowcolormap{blackwhite}
\end{stylekey}

\begin{command}{\pgfplotscolormaptoshadingspec\marg{colormap name}\marg{right end size}\marg{\textbackslash macro}}
	A command which converts a colormap into a \PGF\ shading's color specification. It can be used in commands like |\pgfdeclare*shading| (see the \PGF\ manual~\cite{tikz} for details).

	The first argument is the name of a (defined) colormap, the second the rightmost dimension of the specification. The result will be stored in \meta{\textbackslash macro}.
\begin{codeexample}[]
	% convert `hot' -> \result
	\pgfplotscolormaptoshadingspec{hot}{8cm}\result
	% define and use a shading in pgf:
	\def\tempb{\pgfdeclarehorizontalshading{tempshading}{1cm}}%
	% where `\result' is inserted as last argument:
	\expandafter\tempb\expandafter{\result}%
	\pgfuseshading{tempshading}%
\end{codeexample}
The usage of the result \meta{\textbackslash macro} is a little bit low--level.
\end{command}

\subsubsection{Options Controlling Linestyles}

\label{sec:cycle:list}%
\begin{pgfplotskeylist}{cycle list=\marg{list},cycle list name=\marg{\textbackslash macro}}
Allows to specify a list of plot specifications which will be used for each \hbox{|\addplot|}-command without explicit plot specification.

There are several possiblities to change it:
\begin{enumerate}
	\item Use one of the predefined lists\footnote{These lists were named \texttt{\textbackslash coloredplotspeclist} and \texttt{\textbackslash blackwhiteplotspeclist} which appeared to be unnecessarily long, so they have been renamed. The old names are still accepted, however.},
		\begin{itemize}
			\item |color| (from top to bottom)
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	stack plots=y,stack dir=minus,
	cycle list name=color]
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

			\item |exotic| (from top to bottom)
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	stack plots=y,stack dir=minus,
	cycle list name=exotic]
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

	\item |black white| (from top to bottom)
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	stack plots=y,stack dir=minus,
	cycle list name=black white]
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\addplot coordinates {(0,1) (0.5,1) (1,1)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
		\end{itemize}

These predefined cycle lists habe been created with
\begin{codeexample}[code only]
\pgfplotscreateplotcyclelist{color}{%
	blue,every mark/.append style={fill=blue!80!black},mark=*\\%
	red,every mark/.append style={fill=red!80!black},mark=square*\\%
	brown!60!black,every mark/.append style={fill=brown!80!black},mark=otimes*\\%
	black,mark=star\\%
	blue,every mark/.append style={fill=blue!80!black},mark=diamond*\\%
	red,densely dashed,every mark/.append style={solid,fill=red!80!black},mark=*\\%
	brown!60!black,densely dashed,every mark/.append style={
		solid,fill=brown!80!black},mark=square*\\%
	black,densely dashed,every mark/.append style={solid,fill=gray},mark=otimes*\\%
	blue,densely dashed,mark=star,every mark/.append style=solid\\%
	red,densely dashed,every mark/.append style={solid,fill=red!80!black},mark=diamond*\\%
}
\pgfplotscreateplotcyclelist{black white}{%
	every mark/.append style={fill=gray},mark=*\\%
	every mark/.append style={fill=gray},mark=square*\\%
	every mark/.append style={fill=gray},mark=otimes*\\%
	mark=star\\%
	every mark/.append style={fill=gray},mark=diamond*\\%
	densely dashed,every mark/.append style={solid,fill=gray},mark=*\\%
	densely dashed,every mark/.append style={solid,fill=gray},mark=square*\\%
	densely dashed,every mark/.append style={solid,fill=gray},mark=otimes*\\%
	densely dashed,every mark/.append style={solid},mark=star\\%
	densely dashed,every mark/.append style={solid,fill=gray},mark=diamond*\\%
}
\pgfplotscreateplotcyclelist{exotic}{%
	teal,every mark/.append style={fill=teal!80!black},mark=*\\%
	orange,every mark/.append style={fill=orange!80!black},mark=square*\\%
	cyan!60!black,every mark/.append style={fill=cyan!80!black},mark=otimes*\\%
	red!70!white,mark=star\\%
	lime!80!black,every mark/.append style={fill=lime},mark=diamond*\\%
	red,densely dashed,every mark/.append style={solid,fill=red!80!black},mark=*\\%
	yellow!60!black,densely dashed,
		every mark/.append style={solid,fill=yellow!80!black},mark=square*\\%
	black,every mark/.append style={solid,fill=gray},mark=otimes*\\%
	blue,densely dashed,mark=star,every mark/.append style=solid\\%
	red,densely dashed,every mark/.append style={solid,fill=red!80!black},mark=diamond*\\%
}
\end{codeexample}

	\item Provide the list explicitly,
\begin{codeexample}[]
\begin{tikzpicture}
\begin{loglogaxis}[cycle list={%
	{blue,mark=*},
	{red,mark=square},
	{dashed,mark=o},
	{loosely dotted,mark=+},
	{brown!60!black,
		mark options={fill=brown!40},
		mark=otimes*}}
]
\plotcoords
\legend{$d=2$,$d=3$,$d=4$,$d=5$,$d=6$}
\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}
	(This example list requires |\usetikzlibrary{plotmarks}|).
	\item Define macro names and use them with `|cycle list name|':
\begin{codeexample}[code only]
\pgfplotscreateplotcyclelist{mylist}{%
	{blue,mark=*},
	{red,mark=square},
	{dashed,mark=o},
	{loosely dotted,mark=+},
	{brown!60!black,mark options={fill=brown!40},mark=otimes*}}
...
\begin{axis}[cycle list name=mylist]
	...
\end{axis}
\end{codeexample}
\end{enumerate}

\paragraph{Remark:} You can also terminate single entries with `|\\|' as in
\begin{codeexample}[code only]
\begin{axis}[cycle list={%
	blue,mark=*\\%
	red,mark=square\\%
	dashed,mark=o\\%
	loosely dotted,mark=+\\%
	brown!60!black,
		mark options={fill=brown!40},
		mark=otimes*\\}
]
...
\end{axis}
\end{codeexample}
In this case, the \emph{last} entry also needs a terminating `|\\|', but one can omit braces around the single entries.
\end{pgfplotskeylist}




\subsection{Axis Descriptions}
Axis descriptions are labels for $x$ and $y$ axis and titles. Axis descriptions are drawn after the plot is finished and they are not subjected to clipping. Their placement is always \emph{relative to the axis rectangle}, where $(0,0)$ refers to the lower left corner and $(1,1)$ refers to the upper right one.

Furthermore, axis descriptions can be placed using the predefined node |current axis|. At the time when axis descriptions are drawn, all anchors which refer to the axis origin (that means the ``real'' point $(0,0)$) or any of the axis corners can be references using |current axis.|\meta{anchor name}. Please see section~\ref{pgfplots:sec:align}, Alignment, for further details.

\subsubsection{Labels}

\begin{pgfplotsxykey}{\x label=\marg{text}}
The options |xlabel| and |ylabel| change axis labels to \marg{text} which is any \TeX\ text. Use ``|xlabel={, = characters}|'' if characters like `|=|' or `|,|' need to be included literally.

Labels are \Tikz-Nodes which are placed with
\begin{codeexample}[code only]
\node 
	[style=every axis label,
	style=every axis x label]
\node 
	[style=every axis label,
	style=every axis y label] 
\end{codeexample}
so their position and appearance can be customized. The coordinate |(0,0)| denotes the lower left axis corner and |(1,1)| the upper right. 

The default styles are
\begin{codeexample}[code only]
\pgfplotsset{every axis label/.style={}}
\pgfplotsset{every axis x label/.style={
	at={(0.5,0)},
	below,
	yshift=-15pt}}
\pgfplotsset{every axis y label/.style={
	at={(0,0.5)},
	xshift=-35pt,
	rotate=90}}
\end{codeexample}
Whenever possible, consider using |.append style| instead of overwriting the default styles to ensure compatibility with future versions.
\begin{codeexample}[code only]
\pgfplotsset{every axis label/.append style={...}}
\pgfplotsset{every axis x label/.append style={...}}
\pgfplotsset{every axis y label/.append style={...}}
\end{codeexample}
	Use |xlabel/.add=|\marg{prefix}\marg{suffix} to modify an already assigned label.
\end{pgfplotsxykey}

\begin{pgfplotskey}{title=\marg{text}}
Adds a caption to the plot. This will place a \Tikz-Node with
\begin{codeexample}[code only]
\node[style=every axis title] {text};
\end{codeexample}
to the current axis.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{loglogaxis}[
	xlabel=Dof,ylabel=Error,
	title={$\mu=0.1$, $\sigma=0.2$}]

	\addplot coordinates {
		(5,    8.312e-02)
		(17,   2.547e-02)
		(49,   7.407e-03)
		(129,  2.102e-03)
		(321,  5.874e-04)
		(769,  1.623e-04)
		(1793, 4.442e-05)
		(4097, 1.207e-05)
		(9217, 3.261e-06)
	};
\end{loglogaxis}
\end{tikzpicture}%
\end{codeexample}
%--------------------------------------------------
% \hfill
% \begin{tikzpicture}
% \begin{loglogaxis}[
% 	width=0.48\linewidth,
% 	xlabel=Dof,ylabel=Error,
% 	title={$\mu=1$, $\sigma=\frac{1}{2}$}]
% 
% 	\addplot[color=red,mark=*] coordinates {
% 		(7,		8.472e-02)
% 		(31,	3.044e-02)
% 		(111,	1.022e-02)
% 		(351,	3.303e-03)
% 		(1023,	1.039e-03)
% 		(2815,	3.196e-04)
% 		(7423,	9.658e-05)
% 		(18943,	2.873e-05)
% 		(47103,	8.437e-06)
% 	};
% \end{loglogaxis}
% \end{tikzpicture}
%-------------------------------------------------- 
The title's appearance and/or placing can be reconfigured with
\begin{codeexample}[code only]
\pgfplotsset{every axis title/.append style={at={(0.75,1)}}}
\end{codeexample}
This will place the title at~75\% of the $x$-axis. The coordinate~$(0,0)$ is the lower left corner and~$(1,1)$ the upper right one.

Use |title/.add=|\marg{prefix}\marg{suffix} to modify an already assigned title.
\end{pgfplotskey}

\begin{pgfplotscodekey}{extra description}
Allows to insert \marg{commands} after axis labels, titles and legends have been typeset.

As all other axis descriptions, the code can use $(0,0)$ to access the lower left corner and $(1,1)$ to access the upper right one. It won't be clipped.
\begin{codeexample}[]
\pgfplotsset{every axis/.append style={
	extra description/.code={
		\node at (0.5,0.5) {Center!};
	}}}
\begin{tikzpicture}
	\begin{axis}
	\addplot {x^2};
	\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotscodekey}


\subsubsection{Legend}
\label{pgfplots:sec:legendopts}
Legends can be generated in two ways: the first is to use |\addlegendentry| or |\legend| inside of an axis. This method has been presented in section~\ref{pgfplots:sec:legendcmds}, Legend Commands. The other method is to use a key.

\begin{pgfplotskey}{legend entries=\marg{comma separated list}}
	This key can be used to assign legend entries just like the commands |\addlegendentry| and |\legend|. Again, the positioning is relative to the axis rectangle (unless units like |cm| or |pt| are specified explicitly).
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[legend entries={$x$,$x^2$}]
	\addplot {x};
	\addplot {x^2};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

	The commands for legend creation take precedence: the key is only considered if there is no legend command in the current axis. Please refer to section~\ref{pgfplots:sec:legendcmds}, Legend Commands, for details about the commands.	
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[legend entries={$x$,$x^2$}]
	\addplot {x};
	\addplot {x^2};
	\legend{$a$,$b$}% overrides the option
	\end{axis}
\end{tikzpicture}
\end{codeexample}
	Please be careful with whitespaces in \marg{comma separated list}: they will contribute to legend entries. Consider using `|%|' at the end of each line in multiline arguments (the end of line character is also a whitespace in \TeX).
\end{pgfplotskey}

{%
\pgfplotsset{every axis/.append style={width=3cm,scale only axis,legend style={font=\footnotesize}}}%
\begin{stylekey}{/pgfplots/every axis legend}
The style ``|every axis legend|'' determines the legend's position and outer appearance:
\begin{codeexample}[code only]
\pgfplotsset{every axis legend/.append style={
		at={(0,0)},
		anchor=south west}}
\end{codeexample}
will draw it at the lower left corner of the axis while
\begin{codeexample}[code only]
\pgfplotsset{every axis legend/.append style={
		at={(1,1)},
		anchor=north east}}
\end{codeexample}
means the upper right corner. The `|anchor|' option determines which point \emph{of the legend} will be placed at $(0,0)$ or $(1,1)$.

The legend is a \Tikz-matrix, so one can use any \Tikz\ option which affects
nodes and matrizes (see~\cite[section 13~and~14]{tikz}). The matrix is created by something like
\begin{codeexample}[code only]
\matrix[style=every axis legend] {
	draw plot specification 1 & \node{legend 1}\\
	draw plot specification 2 & \node{legend 2}\\
	...
};
\end{codeexample}

\begin{codeexample}[]
\pgfplotsset{every axis legend/.append style={
		at={(1.02,1)},
		anchor=north west}}
\begin{tikzpicture}
\begin{axis}
\addplot coordinates {(0,0) (1,1)};
\addplot coordinates {(0,1) (1,2)};
\addplot coordinates {(0,2) (1,3)};
\legend{$l_1$,$l_2$,$l_3$}
\end{axis}
\end{tikzpicture}
\end{codeexample}

Use |legend columns=|\marg{number} to configure the number of horizontal legend entries.
\begin{codeexample}[]
\begin{tikzpicture}
\pgfplotsset{every axis legend/.append style={
		at={(0.5,1.03)},
		anchor=south}}
\begin{axis}[legend columns=4]
\addplot coordinates {(0,0) (1,1)};
\addplot coordinates {(0,1) (1,2)};
\addplot coordinates {(0,2) (1,3)};
\legend{$l_1$,$l_2$,$l_3$}
\end{axis}
\end{tikzpicture}
\end{codeexample}
\noindent
Instead of the |.append style|, it is possible to use |legend style| as in the following example. It has the same effect.

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	legend style={
		at={(1,0.5)},
		anchor=east}]
\addplot coordinates {(0,0) (1,1)};
\addplot coordinates {(0,1) (1,2)};
\addplot coordinates {(0,2) (1,3)};
\legend{$l_1$,$l_2$,$l_3$}
\end{axis}
\end{tikzpicture}
\end{codeexample}

\noindent
The default |every axis legend| style is
\begin{codeexample}[code only]
\pgfplotsset{every axis legend/.style={%
	cells={anchor=center},% Centered entries
	inner xsep=3pt,inner ysep=2pt,nodes={inner sep=2pt,text depth=0.15em},
	anchor=north east,%
	shape=rectangle,%
	fill=white,%
	draw=black,
	at={(0.98,0.98)}
}}
\end{codeexample}
Whenever possible, consider using |.append style| to keep the default styles active. This ensures compatibility with future versions.
\begin{codeexample}[code only]
\pgfplotsset{every axis legend/.append style={...}}
\end{codeexample}
\end{stylekey}

\pgfplotsshortstylekey legend style=every axis legend\pgfeov

}

\begin{pgfplotskey}{legend columns=\marg{number} (default 1)}
Allows to configure the maximum number of adjacent legend entries. The default value~|1| places legend entries vertically below each other. 

