1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
|
\subsection{Fitting Lines -- Regression}
\label{sec:linefitting}
{
\pgfkeys{
/pgfmanual/gray key prefixes={/pgfplots/table},
}
This section documents the attempts of \PGFPlots\ to fit lines to input coordinates. \PGFPlots\ currently supports |create col/linear regression| applied to columns of input tables. The feature relies on \PGFPlotstable, it is actually implemented as a table postprocessing method.
\begin{stylekey}{/pgfplots/table/create col/linear regression=\marg{key-value-config}}%
\pgfkeys{
/pgfmanual/gray key prefixes={/pgfplots/table/create col/linear regression/},
/pdflinks/search key prefixes in/.add={/pgfplots/table/create col/linear regression/,}{},
}
A style for use in |\addplot table| which computes a linear (least squares) regression $y(x) = a \cdot x + b$ using the sample data $(x_i,y_i)$ which has to be specified inside of \meta{key-value-config} (see below).
It creates a new column on-the-fly which contains the values $y(x_i) = a \cdot x_i + b$. The values $a$ and $b$ will be stored (globally) into \declareandlabel{\pgfplotstableregressiona} and \declareandlabel{\pgfplotstableregressionb}.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[legend pos=outer north east]
\addplot table[row sep=\\] {% plot X versus Y. This is original data.
X Y\\
1 1 \\
2 4\\
3 9\\
4 16\\
5 25\\
6 36\\
};
\addplot table[row sep=\\,
y={create col/linear regression={y=Y}}] % compute a linear regression from the input table
{
X Y\\
1 1 \\
2 4\\
3 9\\
4 16\\
5 25\\
6 36\\
};
%\xdef\slope{\pgfplotstableregressiona} %<-- might be handy occasionally
\addlegendentry{$y(x)$}
\addlegendentry{%
$\pgfmathprintnumber{\pgfplotstableregressiona} \cdot x
\pgfmathprintnumber[print sign]{\pgfplotstableregressionb}$}
\end{axis}
\end{tikzpicture}
\end{codeexample}
The example above has two plots: one showing the data and one containing the |linear regression| line. We use |y={create col/linear regression={}}| here, which means to create a new column\footnote{The \texttt{y=\{create col/} feature is available for any other \PGFPlotstable\ postprocessing style, see the \texttt{create on use} documentation in the \PGFPlotstable\ manual.} containing the regression values automatically.
As arguments, we need to provide the $y$ column name explicitly\footnote{In fact, \PGFPlots\ sees that there are only two columns and uses the second as default. But you need to provide it if there are at least 3 columns.}. The $x$ value is determined from context: |linear regression| is evaluated inside of |\addplot table|, so it uses the same $x$ as |\addplot table| (i.e.\ if you write |\addplot table[x=|\marg{col name}|]|, the regression will also use \marg{col name} as its |x| input). Furthermore, it shows the line parameters $a$ and $b$ in the legend.
The following \meta{key-value-config} keys are accepted as comma--separated list:
\begin{key}{%
/pgfplots/table/create col/linear regression/table=\marg{\textbackslash macro {\normalfont or} file name} (initially empty)}
Provides the table from where to load the |x| and |y| columns. It defaults to the currently processed one, i.e.\ to the value of |\pgfplotstablename|.
\end{key}
\begin{keylist}{%
/pgfplots/table/create col/linear regression/x=\marg{column} (initially empty),
/pgfplots/table/create col/linear regression/y=\marg{column} (initially empty)}
Provides the source of $x_i$ and $y_i$ data, respectively. The argument \meta{column} is usually a column name of the input table, yet it can also contains |[index]|\meta{integer} to designate column indizes (starting with $0$), |create on use| specifications or |alias|es (see the \PGFPlotstable\ manual for details on |create on use| and |alias|).
The initial configuration (an empty value) checks the context where the |linear regression| is evaluated. If it is evaluated inside of |\pgfplotstabletypeset|, it uses the first and second table columns. If it is evaluated inside of |\addplot table|, it uses the same $x$ input as the |\addplot table| statement. The |y| key needs to be provided explicitly (unless the table has only two columns).
\end{keylist}
\begin{keylist}{%
/pgfplots/table/create col/linear regression/xmode=\mchoice{auto,linear,log} (initially auto),
/pgfplots/table/create col/linear regression/ymode=\mchoice{auto,linear,log} (initially auto)}
Enables or disables processing of logarithmic coordinates. Logarithmic processing means to apply $\ln$ before computing the regression line and $\exp$ afterwards.
The choice |auto| checks if the column is evaluated inside of a \PGFPlots\ axis. If so, it uses the axis scaling of the embedding axis. Otherwise, it uses |linear|.
In case of logarithmic coordinates, the |log basis x| and |log basis y| keys determine the basis.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{loglogaxis}
\addplot table[x=dof,y=error2]
{pgfplotstable.example1.dat};
\addlegendentry{$y(x)$}
\addplot table[
x=dof,
y={create col/linear regression={y=error2}}]
{pgfplotstable.example1.dat};
% might be handy occasionally:
%\xdef\slope{\pgfplotstableregressiona}
\addlegendentry{slope
$\pgfmathprintnumber{\pgfplotstableregressiona}$}
\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}
The (commented) line containing |\slope| is explained above; it allows to remember different regression slopes in our example.
\end{keylist}
\begin{keylist}{%
/pgfplots/table/create col/linear regression/variance list=\marg{list} (initially empty),%
/pgfplots/table/create col/linear regression/variance=\marg{column name} (initially empty)%
}
Both keys allow to provide uncertainties (variances) to single data points.
A high (relative) variance indicates an unreliable data point, a value of $1$ is standard.
The |variance list| key allows to provide variances directly as comma--separated list, for example
|variance list={1000,1000,500,200,1,1}|.
The |variance| key allows to load values from a table \meta{column name}. Such a column name is (initially, see below) loaded from the same table where data points have been found. The \meta{column name} may also be a |create on use| name.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{loglogaxis}
\addplot table[x=dof,y=error2]
{pgfplotstable.example1.dat};
\addlegendentry{$y(x)$}
\addplot table[
x=dof,
y={create col/linear regression={
y=error2,
variance list={1000,800,600,500,400}}
}
]
{pgfplotstable.example1.dat};
\addlegendentry{slope
$\pgfmathprintnumber{\pgfplotstableregressiona}$}
\end{loglogaxis}
\end{tikzpicture}
\end{codeexample}
If both, |variance list| and |variance| are given, the first one will be preferred. Note that it is not necessary to provide variances for every data point.
\end{keylist}
\begin{key}{/pgfplots/table/create col/linear regression/variance src=\marg{\textbackslash table {\normalfont or} file name} (initially empty)}
Allows to load the |variance| from another table. The initial setting is empty. It is acceptable if the |variance| column in the external table has fewer entries than expected, in this case, only the first ones will be used.
\end{key}
\end{stylekey}
\paragraph{Limitations:} Currently, \PGFPlots\ supports only linear regression, and it only supports regression together with |\addplot table|. Furthermore, long input tables might need quite some time.
}
|