Use |legend columns=-1| to draw all entries horizontally.
\end{pgfplotskey}

\begin{pgfplotskey}{legend plot pos=\mchoice{left,right,none} (initially left)}
Configures where the small line specifications will be drawn: left of the description, right of the description or not at all.
\end{pgfplotskey}

\begin{pgfplotscodekey}{legend image code}
\label{opt:legend:image:code}
Allows to replace the default images which are drawn inside of legends. The first argument to this option is the plot specification, a key-value list which has been determined by |\addplot|.

The default is
\begin{codeexample}[code only]
/pgfplots/legend image code/.code={%
	\draw[#1,mark repeat=2,mark phase=2] 
		plot coordinates {
			(0cm,0cm) 
			(0.3cm,0cm)
			(0.6cm,0cm)%
		};%
}
\end{codeexample}
\end{pgfplotscodekey}

\begin{stylekey}{/pgfplots/area legend}
	A style which sets |legend image code| to
\begin{codeexample}[code only]
\pgfplotsset{
	/pgfplots/legend image code/.code={%
		\draw[#1] (0cm,-0.1cm) rectangle (0.6cm,0.1cm);
	}}	
\end{codeexample}
	
% \usetikzlibrary{patterns}
\begin{codeexample}[]
% \usetikzlibrary{patterns}
\begin{tikzpicture}
\begin{axis}[area legend,
	axis x line=bottom,
	axis y line=left,
	domain=0:1,
	legend style={at={(0.03,0.97)},
		anchor=north west},
	axis on top,xmin=0]
\addplot[pattern=crosshatch dots,
	pattern color=blue,draw=blue]
expression[samples=500] 
	{sqrt(x)}	\closedcycle;

\addplot[pattern=crosshatch,
	pattern color=blue!30!white,
	draw=blue!30!white]
expression {x^2} \closedcycle;

\addplot[red] coordinates {(0,0) (1,1)};
\legend{$\sqrt x$,$x^2$,$x$}
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{stylekey}

\subsubsection{Axis Lines}
By default the axis lines are drawn as a |box|, but it is possible to change the appearance of the $x$~and~$y$ axis lines.

\begin{pgfplotskeylist}{
	axis x line=\mchoice{box,top,middle,center,bottom,none} (initially box),
	axis x line*=\mchoice{box,top,middle,center,bottom,none} (initially box),
	axis y line=\mchoice{box,left,middle,center,right,none} (initially box),
	axis y line*=\mchoice{box,left,middle,center,right,none} (initially box)}
Allows to choose the location of the axis line(s). Ticks and tick labels are placed accordingly.
The choice |bottom| will draw the $x$ line at $y=y_\text{min}$, |middle| will draw the $x$~line at $y=0$, and |top| will draw it at $y=y_\text{max}$. Finally, |box| is a combination of options |top| and |bottom|. The $y$~variant works similarly.

The case |center| is a synonym for |middle|, both draw the line through the respective coordinate~$0$. If this coordinate is not part of the axis limit, the lower axis limit is chosen instead.

The starred versions $\dotsc$|line*| \emph{only} affect the axis lines, without correcting the positions of axis labels, tick lines or other keys which are (possibly) affected by a changed axis line. The non-starred versions are actually styles which set the starred key \emph{and} some other keys which also affect the figure layout:
\begin{itemize}
	\item In case |axis x line=box|, the style |every boxed x axis| will be installed immediately.
	\item In case |axis x line|$\neq$|box|, the style |every non boxed x axis| will be installed immediately. Furthermore, axis labels positions will be adjusted to fit the choosen value.
\end{itemize}
The same holds true for the |y|-variants. The default styles are defined as
\begin{codeexample}[code only]
\pgfplotsset{
	/pgfplots/every non boxed x axis/.style={
		xtick align=center,
		enlarge x limits=false,
		x axis line style={-stealth}
	},
	/pgfplots/every boxed x axis/.style={}
}
\end{codeexample}
Feel free to overwrite these styles if the default doesn't fit your needs or taste. 

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	xlabel=$x$,ylabel=$\sin x$]

	\addplot[blue,mark=none] 
		expression[domain=-10:0,samples=40]
		{sin(deg(x))};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	axis x line=middle,
	axis y line=right,
	ymax=1.1, ymin=-1.1,
	xlabel=$x$,ylabel=$\sin x$
]
	\addplot[blue,mark=none] 
		expression[domain=-10:0,samples=40]
		{sin(deg(x))};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	axis x line=bottom,
	axis y line=left,
	xlabel=$x$,ylabel=$\sqrt{|x|}$
]
\addplot[blue,mark=none] 
	expression[domain=-4:4,samples=501]
	{sqrt(abs(x))};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	minor tick num=3,
	axis y line=center,
	axis x line=middle,
	xlabel=$x$,ylabel=$\sin x$
	]
	\addplot[smooth,blue,mark=none] 
		[domain=-5:5,samples=40] 
		{sin(deg(x))};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	minor tick num=3,
	axis y line=left,
	axis x line=middle,
	xlabel=$x$,ylabel=$\sin x$
	]
	\addplot[smooth,blue,mark=none] 
		[domain=-5:5,samples=40] 
		{sin(deg(x))};
\end{axis}
\end{tikzpicture}
\end{codeexample}

In case |middle|, the style |every inner axis x line| allows to adjust the appearenace.
\end{pgfplotskeylist}

\begin{pgfplotsxykey}{every inner \x\ axis line}
	A style key which can be redefined to customize the appearance of \emph{inner} axis lines. Inner axis lines are those drawn by the |middle| (or |center|) choice of |axis x line|, see above.

	This style affects \emph{only} the line as such.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	minor tick num=1,
	axis x line=middle,
	axis y line=middle,
	every inner x axis line/.append style=
		{|->>},
	every inner y axis line/.append style=
		{|->>},
	xlabel=$x$,ylabel=$y^3$
]
\addplot[blue] expression[domain=-3:5] {x^3};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotsxykey}

\begin{pgfplotsxykey}{every outer \x\ axis line}
	Similar to |every inner x axis line|, this style configures the appearance of all axis lines which are part of the outer box.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	separate axis lines, % important !
	every outer x axis line/.append style=
		{-stealth},
	every outer y axis line/.append style=
		{-stealth},
]
\addplot[blue] plot[id=DoG,
		samples=100,
		domain=-15:15] 
  gnuplot{1.3*exp(-x**2/10) - exp(-x**2/20)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotsxykey}

\begin{pgfplotskey}{separate axis lines=\marg{true,false} (default true)}
	Enables or disables separate path commands for every axis line. This option affects \emph{only} the case if axis lines are drawn as a \emph{box}.

	Both cases have their advantages and disadvantages, I fear there is no reasonable default (suggestions are welcome).

	The case |separate axis lines=true| allows to draw arrow heads on each single axis line, but it can't close edges very well -- in case of thick lines, unsatisfactory edges occur.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	separate axis lines,
	every outer x axis line/.append style=
		{-stealth,red},
	every outer y axis line/.append style=
		{-stealth,green!30!black},
]
\addplot[blue]
	expression[
		samples=100,
		domain=-15:15] 
	{1.3*exp(0-x^2/10) - exp(0-x^2/20)};
  % Unfortunately, there is a bug in PGF 2.00
  % something like exp(-10^2)
  % must be written as exp(0-10^2) :-(
\end{axis}
\end{tikzpicture}
\end{codeexample}

	The case |separate axis lines=false| issues just \emph{one} path for all axis lines. It draws a kind of rectangle, where some parts of the rectangle may be skipped over if they are not wanted. The advantage is that edges are closed properly. The disadvantage is that at most one arrow head is added to the path (and yes, only one drawing color is possible).
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	separate axis lines=false,
	every outer x axis line/.append style=
		{-stealth,red},
	every outer y axis line/.append style=
		{-stealth,green!30!black},
]
\addplot[blue] plot[id=DoG,
		samples=100,
		domain=-15:15] 
  gnuplot{1.3*exp(-x**2/10) - exp(-x**2/20)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotskey}


\label{pgfplots:page:axislines}
\begin{pgfplotskey}{axis line style=\marg{key-value-list}}
	A command which appends \marg{key-value-list} to \emph{all} axis line appearance styles.
\end{pgfplotskey}

\begin{pgfplotskey}{inner axis line style=\marg{key-value-list}}
	A command which appends \marg{key-value-list} to both, |every inner x axis line| and the $y$ variant.
\end{pgfplotskey}
\begin{pgfplotskey}{outer axis line style=\marg{key-value-list}}
	A command which appends \marg{key-value-list} to both, |every outer x axis line| and the $y$ variant.
\end{pgfplotskey}
\begin{pgfplotsxykey}{\x\ axis line style=\marg{key-value-list}}
	A command which appends \marg{key-value-list} to all axis lines styles for either $x$ or $y$ axis.
\end{pgfplotsxykey}

\begin{pgfplotsxykey}{every boxed \x\ axis}
	A style which will be installed as soon as |axis x line=box| (|y|) is set.

	The default is simply empty.
\end{pgfplotsxykey}
\begin{pgfplotsxykey}{every non boxed \x\ axis}
	A style which will be installed as soon as |axis x line| (|y|) will be set to something different than |box|. 
	
	The default is 
\begin{codeexample}[code only]
\pgfplotsset{
	/pgfplots/every non boxed x axis/.style={
		xtick align=center,
		enlarge x limits=false,
		x axis line style={-stealth}}}
\end{codeexample}
	\noindent with similar values for the |y|-variant. Feel free to redefine this style to your needs / taste.
\end{pgfplotsxykey}

\subsubsection[Two Ordinates]{Two Ordinates ($y$ axis)}
{%
\pgfplotsset{every axis/.append style={width=4.5cm}}%
In some applications, more than one $y$ axis is used if the $x$ range is the same. This section demonstrates how to create them.

\begin{codeexample}[]
\begin{tikzpicture}
  \begin{axis}[
    scale only axis,
    xmin=-5,xmax=5,
    axis y line=left,
    xlabel=$x$,
    ylabel=First ordinate]
  \addplot {x^2};
  \end{axis}
  
  \begin{axis}[
    scale only axis,
    xmin=-5,xmax=5,
    axis y line=right,
    axis x line=none,
    ylabel=Second ordinate]
  \addplot[red] {3*x};
  \end{axis}
\end{tikzpicture}
\end{codeexample}
\noindent The basic idea is to draw two axis ``on top'' of each other -- one, which contains the $x$ axis and the left $y$ axis, and one which has \emph{only} the right $y$ axis. Since \PGFPlots\ does not really know what it's doing here, user attention in the following possibly non-obvious aspects is required:
\begin{enumerate}
	\item Scaling. You should set |scale only axis| because this forces equal dimensions for both axis, without respecting any labels.
	\item Same $x$ limits. You should set those limits explicitly.
\end{enumerate}
You may want to consider different legend styles.
It is also possible to use only the axis, without any plots:
% \usepackage{textcomp}
\begin{codeexample}[]
% \usepackage{textcomp}
\begin{tikzpicture}
  \begin{axis}[
    scale only axis,
    xmin=-5,xmax=5,
    axis y line=left,
    xlabel=$x$,
    ylabel=Absolute]
  \addplot {x^2};
  \end{axis}
  
  \begin{axis}[
    scale only axis,
    xmin=-5,xmax=5,
    ymin=0,ymax=1000,
    yticklabel=
{$\pgfmathprintnumber{\tick}$\textperthousand},
    axis y line=right,
    axis x line=none,
    y label style={yshift=-10pt},
    ylabel=per thousand]
  \end{axis}
\end{tikzpicture}
\end{codeexample}
}

\subsubsection{Axis Discontinuities}
In case the range of either of the axis do not include the zero value, it is possible to visualize this with a discontinuity decoration on the corresponding axis line.

\begin{pgfplotsxykey}{axis \x\ discontinuity=\mchoice{crunch,parallel,none} (initially none)}
Insert a discontinuity decoration on the $x$ (or $y$, respectively) axis. 
This is to visualize that the $y$ axis does cross the $x$ axis at its $0$ value, because the minimum $x$ axis value is positive or the maximum value is negative.

The description applies |axis y discontinuity| as well, with interchanged meanings of $x$~and~$y$.

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	axis x line=bottom,
	axis x discontinuity=parallel,
	axis y line=left,
	xmin=360, xmax=600,
	ymin=0, ymax=7,
 	enlargelimits=false
]
	\addplot coordinates {
		(420,2)
		(500,6)
		(590,4)
	};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	axis x line=bottom,
	axis y line=center,
	tick align=outside,
	axis y discontinuity=crunch,
	ymin=95, enlargelimits=false
]
	\addplot[blue,mark=none] 
		expression[domain=-4:4,samples=20] 
		{x*x+x+104};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotsxykey}

A problem might occur with the placement of the ticks on the axis.
This can be solved by specifying the minimum or maximum axis value for which a tick will be placed.

\begin{pgfplotsxykeylist}{\x tickmin=\marg{coord} (default axis limits), \x tickmax=\marg{coord} (default axis limits)}
\label{key:xytickminmax}
The options |xtickmin|, |xtickmax| and |ytickmin|, |ytickmax| allow to define the axis tick limits, i.e. the axis values before respectively after no ticks will be placed.
Everything outside of the axis tick limits will be not drawn.
Their default values are equal to the axis limits.

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	axis x line=bottom,
	axis y line=center,
	tick align=outside,
	axis y discontinuity=crunch,
	xtickmax=3,
	ytickmin=110,
	ymin=95, enlargelimits=false
]
	\addplot[blue,mark=none] 
		plot[domain=-4:4,samples=20] 
		expression{x*x+x+104};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotsxykeylist}

\begin{pgfplotsxykey}{hide \x\ axis=\mchoice{true,false} (initially false)}
Allows to hide either the $x$ or the $y$ axis. No outer rectangle, no tick marks and no labels will be drawn. Only titles and legends will be processed as usual.

Axis scaling and clipping will be done as if you did not use |hide x axis|.
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[
		hide x axis,
		hide y axis,
		title={$x^2\cos(x)$}]
	\addplot {cos(x)*x^2};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[
		hide x axis,
		axis y line=left,
		title={$x^2\cos(x)$}]
	\addplot {cos(x)*x^2};
	\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotsxykey}

\begin{stylekey}{/pgfplots/hide axis=\mchoice{true,false} (default true)}
	A style which sets both, |hide x axis| and |hide y axis|.
\end{stylekey}

\subsubsection{Adjusting Descriptions for Different Scales}
It is reasonable to change font sizes, marker sizes etc. together with the overall plot size: Large plots should also have larger fonts and small plots should have small fonts and a smaller distance between ticks.

\begin{keylist}{
	/tikz/font=\mchoice{\textbackslash normalfont,\textbackslash small,\textbackslash tiny,$\dotsc$},
	/pgfplots/max space between ticks=\marg{integer},
	/tikz/mark size=\marg{integer}}
	These keys should be adjusted to the figure's dimensions. Use 
\begin{codeexample}[code only]
\pgfplotset{tick label style={font=\footnotesize},
	label style={font=\small},
	legend style={font=\small}
}
\end{codeexample}
	to provide different fonts for different descriptions.

	The |max space between ticks| is described on page~\pageref{maxspacebetweenticks} and configures the approximate distance between successive tick labels (in |pt|). Please omit the |pt| suffix here.
\end{keylist}

There are a couple of predefined scaling styles which set some of these options:

\begin{stylekey}{/pgfplots/normalsize}
	Re-initialises the standard scaling options of \PGFPlots.

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[normalsize,
		title=A ``normalsize'' figure,
		xlabel=The $x$ axis,
		ylabel=The $y$ axis,
		legend entries={Leg}]
		\addplot {max(4*x,7*x)};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

	The initial setting is
\begin{codeexample}[code only]
/pgfplots/normalsize/.style={
	/pgfplots/width=240pt,
	/pgfplots/height=207pt,
	/pgfplots/max space between ticks=35
}
\end{codeexample}
\end{stylekey}

\begin{stylekey}{/pgfplots/small}
	Redefines several keys such that the axis is ``smaller''.

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[small,
		title=A ``small'' figure,
		xlabel=The $x$ axis,
		ylabel=The $y$ axis,
		legend entries={Leg}]
		\addplot {x^2};
	\end{axis}
\end{tikzpicture}
\end{codeexample}
	The initial setting is
\begin{codeexample}[code only]
/pgfplots/small/.style={
	/pgfplots/width=6.5cm,
	/pgfplots/height=,
	/pgfplots/max space between ticks=25
}
\end{codeexample}
Feel free to redefine the scaling -- the option may still be useful to get more ticks without typing too much. You could, for example, set |small,width=6cm|.
\end{stylekey}

\begin{stylekey}{/pgfplots/footnotesize}
	Redefines several keys such that the axis is even smaller. The tick labels will have |\footnotesize|.

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[footnotesize,
		title=A ``footnotesize'' figure,
		xlabel=The $x$ axis,
		ylabel=The $y$ axis,
		legend entries={Leg}]
		\addplot+[const plot]
			coordinates {
			(0,0) (1,1) (3,3) (5,10)
		};
	\end{axis}
\end{tikzpicture}
\end{codeexample}
	The initial setting is
\begin{codeexample}[code only]
/pgfplots/footnotesize/.style={
	/pgfplots/width=5cm,
	/pgfplots/height=,
	legend style={font=\footnotesize},
	tick label style={font=\footnotesize},
	label style={font=\small},
	/pgfplots/max space between ticks=20,
	every mark/.append style={mark size=8},
	ylabel style={yshift=-0.3cm}
},
\end{codeexample}
As for |small|, it can be convenient to set |footnotesize| and set |width| afterwards.
\end{stylekey}

\subsection{Scaling Options}

\begin{pgfplotskey}{width=\marg{dimen}}
Sets the width of the final picture to \marg{dimen}. If no |height| is specified, scaling will respect aspect ratios.

\noindent\underline{Remarks:} 
\begin{itemize}
	\item The scaling only affects the width of one unit in $x$-direction or the height for one unit in $y$-direction. Axis labels and tick labels won't be resized, but their size is used to determine the axis scaling.

	\item You can use the |scale=|\marg{number} option,
\begin{codeexample}[code only]
\begin{tikzpicture}[scale=2]
\begin{axis}
...
\end{axis}
\end{tikzpicture}
\end{codeexample}
	to scale the complete picture.

	\item The \Tikz-options |x| and |y| which set the unit dimensions in $x$ and $y$ directions can be specified as arguments to |\begin{axis}[x=1.5cm,y=2cm]| if needed (see below). These settings override the |width| and |height| options.

	\item You can also force a fixed width/height of the axis (without looking at labels) with
	\begin{codeexample}[code only]
\begin{tikzpicture}
\begin{axis}[width=5cm,scale only axis]
	...
\end{axis}
\end{tikzpicture}
	\end{codeexample}

	\item Please note that up to the writing of this manual, \PGFPlots\ only estimates the size needed for axis- and tick labels. It does not include legends which have been placed outside of the axis\footnote{I.e. the `|width|' option will not work as expected, but the bounding box is still ok.}. This may be fixed in future versions.

	Use the |x=|\marg{dimension}, |y=|\marg{dimension} and |scale only axis| options if the scaling happens to be wrong.
\end{itemize}
\end{pgfplotskey}

\begin{pgfplotskey}{height=\marg{dimen}}
	See |width|.
\end{pgfplotskey}

\begin{pgfplotskey}{scale only axis=\mchoice{true,false} (initially false)}
If |scale only axis| is enabled, label, tick and legend dimensions won't influence the size of the axis rectangle, that means |width| and |height| apply only to the axis rectangle

If |scale only axis=false| (the default), \PGFPlots\ will try to produce the desired width \emph{including} labels, titles and ticks.
\end{pgfplotskey}

\begin{pgfplotsxykeylist}{
	\x=\marg{dimen},
	\x={\{(\meta{x},\meta{y})\}}}
Sets the unit vectors for $x$ (or $y$). Every logical plot coordinate $(x,y)$ is drawn at the position
\[ x \cdot \begin{bmatrix} e_{xx} \\ e_{xy} \end{bmatrix} + y \cdot \begin{bmatrix} e_{yx} \\ e_{yy} \end{bmatrix}. \]
The unit vectors $e_x$ and $e_y$ determine the paper position in the current (always two dimensional) image.

The key |x=|\marg{dimen} simply sets $e_x = (\meta{dimen},0)^T $ while |y=|\marg{dimen} sets $e_y = (0,\meta{dimen})^T$.
Here, \marg{dimen} is any \TeX\ size like |1mm|, |2cm| or |5pt|. It is allowed to specify a negative \marg{dimen}.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[x=1cm,y=1cm]
\addplot expression[domain=0:3] {2*x};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[x=1cm,y=-0.5cm]
\addplot expression[domain=0:3] {2*x};
\end{axis}
\end{tikzpicture}
\end{codeexample}

The second syntax, |x={(|\meta{x}|,|\meta{y}|)}| sets $e_x = (\meta{x},\meta{y})^T$ explicitly\footnote{Please note that you need extra curly braces around the vector. Otherwise, the comma will be interpreted as separator for the next key-value pair.}; the corresponding |y| key works similiarly. This allows to define skewed or rotated axes.

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[x={(1cm,0.1cm)},y=1cm]
\addplot expression[domain=0:3] {2*x};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
		x={(5pt,1pt)},
		y={(-4pt,4pt)}]
\addplot {1-x^2};
\end{axis}
\end{tikzpicture}
\end{codeexample}

	Setting $x$ explicitly overrides the |width| option. Setting $y$ explicitly overrides the |height| option.

	Setting |x| and/or |y| for logarithmic axis will set the dimension used for $1 \cdot e \approx 2.71828$.

	Please note that it is \emph{not} possible to specify |x| as argument to |tikzpicture|. The option 
\begin{codeexample}[code only]
\begin{tikzpicture}[x=1.5cm]
\begin{axis}
	...
\end{axis}
\end{tikzpicture}
\end{codeexample}
	won't have any effect because an axis rescales its coordinates (see the |width| option).

\paragraph{Limitations:} Unfortunately, skewed axes are \textbf{not available for bar plots}.
\index{Errors!Skewed axes and bar plots}%
\index{Bar Plots!Skewed axes problems}%
\end{pgfplotsxykeylist}

\begin{pgfplotskey}{axis equal=\marg{true,false} (initially false)}
	Each unit vector is set to the same length while the axis dimensions stay constant. Afterwards, the size ratios for each unit in $x$ and $y$ will be the same.
	
	Axis limits will be enlarge to compensate for the scaling effect.
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[axis equal=false]
		\addplot[blue] expression[domain=0:2*pi,samples=300] {sin(deg(x))*sin(2*deg(x))};
	\end{axis}
\end{tikzpicture}
\hspace{1cm}
\begin{tikzpicture}
	\begin{axis}[axis equal=true]
		\addplot[blue] expression[domain=0:2*pi,samples=300] {sin(deg(x))*sin(2*deg(x))};
	\end{axis}
\end{tikzpicture}
\end{codeexample}
	
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{loglogaxis}[axis equal=false]
		\addplot expression[domain=1:10000] {x^-2};
	\end{loglogaxis}
\end{tikzpicture}
\hspace{1cm}
\begin{tikzpicture}
	\begin{loglogaxis}[axis equal=true]
		\addplot expression[domain=1:10000] {x^-2};
	\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotskey}

\begin{pgfplotskey}{axis equal image=\marg{true,false} (initially false)}
	Similar to |axis equal|, but the axis limits will stay constant as well (leading to smaller images).
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[axis equal image=false]
		\addplot[blue] expression[domain=0:2*pi,samples=300] {sin(deg(x))*sin(2*deg(x))};
	\end{axis}
\end{tikzpicture}
\hspace{1cm}
\begin{tikzpicture}
	\begin{axis}[axis equal image=true]
		\addplot[blue] expression[domain=0:2*pi,samples=300] {sin(deg(x))*sin(2*deg(x))};
	\end{axis}
\end{tikzpicture}
\end{codeexample}
	
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{loglogaxis}[axis equal image=false]
		\addplot expression[domain=1:10000] {x^-2};
	\end{loglogaxis}
\end{tikzpicture}
\hspace{1cm}
\begin{tikzpicture}
	\begin{loglogaxis}[axis equal image=true]
		\addplot expression[domain=1:10000] {x^-2};
	\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotskey}

\subsection{Error Bars}
\label{sec:errorbars}
{%
\def\pgfplotserror#1{\ensuremath{\epsilon_{#1}}}%
\PGFPlots\ supports error bars for normal and logarithmic plots. 

Error bars are enabled for each plot separately, using \meta{behavior options} after |\addplot|:
\begin{codeexample}[code only]
\addplot plot[error bars/.cd,x dir=both,y dir=both] ...
\end{codeexample}
Error bars inherit all drawing options of the associated plot, but they use their own marker and style arguments additionally.

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}
\addplot plot[error bars/.cd,
	y dir=plus,y explicit]
coordinates {
	(0,0)     +- (0.5,0.1) 
	(0.1,0.1) +- (0.05,0.2)
	(0.2,0.2) +- (0,0.05)
	(0.5,0.5) +- (0.1,0.2)
	(1,1)     +- (0.3,0.1)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}
\addplot plot[error bars/.cd,
	y dir=both,y explicit,
	x dir=both,x fixed=0.05,
	error mark=diamond*]
coordinates {
	(0,0)     +- (0.5,0.1) 
	(0.1,0.1) +- (0.05,0.2)
	(0.2,0.2) +- (0,0.05)
	(0.5,0.5) +- (0.1,0.2)
	(1,1)     +- (0.3,0.1)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\pgfplotsset{anchor=center,/tikz/every picture/.append style={baseline}}
\begin{codeexample}[]
\pgfplotstabletypeset{pgfplots.testtable2.dat}

\begin{tikzpicture}
\begin{loglogaxis}
\addplot plot[error bars/.cd,
	x dir=both,x fixed relative=0.5,
	y dir=both,y explicit relative,
	error mark=triangle*]
	table[x=x,y=y,y error=errory] 
	{pgfplots.testtable2.dat};
\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}
%--------------------------------------------------
% coordinates {
% 	(32,32)
% 	(64,64)
% 	(128,128) +- (0,0.3)
% 	(1024,1024) +- (0,0.2)
% 	(32068,32068) +- (0,0.6)
% 	(64000,64000) +- (0,0.6)
% 	(128000,128000) +- (0,0.6)
% };
%-------------------------------------------------- 

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[enlargelimits=false]
\addplot[red,mark=*] 
	plot[error bars/.cd,
	y dir=minus,y fixed relative=1,
	x dir=minus,x fixed relative=1,
	error mark=none,
	error bar style={dotted}]
coordinates
	{(0,0) (0.1,0.1) (0.2,0.2) 	
	 (0.5,0.5) (1,1)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{pgfplotsxykey}{error bars/\x\ dir=\mchoice{none,plus,minus,both} (initially none)}
Draws either no error bars at all, only marks at $x+\pgfplotserror x$, only marks at $x-\pgfplotserror x$ or marks at both, $x+\pgfplotserror x$ and $x-\pgfplotserror x$. The $x$-error $\pgfplotserror x$ is acquired using one of the following options.

The same holds for the |y dir| option.
\end{pgfplotsxykey}

\begin{pgfplotsxykey}{error bars/\x\ fixed=\marg{value} (initially 0)}
Provides a common, absolute error $\pgfplotserror x=\text{\meta{value}}$ for all input coordinates.

For linear $x$~axes, the error mark is drawn at $x \pm \pgfplotserror x$ while for logarithmic $x$~axes, it is drawn at $\log( x \pm \pgfplotserror x)$. Computations are performed in \PGF's floating point arithmetics.
\end{pgfplotsxykey}

\begin{pgfplotsxykey}{error bars/\x\ fixed relative=\marg{percent} (initially 0)}
Provides a common, relative error $\pgfplotserror x = \text{\meta{percent}} \cdot x$ for all input coordinates. The argument \meta{percent} is thus given relatively to input $x$ coordinates such that $\text{\meta{percent}} = 1$ means $100\%$.

Error marks are thus placed at $x \cdot (1 \pm \pgfplotserror x)$ for linear axes and at $\log(x \cdot (1 \pm \pgfplotserror x))$ for logarithmic axes. Computations are performed in floating point for linear axis and using the identity $\log(x \cdot (1 \pm \pgfplotserror x)) = \log(x) + \log( 1 \pm \pgfplotserror x)$ for logarithmic scales.
\end{pgfplotsxykey}

\begin{pgfplotsxykey}{error bars/\x\ explicit}
Configures the error bar algorithm to draw $x$-error bars at any input coordinate for which user-specified errors are available.
 Each error is interpreted as absolute error, see |x fixed| for details.

The different input formats of errors are described in section~\ref{sec:errorbar:input}.
\end{pgfplotsxykey}

\begin{pgfplotsxykey}{error bars/\x\ explicit relative}
Configures the error bar algorithm to draw $x$-error bars at any input coordinate for which user-specified errors are available.
 Each error is interpreted as relative error, that means error marks are placed at $x (1 \pm \text{\meta{value}}(x))$ (works as for |error bars/x fixed relative|).
\end{pgfplotsxykey}


\begin{pgfplotskey}{error bars/error mark=\meta{marker}}
Sets an error marker for any error bar. \marg{marker} is expected to be a valid plot mark, see section~\ref{sec:markers}.
\end{pgfplotskey}

\begin{pgfplotskey}{error bars/error mark options=\marg{key-value-list}}
Sets a key-value list of options for any error mark. This option works similary to the \Tikz\ `|mark options|' key.
\end{pgfplotskey}

\begin{pgfplotskey}{error bars/error bar style=\marg{key-value-list}}
Appends the argument to `|/pgfplots/every error bar|' which is installed at the beginning of every error bar.
\end{pgfplotskey}

\begin{pgfplotscodetwokey}{error bars/draw error bar}
Allows to change the default drawing commands for error bars. The two arguments are
\begin{itemize} 
\item the source point, $(x,y)$ and
\item the target point, $(\tilde x,\tilde y)$.
\end{itemize}
Both are determined by \PGFPlots\ according to the options described above. The default code is
\begin{codeexample}[code only]
/pgfplots/error bars/draw error bar/.code 2 args={%
	\pgfkeysgetvalue{/pgfplots/error bars/error mark}%
		{\pgfplotserrorbarsmark}%
	\pgfkeysgetvalue{/pgfplots/error bars/error mark options}%
		{\pgfplotserrorbarsmarkopts}%
	\draw #1 -- #2 node[pos=1,sloped,allow upside down] {%
		\expandafter\tikz\expandafter[\pgfplotserrorbarsmarkopts]{%
			\expandafter\pgfuseplotmark\expandafter{\pgfplotserrorbarsmark}%
			\pgfusepath{stroke}}%
	};
}
\end{codeexample}
\end{pgfplotscodetwokey}

\subsubsection{Input Formats of Error Coordinates}
\label{sec:errorbar:input}%
Error bars with explicit error estimations for single data points require some sort of input format. This applies to `|error bars/|\meta{[xy]}| explicit|' and `|error bars/|\meta{[xy]}| explicit relative|'.

Error bar coordinates can be read from `|plot coordinates|' or from `|plot table|'. The inline plot coordinates format is
\begin{codeexample}[code only]
\addplot coordinates {
	(1,2) +- (0.4,0.2)
	(2,4) +- (1,0)
	(3,5)
	(4,6) +- (0.3,0.001)
}
\end{codeexample}
where $(1,2) \pm (0.4,0.2)$ is the first coordinate, $(2,4) \pm (1,0)$ the second and so forth. The point $(3,5)$ has no error coordinate.

The `|plot table|' format is
\begin{codeexample}[code only]
\addplot table[x error=COLNAME,y error=COLNAME]
\end{codeexample}
or
\begin{codeexample}[code only]
\addplot table[x error index=COLINDEX,y error index=COLINDEX]
\end{codeexample}
These options are used as the `|x|' and `|x index|' options.

You can supply error coordinates even if they are not used at all; they will be ignored silently in this case.

}%

\subsection{Number Formatting Options}
\label{sec:number:printing}%
\PGFPlots\ typeset tick labels rounded to given precision and in configurable number formats. The command to do so is |\pgfmathprintnumber|; it uses the current set of number formatting options.

These options are described in all detail in the manual for \PGFPlotstable, which comes with \PGFPlots. Please refer to that manual.

\begin{command}{\pgfmathprintnumber\marg{x}}
Generates pretty-printed output for the (real) number \marg{x}. The input number \marg{x} is parsed using |\pgfmathfloatparsenumber| which allows arbitrary precision.

Numbers are typeset in math mode using the current set of number printing options, see below. Optional arguments can also be provided using |\pgfmathprintnumber[|\meta{options}|]|\marg{x}.

Please refer to the manual of \PGFPlotstable\ (shipped with this package) for details about the number options.
\end{command}

\label{sec:identify:minor:log}%
\begin{pgfplotskey}{log identify minor tick positions=\mchoice{true,false} (initially false)}
Set this to |true| if you want to identify log--plot tick labels at positions 
\[ i \cdot 10^j \]
with $i \in \{2,3,4,5,6,7,8,9\},\, j \in \Z$. This may be valueable in conjunction with the `|extra x ticks|' and `|extra y ticks|' options.
\begin{codeexample}[]
\begin{tikzpicture}%
\begin{loglogaxis}
	[title=Standard options,
	width=6cm]
\addplot coordinates {
	(1e-2,10)
	(3e-2,100)
	(6e-2,200)
};
\end{loglogaxis}
\end{tikzpicture}%
\end{codeexample}

\begin{codeexample}[]
\pgfplotsset{every axis/.append style={%
	width=6cm,
	xmin=7e-3,xmax=7e-2,
	extra x ticks={3e-2,6e-2},
	extra x tick style={major tick length=0pt,font=\footnotesize}
}}%

\begin{tikzpicture}%
	\begin{loglogaxis}[
		xtick={1e-2},
		title=with minor tick identification,
		extra x tick style={
			log identify minor tick positions=true}]
	\addplot coordinates {
		(1e-2,10)
		(3e-2,100)
		(6e-2,200)
	};
	\end{loglogaxis}
\end{tikzpicture}%

\begin{tikzpicture}%
	\begin{loglogaxis}[
		xtick={1e-2},
		title=without minor tick identification,
		extra x tick style={
			log identify minor tick positions=false}]
	\addplot coordinates {
		(1e-2,10)
		(3e-2,100)
		(6e-2,200)
	};
	\end{loglogaxis}%
\end{tikzpicture}%
\end{codeexample}
	This key is set by the default styles for extra ticks.
\end{pgfplotskey}

\begin{pgfplotscodekey}{log number format code}
Provides \TeX-code to generate log plot tick labels. Argument `|#1|' is the (natural) logarithm of the tick position.
The default implementation invokes |log base 10 number format code| after it changed the log basis to~$10$. It also checks the other log plot options.
\end{pgfplotscodekey}


\begin{pgfplotscodekey}{log base 10 number format code}
Allows to change the overall appearance of base 10 log plot tick labels. The default is
\begin{codeexample}[code only]
log base 10 number format code/.code={%
	$10^{\pgfmathprintnumber{#1}}$}
\end{codeexample}
where the `|log plot exponent style|' allows to change number formatting options.
\end{pgfplotscodekey}

\begin{pgfplotskey}{log plot exponent style=\marg{key-value-list}}
Allows to configure the number format of log plot exponents. This style is installed just before `|log base 10 number format code|' will be invoked. Please note that this style will be installed within the default code for `|log number format code|'.
\begin{codeexample}[]
\pgfplotsset{
	samples=15,
	width=7cm,
	xlabel=$x$,
	ylabel=$f(x)$,
	extra y ticks={45},
	legend style={at={(0.03,0.97)},
		anchor=north west}}

\begin{tikzpicture}
\begin{semilogyaxis}[
	log plot exponent style/.style={
		/pgf/number format/fixed zerofill,
		/pgf/number format/precision=1},
	domain=-5:10]

	\addplot {exp(x)};
	\addplot {exp(2*x)};

	\legend{$e^x$,$e^{2x}$}
\end{semilogyaxis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\pgfplotsset{
	samples=15,
	width=7cm,
	xlabel=$x$,
	ylabel=$f(x)$,
	extra y ticks={45},
	legend style={at={(0.03,0.97)},
		anchor=north west}}

\begin{tikzpicture}
\begin{semilogyaxis}[
	log plot exponent style/.style={
		/pgf/number format/fixed,
		/pgf/number format/use comma,
		/pgf/number format/precision=2},
	domain=-5:10]

	\addplot {exp(x)};
	\addplot {exp(2*x)};

	\legend{$e^x$,$e^{2x}$}
\end{semilogyaxis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotskey}




\subsection{Specifying the Plotted Range}

\begin{pgfplotsxykeylist}{\x min=\marg{coord},\x max=\marg{coord}}
The options |xmin|, |xmax| and |ymin|, |ymax| allow to define the axis limits, i.e. the lower left and the upper right corner. Everything outside of the axis limits will be clipped away.

Each missing limit will be determined automatically.

If $x$-limits have been specified explicitly and $y$-limits are computed automatically, the automatic computation of $y$-limits will only considers points which fall into the specified $x$-range (and vice--versa). The same holds true if, for example, only |xmin| has been provided explicitly: in that case, |xmax| will be updated only for points for which $x \ge $|xmin| holds. This feature can be disabled using |clip limits=false|. 

Axis limits can be increased automatically using the |enlargelimits| option.
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}
	\addplot {x^2};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[xmin=0]
	\addplot {x^2};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[ymax=10]
	\addplot {x^2};
	\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotsxykeylist}

\begin{pgfplotsxykey}{\x mode=\mchoice{normal,linear,log} (initially normal)}
Allows to choose between linear (=normal) or logarithmic axis scaling or logplots for each $x,y$-combination.
\end{pgfplotsxykey}

\begin{pgfplotskey}{clip limits=\mchoice{true,false} (initially true)}
	Configures what to do if some, but not all axis limits have been specified explicitly. In case |clip limits=true|, the automatic limit computation will \emph{only} consider points which do not contradict the explicitly set limits. 

	This option has nothing to do with path clipping, it only affects how the axis limits are computed.
\end{pgfplotskey}

\begin{pgfplotsxykey}{enlarge \x\ limits=\mchoice{true,false,auto,\marg{val}} (initially auto)}
Enlarges the axis size for one axis somewhat if enabled.

You can set |xmin|, |xmax| and |ymin|, |ymax| to the minimum/maximum values of your data and |enlarge x limits| will enlarge the canvas such that the axis doesn't touch the plots.

\begin{itemize}
	\item The value |true| enlarges all axes.
	\item The value |false| uses tight axis limits as specified by the user (or read from input coordinates).
	\item The value |auto| will enlarge limits only for axis for which axis limits have been determined automatically.
	\item All other values like `|enlarge x limits=0.1|' will enlarge all axis limits relatively (in this example, 10\% of the axis limits will be added at all sides).
\end{itemize}
A small value of |enlarge x limits| may avoid problems with large markers near the boundary.
\end{pgfplotsxykey}

\begin{stylekey}{/pgfplots/enlargelimits=\mchoice{true,false,auto,\marg{val}} (default true)}
	A style which sets |enlarge x limits| and |enlarge y limits| to the specified value.
\end{stylekey}

\begin{environment}{{pgfplotsinterruptdatabb}}
\index{Bounding Box Control!Disable \protect\emph{data} bounding box modifications}
	Everything in \marg{environment contents} will not contribute to the data bounding box.
\end{environment}

\subsection{Tick and Grid Options}

\begin{pgfplotsxykey}{\x tick=\mchoice{\textbackslash empty,data,\normalfont\marg{coordinate list}} (initially \marg{})}
The options |xtick| and |ytick| assigns a list of \emph{Positions} where ticks shall be placed. The argument is either the command |\empty|, |data| or a list of coordinates. The choice |\empty| will result in no tick at all. The special value |data| will produce tick marks at every coordinate of the first plot. Otherwise, tick marks will be placed at every coordinate in  \marg{coordinate list}. If this list is empty, \PGFPlots\ will compute a default list. 

\marg{coordinate list} will be used inside of a |\foreach \x in |\marg{coordinate list} statement. The format is as follows:
\begin{itemize}
	\item |{0,1,2,5,8,1e1,1.5e1}| (a series of coordinates),
	\item |{0,...,5}| (the same as |{0,1,2,3,4,5}|),
	\item |{0,2,...,10}| (the same as |{0,2,4,6,8,10}|),
	\item |{9,...,3.5}| (the same as |{9, 8, 7, 6, 5, 4}|),
	\item See \cite[Section~34]{tikz} for a more detailed definition of the options.
	\item Please be careful with whitespaces inside of \marg{coordinate list} (at least around the dots).
\end{itemize}
For logplots, \PGFPlots\ will apply $\log(\cdot)$ to each element in `\marg{coordinate list}'. 
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{loglogaxis}[xtick={12,9897,1468864}]
	% see above for this macro:
	\plotcoords
	\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	xtick=\empty,
	ytick={-2,0.3,3,3.7,4.5}]
\addplot+[smooth] coordinates {
	(-2,3) (-1.5,2) (-0.3,-0.2) 
	(1,1.2) (2,2) (3,5)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\paragraph{Attention:} You can't use the `|...|' syntax if the elements are too large for \TeX! For example, `|xtick=1.5e5,2e7,3e8|' will work (because the elements are interpreted as strings, not as numbers), but `|xtick=1.5,3e5,...,1e10|' will fail because it involves real number arithmetics beyond \TeX's capacities.
\vspace*{0.3cm}

\noindent
The default choice for tick \emph{positions} in normal plots is to place a tick at each coordinate~$i\cdot h$. The step size~$h$ depends on the axis scaling and the axis limits. It is chosen from a list a ``feasable'' step sizes such that neither too much nor too few ticks will be generated. The default for logplots is to place ticks at positions $10^i$ in the axis' range. Which positions depends on the axis scaling and the dimensions of the picture. If log plots contain just one (or two) positions $10^i$ in their limits, ticks will be placed at positions $10^{i\cdot h}$ with ``feasable'' step sizes $h$ as in the case of linear axis.

The default tick positions can be reconfigured with
\begin{itemize}
\label{maxspacebetweenticks}
	\item `|max space between ticks=|\marg{number}' where the integer argument denotes the maximum space between adjacent ticks in full points. The suffix ``|pt|'' has to be omitted and fractional numbers are not supported. The default is~\axisdefaulttickwidth.
	\item `|try min ticks=|\marg{number}' configures a loose lower bound on the number of ticks. It should be considered as a suggestion, not a tight limit. The default is~\axisdefaulttryminticks. This number will increase the number of ticks if `|max space between ticks|' produces too few of them.
	\item `|try min ticks log=|\marg{number}' The same for logarithmic axis.
\end{itemize}
The total number of ticks may still vary because not all fractional numbers in the axis' range are valid tick positions.


\noindent
The tick \emph{appearance} can be (re-)configured with
\begin{codeexample}[code only]
\pgfplotsset{every tick/.style={very thin,gray}}
\pgfplotsset{every minor tick/.style={}}
\end{codeexample}
or
\begin{codeexample}[code only]
\pgfplotsset{every tick/.append style={very thin,gray}}
\pgfplotsset{every minor tick/.append style={black}}
\end{codeexample}
Please prefer the `|.append style|' versions whenever possible to ensure compatibility with future versions.

These style commands can be used at any time. The tick line width can be configured with `|major tick length|' and `|minor tick length|'.

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[xtick=data,xmajorgrids]
	\addplot coordinates {
		(1,2)
		(2,5)
		(4,6.5)
		(6,8)
		(10,9)
	};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{loglogaxis}[
	title=A log plot with small axis range]

	\addplot coordinates {
		(10,1e-4)
		(17,8.3176e-05)
		(25,7.0794e-05)
		(50,5e-5)
	};
\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotsxykey}

\begin{pgfplotskey}{minor tick num=\marg{number}}
	Sets both, |minor x tick num| and |minor y tick num| to \marg{number}.

	Minor ticks will be disabled if the major ticks don't have the same distance.
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[minor tick num=1]
	\addplot {x^3};
	\addplot {-20*x};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[minor tick num=3]
	\addplot {x^3};
	\addplot {-20*x};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\end{pgfplotskey}

\begin{pgfplotsxykey}{minor \x\ tick num=\marg{number} (initially 0)}
	Sets the number of minor tick lines used for linear $x$~or~$y$ axis separately.

	Minor ticks will be disabled if the major ticks don't have the same distance.
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[minor x tick num=1,
	             minor y tick num=3]
	\addplot {x^3};
	\addplot {-20*x};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\end{pgfplotsxykey}

\begin{pgfplotsxykey}{extra \x\ ticks=\marg{coordinate list}}
Adds \emph{additional} tick positions and tick labels to the $x$~or~$y$ axis. `Additional' tick positions do not affect the normal tick placement algorithms, they are drawn after the normal ticks. This has two benefits: first, you can add single, important tick positions without disabling the default tick label generation and second, you can draw tick labels `on top' of others, possibly using different style flags.


\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	xmin=0,xmax=3,ymin=0,ymax=15,
	extra y ticks={2.71828},
	extra y tick labels={$e$},
	extra x ticks={2.2},
	extra x tick style={grid=major,
		tick label style={
			rotate=90,anchor=east}},
	extra x tick labels={Cut},
]
	\addplot {exp(x)};
	\addlegendentry{$e^x$}
\end{axis}
\end{tikzpicture}
\end{codeexample}
\begin{codeexample}[]
\pgfplotsset{every axis/.append style={width=5.3cm}}
\begin{tikzpicture}
\begin{loglogaxis}[
	xtickten={1,2},
	ytickten={-5,-6}]
\addplot coordinates 
	{(10,1e-5) (20,5e-6) (40,2.5e-6)};
\end{loglogaxis}
\end{tikzpicture}

\begin{tikzpicture}
\begin{loglogaxis}[
	xtickten={1,2},
	ytickten={-5,-6},
	extra x ticks={20,40},
	extra y ticks={5e-6,2.5e-6}]
\addplot coordinates 
	{(10,1e-5) (20,5e-6) (40,2.5e-6)};
\end{loglogaxis}
\end{tikzpicture}

\begin{tikzpicture}
\begin{loglogaxis}[
	log identify minor tick positions=false,
	xtickten={1,2},
	ytickten={-5,-6},
	extra x ticks={20,40},
	extra y ticks={5e-6,2.5e-6}]
\addplot coordinates 
	{(10,1e-5) (20,5e-6) (40,2.5e-6)};
\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}

Remarks:
\begin{itemize} 
\item Use |extra x ticks| to highlight special tick positions. The use of |extra x ticks| does not affect minor tick/grid line generation, so you can place extra ticks at positions $j\cdot 10^i$ in log--plots. 
\item Extra ticks are always typeset as major ticks.

They are affected by |major tick length| or options like |grid=major|.
\item Use the style |every extra x tick| (|every extra y tick|) to configure the appearance.
\item You can also use `|extra x tick style=|\marg{...}' which has the same effect.
\end{itemize}
\end{pgfplotsxykey}

\begin{pgfplotskeylist}{
	max space between ticks=\marg{number} (initially 35),
	try min ticks=\marg{number} (initially 4),
	try min ticks log=\marg{number} (initially 3)}
see Options |xtick| and |ytick| for a description.
\end{pgfplotskeylist}

\begin{pgfplotskeylist}{tickwidth=\marg{dimension} (initially 0.15cm),major tick length=\marg{dimension} (initially 0.15cm)}
	Sets the width of major tick lines.
\end{pgfplotskeylist}

\begin{pgfplotskeylist}{subtickwidth=\marg{dimension} (initially 0.1cm),minor tick length=\marg{dimension} (initially 0.1cm)}
	Sets the width of minor tick lines.
\end{pgfplotskeylist}

\begin{pgfplotsxykey}{\x tickten=\marg{exponent base 10 list}}
These options allow to place ticks at selected positions $10^k, k \in \text{\marg{exponent base 10 list}}$. They are only used for logplots. The syntax for \marg{exponent base 10 list} is the same as above for |xtick=|\marg{list} or |ytick=|\marg{list}.

Using `|xtickten={1,2,3,4}|' is equivalent to `|xtick={1e1,1e2,1e3,1e4}|', but it requires fewer computational time and it allows to use the short syntax `|xtickten={1,...,4}|'.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{semilogyaxis}[
	samples=8,
	ytickten={-6,-4,...,4},
	domain=0:10]

\addplot {2^(-2*x + 6)};
\addlegendentry{$2^{-2x + 6}$}

% or invoke gnuplot to generate coordinates:
\addplot plot[id=pow2] 
	gnuplot {2**(-1.5*x -3)};
\addlegendentry{$2^{-1.5x -3}$}
\end{semilogyaxis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotsxykey}

\begin{pgfplotsxykey}{\x ticklabels=\marg{label list}}
Assigns a \emph{list} of tick \emph{labels} to each tick position. Tick \emph{positions} are assigned using the |xtick| and |ytick|-options.

This is one of two options to assign tick labels directly. The other option is |xticklabel=|\marg{command} (or |yticklabel=|\marg{command}).
Option `|xticklabel|' offers higher flexibility while `|xticklabels|' is easier to use.

The argument \marg{label list} has the same format as for ticks, that means
\begin{codeexample}[code only]
xticklabels={$\frac{1}{2}$,$e$}
\end{codeexample}
Denotes the two--element--list $\{\frac 12, e\}$. The list indices match the indices of the tick positions. If you need commas inside of list elements, use 
\begin{codeexample}[code only]
xticklabels={{0,5}, $e$}.
\end{codeexample}


\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	xtick={-1.5,-1,...,1.5},
	xticklabels={%
		$-1\frac 12$,
		$-1$,
		$-\frac 12$,
		$0$,
		$\frac 12$,
		$1$}
]
\addplot[smooth,blue,mark=*] coordinates {
	(-1,    1)
	(-0.75, 0.5625)
	(-0.5,  0.25)
	(-0.25, 0.0625)
	(0,     0)
	(0.25,  0.0625)
	(0.5,   0.25)
	(0.75,  0.5625)
	(1,     1)
};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotsxykey}


\begin{pgfplotsxykey}{\x ticklabel=\marg{command}}
Use |xticklabel| or |yticklabel| to change the \TeX-command which creates the tick \emph{labels} assigned to each tick position (see options |xtick| and |ytick|). 

This is one of two options to assign tick labels directly. The other option is `|xticklabels=|\marg{label list}' (or |yticklabels=|\marg{label list}). Option `|xticklabel|' offers higher flexibility while `|xticklabels|' is easier to use.

The argument \marg{command} can be any \TeX-text. The following commands are valid inside of \marg{command}:
\begin{description}
	\item[\textbackslash tick] The current element of option |xtick| (or |ytick|).
	\item[\textbackslash ticknum] The current tick number, starting with~0 (a counter).
	\item[\textbackslash nexttick] This command is only valid in case if the |x tick label as interval| option is set (or the corresponding variable for~$y$). It will contain the position of the next tick position, that means the right boundary of the tick interval.
\end{description}
The default argument is 
\begin{itemize}
	\item |\axisdefaultticklabel| for normal plots and 
	\item |\axisdefaultticklabellog| for logplots, see below.
\end{itemize}
(the same holds for |yticklabel|). The defaults are set to
\begin{codeexample}[code only]
\def\axisdefaultticklabel{%
	$\pgfmathprintnumber{\tick}$%
}

\def\axisdefaultticklabellog{%
	\pgfkeysgetvalue{/pgfplots/log number format code/.@cmd}\pgfplots@log@label@style
	\expandafter\pgfplots@log@label@style\tick\pgfeov
}
\end{codeexample}
that means you can configure the appearance of linear axis with the number formatting options described in section~\ref{sec:number:printing} and logarithmic axis with |log number format code|, see below.

You can change the appearance of tick labels with
\begin{codeexample}[code only]
\pgfplotsset{every tick label/.append style={
	font=\tiny,
	/pgf/number format/sci}}
\end{codeexample}
and/or
\begin{codeexample}[code only]
\pgfplotsset{every x tick label/.append style={
	above,
	/pgf/number format/fixed zerofill}}
\end{codeexample}
and
\begin{codeexample}[code only]
\pgfplotsset{every y tick label/.append style={font=\bfseries}}
\end{codeexample}
Another possibility is to use 
\begin{codeexample}[code only]
\begin{axis}[y tick label style={above,
	/pgf/number format/fixed zerofill}
]
...
\end{axis}
\end{codeexample}
which has the same effect as the `|every x tick label|' statement above. This is possible for all \PGFPlots-|every|-styles, see section~\ref{sec:styles}.
\end{pgfplotsxykey}

\begin{pgfplotsxykey}{\x\ tick label as interval=\mchoice{true,false} (initially false)}
	Allows to treat tick labels as intervals; that means the tick positions denote the interval boundaries. If there are $n$ positions, $(n-1)$ tick labels will be generated, one for each interval.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[x tick label as interval]
	\addplot {3*x};
\end{axis}
\end{tikzpicture}
\end{codeexample}
	This mode enables the use of |\nexttick| inside of |xticklabel| (or |yticklabel|). A common application might be a bar plot.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	ybar interval=0.9,
	x tick label as interval,
	xmin=2003,xmax=2030,
	ymin=0,ymax=140,
	xticklabel={
	   $\pgfmathprintnumber{\tick}$
	-- $\pgfmathprintnumber{\nexttick}$},
	xtick=data,
	x tick label style={
		rotate=90,anchor=east,
		/pgf/number format/1000 sep=}
]

	\addplot[draw=blue,fill=blue!40!white]
		coordinates
		{(2003,40) (2005,100) (2006,15) 
		 (2010,90) (2020,120) (2030,3)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotsxykey}

\label{sec:scaled:ticks}%
\begin{pgfplotsxykeylist}{
	scaled \x\ ticks=\mchoice{true,false,base 10:{\normalfont\meta{e}},real:{\normalfont\meta{number}},manual:{\normalfont\marg{text}\marg{tick scale code}}} (initially true),
	scaled ticks=\mchoice{true,false,base 10:{\normalfont\meta{e}},real:{\normalfont\meta{number}},manual:{\normalfont\marg{text}\marg{tick scale code}\hfill}} (initially true)}
Allows to factor out common exponents in tick labels for \emph{linear axes}. For example, if you have tick labels $20000,40000$ and $60000$, you may want to save some space and write $2,4,6$ with a separate factor `$\cdot 10^4$'. Use `|scaled ticks=true|' to enable this feature. In case |true|, tick scaling will be triggered if the data range is either too large or too small (see below).
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[scaled ticks=true]
	\addplot coordinates {
		(20000,0.0005)
		(40000,0.0010)
		(60000,0.0020)
	};
\end{axis}
\end{tikzpicture}%
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[scaled ticks=false]
	\addplot coordinates {
		(20000,0.0005)
		(40000,0.0010)
		(60000,0.0020)
	};
\end{axis}
\end{tikzpicture}
\end{codeexample}

	The |scaled ticks| key is a style which simply sets scaled ticks for both, $x$ and $y$.

	The value |base 10:|\meta{e} allows to adjust the algorithm manually. For example, |base 10:3| will divide every tick label by $10^3$:
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[scaled ticks=base 10:3,
		/pgf/number format/sci subscript]
	\addplot coordinates
		{(-0.00001,2e12) (-0.00005,4e12) };
	\end{axis}
\end{tikzpicture}
\end{codeexample}
\noindent Here, the \texttt{sci subscript} option simply saves space.
In general, |base 10:|$e$ will divide every tick by $10^e$. The effect
is not limited by the ``too large or too small'' decisions mentioned
above.

	The value |real:|\meta{number} allows to divide every tick by a fixed \meta{number}.
	For example, the following plot is physically ranged from $0$ to $2\pi$, but the tick scaling algorithm is configured to divide every tick label by $\pi$.
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[
		xtick={0,1.5708,...,10},
		domain=0:2*pi,
		scaled x ticks={real:3.1415},
		xtick scale label code/.code={$\cdot \pi$}]
	\addplot {sin(deg(x))};
	\end{axis}
\end{tikzpicture}
\end{codeexample}
	\noindent Setting |scaled ticks=real:|\meta{number} also changes the |tick scale label code| to
\begin{codeexample}[code only]
\pgfkeys{/pgfplots/xtick scale label code/.code={$\cdot \pgfmathprintnumber{#1}$}}.
\end{codeexample}

A further -- not very useful -- example is shown below. Every $x$ tick label has been divided by $2$, every $y$ tick label by $3$.
\nobreak
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[
		scaled x ticks=real:2,
		scaled y ticks=real:3]
	\addplot {x^3};
	\node[pin=135:{$(3,9)$}] at (axis cs:3,9) {};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

	Unfortunately, \meta{number} can't be evaluated with \PGF's math parser (yet) to maintain the full data range accepted by \PGFPlots.

	The last option, |scaled ticks=manual:|\marg{text}\marg{tick scale code} allows even more customization. It allows \emph{full control} over the displayed scaling label \emph{and} the scaling code: \marg{text} is used as-is inside of the tick scaling label while \marg{tick scale code} is supposed to be a one-argument-macro which scales each tick. Example:
\begin{codeexample}[]
\begin{tikzpicture} 
\begin{axis}[
	% warning: the '%' signs are necessary (?)
	scaled y ticks=manual:{$+65\,535$}{%
		\pgfmathfloatcreate{1}{6.5535}{4}%
		\pgfmathfloatsubtract{#1}{\pgfmathresult}%
	},
	yticklabel style={
		/pgf/number format/fixed,
		/pgf/number format/precision=1},
] 
\addplot plot coordinates { 
	(0, 65535) 
	(13, 65535) 
	(14, 65536) 
	(15, 65537) 
	(30, 65537) 
}; 
\end{axis} 
\end{tikzpicture} 	
\end{codeexample}
\noindent The example uses |$+65\,535$| as tick scale label content. Furthermore, it defines the customized tick label formula $y - (+6.5535\cdot 10^4) = y - 65535$ to generate $y$ tick labels.

The \marg{text} can be arbitrary. It is completely in user control. The second argument, \marg{tick scale code} is supposed to be a one-argument-macro in which |#1| is the current tick position in floating point representation. The macro is expected to assign |\pgfmathresult| (also in floating point representation). The \PGF\ manual~\cite{tikz} contains detailed documentation about its math engine (including floating point\footnote{However, that particular stuff is newer than \PGF\ $2.00$. At the time of this writing, it is only available as (public) CVS version.}).

This feature may also be used do transform coordinates in case they can't be processed with \PGFPlots: transform them and supply a proper tick scaling method such that tick labels represent the original range.

If \marg{text} is empty, the tick scale label won't be drawn (and no space will be occupied).

Tick scaling does \emph{not} work for logarithmic axes.
\end{pgfplotsxykeylist}

\begin{pgfplotsxycodekeylist}{\x tick scale label code}
Allows to change the default code for scaled tick labels. The default is
\begin{codeexample}[code only]
xtick scale label code/.code={$\cdot 10^{#1}$}.
\end{codeexample}

If the code is empty, no tick scale label will be drawn (and no space is consumed).
\end{pgfplotsxycodekeylist}

\begin{pgfplotscodekey}{tick scale label code}
	A style which sets both, |xtick scale label code| and the corresponding variant for $y$.
\end{pgfplotscodekey}

\begin{pgfplotskey}{scale ticks below=\marg{exponent}}
Allows fine tuning of the `|scaled ticks|' algorithm: if the axis limits are of magnitude $10^e$ and $e<$\marg{exponent}, the common prefactor~$10^e$ will be factored out. The default is 
\makeatletter
\pgfplots@scale@ticks@below@exponent
\makeatother.
\end{pgfplotskey}

\begin{pgfplotskey}{scale ticks above=\marg{exponent}}
Allows fine tuning of the '|scaled ticks|' algorithm: if the axis limits are of magnitude $10^e$ and $e>$\marg{exponent}, the common prefactor~$10^e$ will be factored out. The default is
\makeatletter
\pgfplots@scale@ticks@above@exponent
\makeatother.
\end{pgfplotskey}


\begin{pgfplotsxykey}{\x tick pos=\mchoice{left,right,both} (initially both)}
Allows to choose where to place the small tick lines. In the default configuration, this does also affect tick \emph{labels}, see below.

For $x$, the additional choices |bottom| and |top| can be used which are equivalent to |left| and |right|, respectively. Both are accepted for $y$.
\end{pgfplotsxykey}

\begin{pgfplotskey}{tickpos=\mchoice{left,right,both}}
	A style which sets both, |xtick pos| and |ytick pos|.
\end{pgfplotskey}

\begin{pgfplotsxykey}{\x ticklabel pos=\mchoice{left,right,default} (initially default)}
Allows to choose where to place tick \emph{labels}. The choices |left| and |right| place tick labels either at the left or at the right side of the complete axis. The choice |default| uses the same setting as |xtick pos| (or |ytick pos|). This option is only useful for boxed axis -- keep it to |default| for non-boxed figures.

For $x$, the additional choices |bottom| and |top| can be used which are equivalent to |left| and |right|, respectively. Both are accepted for $x$.
\end{pgfplotsxykey}

\begin{pgfplotskey}{ticklabelpos=\mchoice{left,right,default}}
	A style which sets both, |xticklabel pos| and |yticklabel pos|.
\end{pgfplotskey}

\begin{pgfplotsxykey}{\x tick align=\mchoice{inside,center,outside} (initially inside)}
Allows to change the location of the ticks relative to the axis lines.
Default is ``|inside|''.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	xtick=data,ytick=data,
	xtick align=center,
	axis x line=center,
	axis y line=center,
	enlargelimits=0.05]
\addplot coordinates 
	{(-3,0) (-2,0.1) (-1,-0.6) 
	 (0,1)
	 (1,-0.6) (2,0.1) (3,0)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	xtick=data,ytick=data,
	axis x line=bottom,
	ytick align=outside,
	axis y line=left,
	enlargelimits=0.05]
\addplot coordinates 
	{(-3,0) (-2,0.1) (-1,-0.6)
	 (0,1) 
	 (1,-0.6) (2,0.1) (3,0)};
\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	xtick=data,
	axis x line=center,
	xticklabels={,,},
	ytick={-0.6,0,0.1,1},
	yticklabels={
		$-\frac{6}{10}$,,
		$\frac{1}{10}$,$1$},
	ymajorgrids,
	axis y line=left,
	enlargelimits=0.05]
\addplot coordinates 
	{(-3,0) (-2,0.1) (-1,-0.6)
	 (0,1) 
	 (1,-0.6) (2,0.1) (3,0)};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotsxykey}

\begin{stylekey}{/pgfplots/tick align=\mchoice{inside,center,outside} (initially inside)}
	A style which sets both, |xtick align| and |ytick align| to the specified value.
\end{stylekey}


\begin{pgfplotsxykeylist}{\x minorticks=\mchoice{true,false} (initially true),\x majorticks=\mchoice{true,false} (initially true),ticks=\mchoice{minor,major,both,none} (initially both)}
Enables/disables the small tick lines either for single axis or for all of them. Major ticks are those placed at the tick positions and minor ticks are between tick positions. Please note that minor ticks are automatically disabled if |xtick| is not a uniform range\footnote{A uniform list means the difference between all elements is the same for linear axis or, for logarithmic axes, $\log(10)$.}.

The key |minor tick length=|\marg{dimen} configures the tick length for minor ticks while the |major| variant applies to major ticks.
You can configure the appearance using the following styles:
\begin{codeexample}[code only]
\pgfplotsset{every tick/.append style={color=black}} % applies to major and minor ticks,
\pgfplotsset{every minor tick/.append style={thin}}  % applies only to minor ticks,
\pgfplotsset{every major tick/.append style={thick}} % applies only to major ticks.
\end{codeexample}
There is also the style ``|every tick|'' which applies to both, major and minor ticks.
\end{pgfplotsxykeylist}

	
\begin{pgfplotsxykeylist}{\x minorgrids=\mchoice{true,false} (initially true),\x majorgrids=\mchoice{true,false} (initially true),grids=\mchoice{minor,major,both,none} (initially both)}
Enables/disables different grid lines. Major grid lines are placed at the normal tick positions (see |xmajorticks|) while minor grid lines are placed at minor ticks (see |xminorticks|). 

This example employs the coordinates defined on page~\pageref{page:plotcoords:src}.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{loglogaxis}[
	xlabel={\textsc{Dof}},
	ylabel={$L_2$ Error},
	grid=major
]
% see above for this macro:
\plotcoords
\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
\begin{loglogaxis}[
	grid=both,
	tick align=outside,
	tickpos=left]
\addplot coordinates 
	{(100,1e-4) (500,1e-5) (1000,3e-6)};
\addplot coordinates 
	{(100,1e-5) (500,4e-6) (1000,2e-6)};
\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}

Grid lines will be drawn before tick lines are processed, so ticks will be drawn on top of grid lines. You can configure the appearance of grid lines with the styles
\begin{codeexample}[code only]
\pgfplotsset{every axis grid/.style={style=help lines}}
\pgfplotsset{every minor grid/.append style={color=blue}}
\pgfplotsset{every major grid/.append style={thick}}
\end{codeexample}
\end{pgfplotsxykeylist}

\begin{pgfplotsxykeylist}{\x tickmin=\marg{coord}, \x tickmax=\marg{coord}}
	These keys can be used to modify minimum/maximum values before ticks are drawn. Because this applies to axis discontinuities, it is described on page~\pageref{key:xytickminmax} under section~\ref{key:xytickminmax}, ``Axis Discontinuities"'.
\end{pgfplotsxykeylist}





\subsection{Style Options}
\label{sec:styles}
\subsubsection{All Supported Styles}
\PGFPlots\ provides many styles to customize its appearance and behavior. They can be defined and changed in any place where keys are allowed. Furthermore, own styles are defined easily.

\begin{handler}{{.style}=\marg{key-value-list}}
	Defines or redefines a style \meta{key}. A style is a normal key which will set all options in \marg{key-value-list} when it is set.

	Use	|\pgfplotsset{|\meta{key}|/.style={|\meta{key-value-list}|}}| to (re-) define a style \meta{key} in the namespace |/pgfplots|.
\end{handler}

\begin{handler}{{.append style}=\marg{key-value-list}}
	Appends \marg{key-value-list} to an already existing style \meta{key}. This is the preferred method to change the predefined styles: if you only append, you maintain compatibility with future versions.

	Use	|\pgfplotsset{|\meta{key}|/.append style={|\meta{key-value-list}|}}| to append \marg{key-value-list} to the style \meta{key}. This will assume the prefix |/pgfplots|.
\end{handler}

\subsubsection*{Styles installed for linear/logarithmic axis}

\begin{stylekey}{/pgfplots/every axis (initially empty)}
 Installed at the beginning of every axis. \Tikz\ options inside of it will be used for anything inside of the axis rectangle and any axis descriptions.
\end{stylekey}

\begin{stylekey}{/pgfplots/every semilogx axis (initially empty)}
 Installed at the beginning of every plot with linear $x$~axis and logarithmic $y$~axis, but after `|every axis|'.
\end{stylekey}

\begin{stylekey}{/pgfplots/every semilogy axis (initially empty)}
 Likewise, but with interchanged roles for $x$~and~$y$.
\end{stylekey}

\begin{stylekey}{/pgfplots/every loglog axis (initially empty)}
 Installed at the beginning of every double--logarithmic plot.
\end{stylekey}

\begin{stylekey}{/pgfplots/every linear axis (initially empty)}
 Installed at the beginning of every plot with normal axis scaling.
\end{stylekey}

\subsubsection*{Styles installed for single plots}

\begin{stylekey}{/pgfplots/every axis plot (initially empty)}
	Installed for each plot. This style may contain \meta{behavior options} like samples, gnuplot parameters, error bars and it may contain \meta{style options} which affect the final drawing commands.
\end{stylekey}

\begin{stylekey}{/pgfplots/every axis plot post (initially empty)}
 This style is similar to |every axis plot| in that is applies to any drawing command in |\addplot|. However, it is set \emph{after} any user defined styles or |cycle list| options.
\begin{codeexample}[]
\begin{tikzpicture}
\pgfplotsset{
	every axis plot post/.append style=
		{mark=none}}

\begin{axis}[
	legend style={
		at={(0.03,0.97)},anchor=north west},
	domain=0:1]
	\addplot {x^2};
	\addplot {exp(x)};
	\legend{$x^2$,$e^x$}
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{stylekey}

\begin{stylekey}{/pgfplots/every axis plot no \# (initially empty)}
 Used for every \#th plot where $\#=0,1,2,3,4,\dotsc$. This option may also contain \meta{behavior options}.
\end{stylekey}

\begin{stylekey}{/pgfplots/every forget plot (initially empty)}
 Used for every plot which has |forget plot| activated. This option may also contain \meta{behavior options}.
\end{stylekey}

\subsubsection*{Styles for axis descriptions}

\begin{stylekey}{/pgfplots/every axis label (initially empty)}
 Used for $x$~and~$y$ axis label. You can use `|at=|\parg{x,y} to set its position where $(0,0)$ refers to the lower left corner and $(1,1)$ to the upper right one.
\end{stylekey}

\pgfplotsshortstylekey label style=every axis label\pgfeov

\begin{xystylekey}{/pgfplots/every axis \x\ label}
 Used only~$x$ or only for~$y$ labels, installed after `|every axis label|'.

 The initial settings are
\begin{codeexample}[code only]
\pgfplotsset{
	every axis x label/.style={at={(0.5,0)},below,yshift=-15pt},
	every axis y label/.style={at={(0,0.5)},xshift=-35pt,rotate=90}}
\end{codeexample}

 The predefined node |current axis| can be used to refer to anchors of the unfinished picture. For example
 `|at={(current axis.origin)}|' will position a label at the \emph{data} coordinate $(0,0)$. More useful is probably
 `|at={(current axis.right of origin)}|', see
 section~\ref{pgfplots:sec:align} for more details. This remark holds
 for any axis description, but it is mostly useful for axis labels.

\paragraph{Attention:} These styles will be overwritten by |axis x line| and/or |axis y line|. Please remember to place your modifications after the axis line variations.
\end{xystylekey}

\pgfplotsshortxystylekeys \x\ label style,\x label style=every axis \x\ label\pgfeov

\begin{stylekey}{/pgfplots/every axis title}
 Used for any axis title. The |at=|\parg{x,y} command works as for `|every axis label|'.

The initial setting is
\begin{codeexample}[code only]
\pgfplotsset{every axis title/.style={at={(0.5,1)},above,yshift=6pt}}
\end{codeexample}
\end{stylekey}

\pgfplotsshortstylekey title style=every axis title\pgfeov

\begin{stylekey}{/pgfplots/every axis legend}
 Installed for each legend. As for |every axis label|, the legend's position can be placed using coordinates between $0$~and~$1$, see above.

 The initial setting is
\begin{codeexample}[code only]
\pgfplotsset{every axis legend/.style={
		cells={anchor=center},
		inner xsep=3pt,inner ysep=2pt,nodes={inner sep=2pt,text depth=0.15em},
		anchor=north east,
		shape=rectangle,
		fill=white,draw=black,
		at={(0.98,0.98)}}}
\end{codeexample}
\end{stylekey}

\pgfplotsshortstylekey legend style=every axis legend\pgfeov

\subsubsection*{Styles for axis lines}
\begin{xystylekey}{/pgfplots/every outer \x\ axis line (initially empty)}
	Installed for every axis line which lies on the outer box.

	If you want arrow heads, you may also need to check the |separate axis lines| boolean key.
\end{xystylekey}

\begin{xystylekey}{/pgfplots/every inner \x\ axis line (initially empty)}
	Installed for every axis line which is drawn using the |center| or |middle| options.
\end{xystylekey}

\begin{pgfplotsxykeylist}{%
	axis line style=\marg{key-value-list},
	inner axis line style=\marg{key-value-list},
	outer axis line style=\marg{key-value-list},
	\x\ axis line style=\marg{key-value-list}}
	These options modify selects parts of the axis line styles. They set |every inner x axis line| and |every outer x axis line| and the respective $y$ variants.
\end{pgfplotsxykeylist}

\noindent
Please refer to section~\ref{pgfplots:page:axislines} on page~\pageref{pgfplots:page:axislines} for details about styles for axis lines.



\subsubsection*{Styles for ticks}

\begin{stylekey}{/pgfplots/every tick (initially very thin,gray)}
 Installed for each of the small tick \emph{lines}.
\end{stylekey}

\pgfplotsshortstylekey tick style=every tick\pgfeov

\begin{stylekey}{/pgfplots/every minor tick  (initially empty)}
 Used for each minor tick line, installed after `|every tick|'.
\end{stylekey}

\pgfplotsshortstylekey minor tick style=every minor tick\pgfeov

\begin{stylekey}{/pgfplots/every major tick (initially empty)}
 Used for each major tick line, installed after `|every tick|'.
\end{stylekey}

\pgfplotsshortstylekey major tick style=every major tick\pgfeov

\begin{stylekey}{/pgfplots/every tick label (initially empty)}
 Used for each $x$~and~$y$ tick labels.
\end{stylekey}

\begin{xystylekey}{/pgfplots/every \x\ tick label (initially empty)}
 Used for each $x$ (or $y$, respectively) tick label, installed after `|every tick label|'.
\end{xystylekey}

\pgfplotsshortxystylekeys \x\ tick label style,\x ticklabel style=every \x\ tick label\pgfeov

\begin{xystylekey}{/pgfplots/every \x\ tick scale label}
 Configures placement and display of the nodes containing the order of magnitude of tick labels, see section~\ref{sec:scaled:ticks} for more information about |scaled ticks|.

The initial settings are
\begin{codeexample}[code only]
\pgfplotsset{
	every x tick scale label/.style={at={(1,0)},yshift=-2em,left,inner sep=0pt},
	every y tick scale label/.style={at={(0,1)},above right,inner sep=0pt,yshift=0.3em}}
\end{codeexample}
\end{xystylekey}

\pgfplotsshortxystylekey \x\ tick scale label style=every \x\ tick scale label\pgfeov

\begin{xystylekey}{/pgfplots/every \x\ tick (initially empty)}
	Installed for tick \emph{lines} on either $x$ or $y$ axis.
\end{xystylekey}

\pgfplotsshortxystylekey \x\ tick style=every \x\ tick\pgfeov

\begin{xystylekey}{/pgfplots/every minor \x\ tick (initially empty)}
	Installed for minor tick lines on either $x$ or $y$ axis.
\end{xystylekey}

\pgfplotsshortxystylekey minor \x\ tick style=every minor \x\ tick\pgfeov

\begin{xystylekey}{/pgfplots/every major \x\ tick (initially empty)}
	Installed for major tick lines on either $x$ or $y$ axis.
\end{xystylekey}
\pgfplotsshortxystylekey major \x\ tick style=every major \x\ tick\pgfeov

\begin{xystylekey}{/pgfplots/every extra \x\ tick}
 Allows to configure the appearance of `|extra x ticks|'. This style is installed before touching the first extra $x$~tick. It is possible to set any option which affects tick or grid line generation.

The initial setting is
\begin{codeexample}[code only]
\pgfplotsset{
	every extra x tick/.style={/pgfplots/log identify minor tick positions=true},
	every extra y tick/.style={/pgfplots/log identify minor tick positions=true}}
\end{codeexample}

 Useful examples are shown below.
\begin{codeexample}[code only]
\pgfplotsset{every extra x tick/.append style={grid=major}}
\pgfplotsset{every extra x tick/.append style={major tick length=0pt}}
\pgfplotsset{every extra x tick/.append style={/pgf/number format=sci subscript}}
\end{codeexample}
\end{xystylekey}

\pgfplotsshortxystylekey extra \x\ tick style=every extra \x\ tick\pgfeov



\subsubsection*{Styles for grid lines}

\begin{stylekey}{/pgfplots/every axis grid (initially thin,black!25)}
 Used for each grid line.
\end{stylekey}

\pgfplotsshortstylekey grid style=every axis grid\pgfeov

\begin{stylekey}{/pgfplots/every minor grid (initially empty)}
 Used for each minor grid line, installed after `|every axis grid|'.
\end{stylekey}

\pgfplotsshortstylekey minor grid style=every minor grid\pgfeov

\begin{stylekey}{/pgfplots/every major grid (initially empty)}
 Likewise, for major grid lines.
\end{stylekey}

\pgfplotsshortstylekey major grid style=every major grid\pgfeov

\begin{xystylekey}{/pgfplots/every axis \x\ grid (initially empty)}
	Used for each grid line in either $x$ or $y$ direction.
\end{xystylekey}

\pgfplotsshortxystylekey \x\ grid style=every axis \x\ grid\pgfeov

\begin{xystylekey}{/pgfplots/every minor \x\ grid (initially empty)}
	Used for each minor grid line in either $x$ or $y$ direction.
\end{xystylekey}

\pgfplotsshortxystylekey minor \x\ grid style=every minor \x\ grid\pgfeov

\begin{xystylekey}{/pgfplots/every major \x\ grid (initially empty)}
	Used for each major grid line in either $x$ or $y$ direction.
\end{xystylekey}

\pgfplotsshortxystylekey major \x\ grid style=every major \x\ grid\pgfeov

\subsubsection*{Styles for error bars}

\begin{stylekey}{/pgfplots/every error bar (initially thin)}
 Installed for every error bar. 
\end{stylekey}

\pgfplotsshortstylekey error bars/error bar style=every error bar\pgfeov

\subsubsection{(Re-)Defining Own Styles}
\label{sec:styles:own}%
Use |\pgfplotsset{|\meta{style name}|/.style=|\marg{key-value-list}|}|
to create own styles. If \meta{style name} exists already, it will be replaced. Please note that it is \emph{not} possible to use the \Tikz-command |\tikzstyle|\marg{style name}|=[]| in this context\footnote{This was possible in a previous version and is still supported for backwards compatibility. But in some cases, it may not work as expected.}.
\begin{codeexample}[]
\pgfplotsset{my personal style/.style=
	{grid=major,font=\large}}

\begin{tikzpicture}
\begin{axis}[my personal style]
	\addplot coordinates {(0,0) (1,1)};	
\end{axis}
\end{tikzpicture}
\end{codeexample}

\subsection{Alignment Options and Bounding Box Control}
\label{pgfplots:sec:align}

\begin{pgfplotskey}{anchor=\marg{name} (initially south west)}
\label{option:anchor}%
This option shifts the axis horizontally and vertically such that the axis anchor (a point on the axis) is placed at coordinate $(0,0)$.

Anchors are useful in conjunction with horizontal or vertical alignment of plots, see the examples below.

There are four sets of anchors available: anchors positioned on the axis rectangle, anchors on the outer bounding box and anchors which have one coordinate on the outer bounding box and the other one at a position of the axis rectangle. Finally, one can place anchors near the origin.

{%
%\pgfplotsset{every picture/.append style={background rectangle/.style={help lines},show background rectangle}}%
\pgfplotstableread{pgfplots.testplot}\plottable
\def\plot{%
	\begin{axis}[
		width=5cm,
		name=test plot,
		xlabel=$x$,
		ylabel={$y$},% = \frac 12 \cdot x^3 - 4 x^2 -16 x$},
		y label style={yshift=-15pt},
		legend style={at={(1.03,1)},anchor=north west},
		title=A test plot.
	]
		\addplot table from{\plottable};
		%\addplot coordinates {(0,0) (1,1)};
		\addlegendentry{$f(x)$}
		\addplot[red] plot[id=gnuplot_ppp,domain=-40:40,samples=120] gnuplot{10000*sin(x/3)};
		\addlegendentry{$g(x)$}
	\end{axis}
}%
\def\showit#1#2{%
	%\node[show them,#2] at (test plot.#1) {(s.#1)};
	\node[pin=#2:(s.#1),fill=black,circle,scale=0.3] at (test plot.#1) {};
}%
In more detail, we have
\tikzstyle{every pin}=[opacity=0.5,fill=yellow,rectangle,rounded corners=3pt,font=\tiny]
Anchors on the axis rectangle,
		\begin{center}
			\begin{tikzpicture}
				\plot
				\showit{north}{90}
				\showit{north west}{135}
				\showit{west}{180}
				\showit{south west}{225}
				\showit{south}{270}
				\showit{south east}{305}
				\showit{east}{0}
				\showit{north east}{45}
				\showit{center}{90}
			\end{tikzpicture}
		\end{center}
Anchors on the outer bounding box,
		\begin{center}
			\begin{tikzpicture}
				\plot
				\showit{outer north}{90}
				\showit{outer north west}{135}
				\showit{outer west}{180}
				\showit{outer south west}{225}
				\showit{outer south}{270}
				\showit{outer south east}{305}
				\showit{outer east}{0}
				\showit{outer north east}{45}
				\showit{outer center}{90}
			\end{tikzpicture}
		\end{center}
There are anchors which have one coordinate on the outer bounding box, and one on the axis rectangle,
		\begin{center}
			\begin{tikzpicture}
				\plot
				{\pgfplotsset{every pin/.append style={pin distance=1cm}}%
				\showit{above north}{90}
				}%
				\showit{above north east}{90}
				\showit{right of north east}{0}
				\showit{right of east}{0}
				\showit{right of south east}{0}
				\showit{below south east}{-90}
				{\pgfplotsset{every pin/.append style={pin distance=1cm}}%
				\showit{below south}{-90}
				}%
				\showit{below south west}{-90}
				\showit{left of south west}{180}
				\showit{left of west}{180}
				\showit{left of north west}{180}
				\showit{above north west}{90}
			\end{tikzpicture}
		\end{center}
And finally, we have origin anchors which are especially useful when axis lines pass through the origin,
		\begin{center}
			\begin{tikzpicture}
					\begin{axis}[
						name=test plot,
						axis x line=center,
						axis y line=center,
						enlargelimits=false,
						minor tick num=3,
						tick style={semithick},
						tick align=center,
						xlabel=$x$,
						ylabel=$y$,
						every axis x label/.style={at={(current axis.right of origin)},anchor=north east},
						every axis y label/.style={at={(current axis.above origin)},anchor=north east},
						inner axis line style={->},
					]
					\addplot plot[domain=-2:5] {20*x};
					\end{axis}
				{\pgfplotsset{every pin/.append style={pin distance=1cm}}%
				\showit{above origin}{45}
				}%
				\showit{right of origin}{45}
				{\pgfplotsset{every pin/.append style={pin distance=1cm}}%
				\showit{below origin}{0}
				}%
				\showit{left of origin}{135}
				\showit{origin}{135}
			\end{tikzpicture}
		\end{center}
The default value is |anchor=south west|. You can use anchors in conjunction with the \Tikz\ |baseline| option and/or |\begin{pgfinterruptboundingbox}| to perform alignment.
}

\begin{description}
\item[Vertical alignment with \texttt{baseline}]
\label{sec:align}%
The default axis anchor is |south west|, which means that the picture coordinate $(0,0)$ is the lower left corner of the axis. As a consequence, the \Tikz\ option ``|baseline|'' allows vertical alignment of adjacent plots:
\begin{codeexample}[]
\pgfplotsset{domain=-1:1}
\begin{tikzpicture}
	\begin{axis}[xlabel=A normal sized $x$ label]
	\addplot[smooth,blue,mark=*] {x^2};
	\end{axis}
\end{tikzpicture}%
\hspace{0.15cm}
\begin{tikzpicture}
	\begin{axis}[xlabel={$\displaystyle \sum_{i=0}^N n_i $ }]
	\addplot[smooth,blue,mark=*] {x^2};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\pgfplotsset{domain=-1:1}
\begin{tikzpicture}[baseline]
	\begin{axis}[xlabel=A normal sized $x$ label]
	\addplot[smooth,blue,mark=*] {x^2};
	\end{axis}
\end{tikzpicture}%
\hspace{0.15cm}
\begin{tikzpicture}[baseline]
	\begin{axis}[xlabel={$\displaystyle \sum_{i=0}^N n_i $ }]
	\addplot[smooth,blue,mark=*] {x^2};
	\end{axis}
\end{tikzpicture}
\end{codeexample}
The |baseline| option configures \Tikz\ to shift position $y=0$ to the text's baseline and the |south west| anchor shifts the axis such the $y=0$ is at the lower left axis corner.


\item[Horizontal Alignment]
\label{sec:halign}%
If you place multiple |axes| into a single |tikzpicture| and use the `|anchor|'-option, you can control horizontal alignment:
\begin{codeexample}[]
\begin{tikzpicture}
\pgfplotsset{every axis/.append style={
cycle list={
	{red,only marks,mark options={
		fill=red,scale=0.8},mark=*},
	{black,only marks,mark options={
		fill=black,scale=0.8},mark=square*}}}}

\begin{axis}[width=4cm,scale only axis,
	name=main plot]
\addplot file 
	{plotdata/pgfplots_scatterdata1.dat};
\addplot file 
	{plotdata/pgfplots_scatterdata2.dat};
\addplot[blue] coordinates {
	(0.093947,	-0.011481)
	(0.101957,	0.494273)
	(0.109967,	1.000027)};
\end{axis}

% introduce named coordinate:
\path (main plot.below south west) ++(0,-0.1cm) 
	coordinate (lower plot position);

\begin{axis}[at={(lower plot position)},
	anchor=north west,
	width=4cm,scale only axis,height=0.8cm,
	ytick=\empty]

\addplot file 
  {plotdata/pgfplots_scatterdata1_latent.dat};
\addplot file 
  {plotdata/pgfplots_scatterdata2_latent.dat};
\end{axis}
\end{tikzpicture}
\end{codeexample}


\item[Bounding box restrictions] Bounding box restrictions can be realized with several methods of \PGF:
\begin{enumerate}
	\item The |overlay| option,
	\item The |pgfinterruptboundingbox| environment,
	\item The |\useasboundingbox| path.
\end{enumerate}
\begin{key}{/tikz/overlay}
\index{Bounding Box Control!Excluding Image Parts}
	A special key of \PGF\ which disables bounding box updates for (parts of) the image. The effect is that those parts are an ``overlay'' over the document.

	For \PGFPlots, |overlay| can be useful to position legends or other axis descriptions outside of the axis~-- without affecting its size (and without affecting alignment).

For example, one may want to include only certain parts of the axis into the final bounding box. This would allow horizontal alignment (centering):
\begin{codeexample}[]
\begin{tikzpicture}%
   \begin{axis}[
      title=A title,
      ylabel style={overlay},
      yticklabel style={overlay},
      xlabel={$x$},
      ylabel={$y$},
      legend style={at={(0.5,0.97)},
         anchor=north,legend columns=-1},
      domain=-2:2
   ]
   \addplot {x^2};
   \addplot {x^3};
   \addplot {x^4};
   \legend{$x^2$,$x^3$,$x^4$}
   \end{axis}
\end{tikzpicture}%
\end{codeexample}
\noindent Now, the left axis descriptions ($y$ label and $y$ ticks) stick out of the bounding box.
	
The following example places a legend somewhere without affecting the bounding box.
\begin{codeexample}[]
\begin{tikzpicture}
   \begin{axis}[
      domain=0:6.2832,samples=200,
      legend style={
         overlay,
         at={(-0.5,0.5)},
         anchor=center},
      every axis plot post/.append style={mark=none},
      enlargelimits=false]

   \addplot {sin(deg(x)+3)+rand*0.05};
   \addplot {cos(deg(x)+2)+rand*0.05};
   \legend{Signal 1,Signal 2}
   \end{axis}
\end{tikzpicture}
\end{codeexample}

	More information about the |overlay| option can be found in the \PGF\ manual~\cite{tikz}.
\end{key}


\label{sec:bounding:box:example}%
\index{Bounding Box Control}
\index{Bounding Box Control!pgfinterruptboundingbox}
{%
An alternative to |overlay| is shown below: the figure has a truncated bounding box with is shown using |\fbox|.
\begin{codeexample}[]
\setlength{\fboxsep}{0pt}%
\fbox{%
\begin{tikzpicture}%
	\begin{pgfinterruptboundingbox}
	\begin{axis}[
		name=my plot,
		title=A title,
		xlabel={$x$},
		ylabel={$y$},
		legend style={at={(0.5,0.97)},
			anchor=north,legend columns=-1},
		domain=-2:2
	]
	\addplot {x^2};
	\addplot {x^3};
	\addplot {x^4};
	\legend{$x^2$,$x^3$,$x^4$}
	\end{axis}
	\end{pgfinterruptboundingbox}

	\useasboundingbox 
			  (my plot.below south west)
	rectangle (my plot.above north east);
\end{tikzpicture}%
}%
\end{codeexample}%
}%
The |pgfinterruptboundingbox| environment does not include its content into the image's bounding box, and |\useasboundingbox| sets the pictures bounding box to the following argument (see~\cite{tikz}).

\end{description}
\end{pgfplotskey}

\begin{predefinednode}{current axis}
	A node which refers to the current axis or the last typeset axis.

	You can use this node in axis descriptions, for example to place axis labels or titles.

	\paragraph{Remark:} If you use |current axis| inside of axis descriptions, the ``current axis'' is not yet finished. That means you \emph{can't use any outer anchor} inside of axis descriptions.
\end{predefinednode}

\begin{pgfplotskey}{at=\marg{coordinate expression}}
Assigns a position for the complete axis image. This option works similarly to the |at|-option of |\node[at=|\marg{coordinate expression}|]|, see~\cite{tikz}. The common syntax is |at={|\parg{x,y}|}|.
\end{pgfplotskey}

\subsection{Symbolic Coordinates and User Transformations}
\label{pgfplots:sec:symbolic:coords}
\PGFPlots\ supports user transformations which can be applied to input and output coordinates. Suppose the plot shall display days versus account statements over time. Then, one wants to visualize date versus credit balance. But: dates need to be transformed to numbers before doing so! Furthermore, tick labels shall be displayed as dates as well. This, and more general transformations, can be realized using the |x coord trafo| and |y coord trafo| keys.

\begin{pgfplotsxycodekeylist}{
	\x\ coord trafo,
	\x\ coord inv trafo}
	These code keys allow arbitrary coordinate transformations which are applied to input coordinates and output tick labels.

	The |x coord trafo| and |y coord trafo| command keys take one argument which is the input coordinate. They are expected to set |\pgfmathresult| to the final value.

	At this level, the input coordinate is provided as it is found in the |\addplot| statement. For example, if $x$ coordinates are actually of the form \meta{year}-\meta{month}-\meta{day}, for example |2008-01-05|, then a useful coordinate transformation would transform this string into a number (see below for a predefined realization).

	In short, \emph{no} numerics has been applied to input coordinates when this transformation is applied\footnote{Of course, if coordinates have been generated by gnuplot or \pgfname, this does no longer hold.}.

	The input coordinate transformation is applied to
	\begin{itemize}
		\item any input coordinates (specified with |\addplot| or |axis cs|),
		\item any user-specified |xtick| or |ytick| options,
		\item any user-specified |extra x ticks| and |extra y ticks| options,
		\item any user-specified axis limits like |xmin| and |xmax|.
	\end{itemize}

	The output coordinate transformation |x coord inv trafo| is applied to tick positions just before evaluating the |xticklabel| and |yticklabel| keys. The tick label code may use additional macros defined by the inverse transformation.

	Remark: \PGFPlots\ will continue to produce tick positions as usual, no extra magic is applied. It may be necessary to provide tick positions explicitly if the default doesn't respect the coordinate space properly.

	The initial value of these keys is
\begin{codeexample}[code only]
\pgfplotsset{
	x coord trafo/.code={},
	x coord inv trafo/.code={}}
\end{codeexample}
	\noindent which simply disables the transformation (the same for $y$, of course).
\end{pgfplotsxycodekeylist}

\subsubsection{Dates as Input Coordinates}
\label{pgfplots:sec:date:coords}
The already mentioned application of using dates as input coordinates has been predefined. It relies on the \pgfname\ calendar library which converts dates to numbers in the julian calendar. Then, one coordinate unit is one day.

\begin{tikzlibrary}{dateplot}
	Loads the coordinate transformation code.
\end{tikzlibrary}

\begin{stylekey}{/pgfplots/date coordinates in=\mchoice{x,y}}
	Installs |x coord trafo| and |x coord inv trafo| (or the respective $y$ variant) such that ISO dates of the form \meta{year}-\meta{month}-\meta{day} are accepted. For example, |2006-02-28| will be converted to an ``appropriate'' integer using the julian calender.

	The result of the transformation are numbers where one unit is one day.

	The transformation is realized using the \pgfname-calendar module, see \cite[Calendar Library]{tikz}. This reference also contains more information about extended syntax options.

	The inverse transformation provides the following three macros which are available during tick label evaluation:
	\begin{itemize}
		\item |\year| expands to the year component,
		\item |\month| expands to the month component,
		\item |\day| expands to the day component.
	\end{itemize}
	This allows to use |\day.\month.\year| inside of |xticklabel|, for example.

	A complete example (with fictional data) is shown below.
\pgfplotsset{anchor=center,/tikz/every picture/.append style={baseline}}
% \usetikzlibrary{dateplot}\usepackage{eurosym}
\begin{codeexample}[]
% requires \usetikzlibrary{dateplot} !

\pgfplotstabletypeset[string type]{plotdata/accounts.dat}

\begin{tikzpicture}
	\begin{axis}[
		date coordinates in=x,
		xticklabel={\day.\month.},
		xlabel={2008},
		stack plots=y,
		yticklabel={\pgfmathprintnumber{\tick}\EUR{}}, % <- requires \usepackage{eurosym}
		ylabel=Total credit,
		ylabel style={yshift=10pt},
		legend style={
			at={(0.5,-0.3)},anchor=north,legend columns=-1}]
		
	\addplot table[x=date,y=account1] {plotdata/accounts.dat};
	\addplot table[x=date,y=account2] {plotdata/accounts.dat};
	\addplot table[x=date,y=account3] {plotdata/accounts.dat};
	\legend{Giro,Tagesgeld,Sparbuch}
	\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{stylekey}

\begin{pgfplotskey}{date ZERO=\meta{year}-\meta{month}-\meta{day} (initially 2006-01-01)}
	A technical key which defines the $0$ coordinate of |date coordinates in|. Users will never see the resulting numbers, so one probably never needs to change it. However, the resulting numbers may become very large and a mantisse of 6 significant digits may not be enough to get accurate results. In this case, |date ZERO| should be set to a number which falls into the input date range.
\end{pgfplotskey}




\subsection{Miscellaneous Options}

\begin{pgfplotskey}{disablelogfilter=\mchoice{true,false} (initally false, default true)}
Disables numerical evaluation of $\log(x)$ in \TeX. If you specify this option, any plot coordinates and tick positions must be provided as $\log(x)$ instead of $x$. This may be faster and -- possibly -- more accurate than the numerical log. The current implementation of $\log(x)$ normalizes~$x$ to $m\cdot 10^e$ and computes
\[ \log(x) = \log(m) + e \log(10) \]
where $y = \log(m)$ is computed with a newton method applied to $\exp(y) - m$. The normalization involves string parsing without \TeX-registers. You can savely evaluate $\log(1\cdot 10^{-7})$ although \TeX-registers would produce an underflow for such small numbers. 
\end{pgfplotskey}

\label{sec:disabledatascaling}%
\begin{pgfplotskey}{disabledatascaling=\mchoice{true,false} (initally false, default true)}
\index{Accuracy!Data Transformation}%
\index{Errors!dimension too large}%
Disables internal re-scaling of input data. Normally, every input data like plot coordinates, tick positions or whatever, are parsed without using \TeX's limited number precision. Then, a transformation like 
	\[ T(x) = 10^{q-m} \cdot x - a \]
is applied to every input coordinate/position where $m$ is ``the order of $x$'' base~$10$. Example: $x=1234 = 1.234\cdot 10^3$ has order~$m=4$ while $x=0.001234 = 1.234\cdot 10^{-3}$ has order $m=-2$. The parameter~$q$ is the order of the axis' width/height.

The \textbf{effect} of the transformation is that your plot coordinates can be of \emph{arbitrary magnitude} like $0.0000001$ and $0.0000004$. For these two coordinates, \PGFPlots\ will use 100pt and 400pt internally. The transformation is quit fast since it relies only on period shifts. This scaling allows precision beyond \TeX's capabilities.
%\footnote{Please note that while plot coordinates can be of quite large magnitude like $10^12$ or $10^{-9}$, \PGFPlots\ still uses \TeX-registers internally (the math parser of \PGF). If your axis interval is $[1234567.8, 1234567.9]$ or something like that, }.

The option ``|disabledatascaling|'' disables this data transformation. This has two consequences: first, coordinate expressions like \parg{{\normalfont\texttt{axis cs:}}x,y} have the same effect like \parg{x,y}, no re-scaling is applied. Second, coordinates are restricted to what \TeX\ can handle\footnote{Please note that the axis' scaling requires to compute $1/( x_\text{max} - x_{\text{min}} )$. The option |disabledatascaling| may lead to overflow or underflow in this context, so use it with care! Normally, the data scale transformation avoids this problem.}.

So far, the data scale transformation applies only to normal axis (logarithmic scales do not need it). 
\end{pgfplotskey}


\begin{pgfplotsxycodekeylist}{\x\ filter}
The code keys |x filter| and |y filter| allow coordinate filtering. A coordinate filter gets an input coordinate as |#1|, applies some operation and writes the result into the macro |\pgfmathresult|. If |\pgfmathresult| is empty afterwards, the coordinate is discarded.

It is allowed if filters do not change |\pgfmathresult|. In this case, the unfiltered coordinate will be used.

Coordinate filters are useful in automatic processing system, where \PGFPlots\ is used to display automatically generated plots. You may not want to filter your coordinates by hand, so these options provide a tool to do this automatically.

The following filter adds $0.5$ to every $x$ coordinate.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[x filter/.code=
	{\pgfmathadd{#1}{0.5}}]
\addplot coordinates {
	(4,0)
	(6,1)
};
\end{axis}
\end{tikzpicture}
\end{codeexample}
Please refer to~\cite[pgfmath manual]{tikz} for details about the math engine of \PGF. Please keep in mind that the math engine works with limited \TeX\ precision.

During evaluation of the filter, the macro |\coordindex| contains the number of the current coordinate (starting with~$0$). Thus, the following filter discards all coordinates after the $5$th and before the $10$th.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	samples=20,
	x filter/.code={
		\ifnum\coordindex>4\relax
			\ifnum\coordindex<11\relax
				\def\pgfmathresult{}
			\fi
		\fi
	}]
\addplot {x^2};
\end{axis}
\end{tikzpicture}
\end{codeexample}
There is also a style key which simplifies selection by index, see below.

	\PGFPlots\ invokes the filter with argument |#1| set to the input coordinate. For $x$-filters, this is the $x$-coordinate as it is specified to |\addplot|, for $y$-filters it is the $y$-coordinate.

	If the corresponding axis is logarithmic, |#1| is the \emph{logarithm} of the coordinate as a real number, for example |#1=4.2341|.

	The arguments to coordinate filters are not transformed. You may need to call coordinate parsing routines.
\end{pgfplotsxycodekeylist}

\begin{stylekey}{/pgfplots/skip coords between index=\marg{begin}\marg{end}}
	A style which appends an |x filter| which discards selected coordinates. The selection is done by index where indexing starts with~$0$, see |\coordindex|. Every coordinate with index $\meta{begin} \le i < \meta{end}$ will be skipped.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	samples=20,
	skip coords between index={5}{11},
	skip coords between index={15}{18}]

\addplot {x^2};
\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{stylekey}

\begin{pgfplotskey}{filter discard warning=\mchoice{true,false} (initially true)}
	Issues a notification in your logfile whenever coordinate filters discard coordinates.
\end{pgfplotskey}

\begin{pgfplotskey}{execute at begin plot=\marg{commands}}
This axis option allows to invoke \marg{commands} at the beginning of each |\addplot| command. The argument \marg{commands} can be any \TeX\ content.

You may use this in conjunction with |x filter=...| to reset any counters or whatever. An example would be to change every $4$th coordinate.
\end{pgfplotskey}

\begin{pgfplotskey}{execute at end plot=\marg{commands}}
This axis option allows to invoke \marg{commands} after each |\addplot| command. The argument \marg{commands} can be any \TeX\ content.
\end{pgfplotskey}

\begin{pgfplotskey}{forget plot=\marg{true,false} (initially false)}
\label{pgfplots:forgetplot}
	Allows to include plots which are not remembered for legend entries, which do not increase the number of plots and which are not considered for cycle lists.

	A forgotten plot can be some sort of decoration which has a separate style and does not influence the axis state, although it is processed as any other plot.
	Please provide this option as \meta{behavior option} to |\addplot| as in the following example.
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{loglogaxis}[
		table/x=Basis,
		table/y={L2/r},
		xlabel=Degrees of Freedom,
		ylabel=relative Error,
		title=New Experiments (old in gray),
		legend entries={$e_1$,$e_2$,$e_3$}
	]
	\addplot[black!15] plot[forget plot] 
		table {plotdata/oldexperiment1.dat};
	\addplot[black!15] plot[forget plot] 
		table {plotdata/oldexperiment2.dat};
	\addplot[black!15] plot[forget plot] 
		table {plotdata/oldexperiment3.dat};
	\addplot table {plotdata/newexperiment1.dat};
	\addplot table {plotdata/newexperiment2.dat};
	\addplot table {plotdata/newexperiment3.dat};
	\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}
	Since forgotten plots won't increase the plot index, they will use the same |cycle list| entry as following plots. This can be used to ``interrupt'' plots as is described in section~\ref{pgfplots:interrupt}.
\index{Interrupted Plots}

	The style |every forget plot| can be used to configure styles for each such plot. Please note that |every plot no |\meta{index} styles are not applicable here.

	A forgotten plot will be stacked normally if |stack plots| is enabled!
\end{pgfplotskey}

\begin{pgfplotscodekey}{before end axis}
Allows to insert \marg{commands} just before the axis is ended. This option takes effect inside of the clipped area.
\begin{codeexample}[]
\pgfplotsset{every axis/.append style={
	before end axis/.code={
		\fill[red] (axis cs:1,10) circle(5pt);
		\node at (axis cs:-4,10) 
			{\large This text has been inserted 
			 using \texttt{before end axis}.};
	}}}
\begin{tikzpicture}
	\begin{axis}
	\addplot {x^2};
	\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotscodekey}

\begin{pgfplotscodekey}{after end axis}
Allows to insert \marg{commands} right after the end of the clipped drawing commands. While |befor end axis| has the same effect as if \marg{commands} had been placed inside of your axis, |after end axis| allows to access axis coordinates without being clipped.
\begin{codeexample}[]
\pgfplotsset{every axis/.append style={
	after end axis/.code={
		\fill[red] (axis cs:1,10) circle(5pt);
		\node at (axis cs:-4,10) 
			{\large This text has been inserted using \texttt{after end axis}.};
	}}}
\begin{tikzpicture}
	\begin{axis}
	\addplot {x^2};
	\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotscodekey}

\begin{pgfplotskey}{clip marker paths=\mchoice{true,false} (initially false)}
	The initial choice |clip marker paths=false| causes markers to be drawn \emph{after} the clipped region. Only their positions will be clipped. As a consequence, markers will be drawn completely, or not at all. The value |clip marker paths=true| is here for backwards compatibility: it does not introduce special marker treatment, so markers may be drawn partially if they are close to the clipping boundary\footnote{Please note that clipped marker paths may be slightly faster during \TeX\ compilation.}.
\end{pgfplotskey}

\begin{pgfplotskey}{clip=\mchoice{true,false} (initially true)}
	Whether any paths inside an axis shall be clipped.
\end{pgfplotskey}

\begin{pgfplotskey}{axis on top=\mchoice{true,false} (initially false)}
	If set to |true|, axis lines, ticks, tick labels and grid lines will be drawn on top of plot graphics.
\begin{codeexample}[]
\begin{tikzpicture}
    \begin{axis}[
		axis on top=true,
		axis x line=middle,
		axis y line=middle]
    \addplot+[fill] {x^3} \closedcycle;
    \end{axis}
\end{tikzpicture}
\end{codeexample}

\begin{codeexample}[]
\begin{tikzpicture}
    \begin{axis}[
		axis on top=false,
		axis x line=middle,
		axis y line=middle]
    \addplot+[fill] {x^3} \closedcycle;
    \end{axis}
\end{tikzpicture}
\end{codeexample}
Please note that this feature does not affect plot marks. I think it looks unfamiliar if plot marks are crossed by axis descriptions.
\end{pgfplotskey}

\begin{key}{/pgf/fpu=\marg{true,false} (initially true)}
\index{Precision}
	This key activates or deactivates the floating point unit. If it is disabled (|false|), the core \PGF\ math engine written by Mark Wibrow and Till Tantau will be used for |plot expression|.
	However, this engine has been written to produce graphics and is not suitable for scientific computing. It is limited to fixed point numbers in the range $\pm 16384.00000$.

	If the |fpu| is enabled (|true|, the initial configuration) the high-precision floating point library of \PGF\ written by Christian Feuersänger will be used. It offers the full range of IEEE double precision computing in \TeX. This FPU is also part of \PGFPlotstable, and it is activated by default for |create col/expr| and all other predefined mathematical methods.

	Use
\begin{codeexample}[code only]
\pgfkeys{/pgf/fpu=false}
\end{codeexample}
	\noindent in order to de-activate the extended precision. If you prefer using the |fp| (fixed point) package, possibly combined with Mark Wibrows corresponding \PGF\ library, the |fpu| will be deactivated automatically. Please note, however, that |fp| has a smaller data range (about $\pm 10^{17}$) and may be slower.
\end{key}