summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/pgfplots/pgfplots.reference.3dplots.tex
blob: d518cddce4b56a957e20b09fb54ed699306cbf13 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
\subsection{Three Dimensional Plot Types}
\label{sec:3d}
\PGFPlots\ provides three dimensional visualizations like scatter, line, mesh or surface plots. This section explains the methods to provide input coordinates and how to use the different plot types.

\subsubsection{Before You Start With 3D}
\label{pgfplots:3d:preliminary}
Before we delve into the capabilities of \PGFPlots\ for three dimensional visualization, let me start with some preliminary remarks. The reason to use \PGFPlots\ for three dimensional plots are similar to those of normal, two dimensional plots: the possibility to get consistent fonts and document consistent styles combined with high--quality output.

While this works very nice for (not too complex) two dimensional plots, it requires considerably more effort than non--graphical documents. This is even more so for three dimensional plots. In other words: \PGFPlots' three dimensional routines are slow. There are reasons for this and some of them may vanish in future versions. But one of these reasons is, that \TeX\ has never been designed for complex visualisation techniques. Consider the image externalization routines mentioned in section~\ref{sec:pgfplots:export}, in particular the |external| library to reduce typesetting time. Besides the speed limitations, three dimensional plots reach memory limits easily. Therefor, the plot complexity of three dimensional plots is limited to relatively coarse resolutions. Section~\ref{sec:pgfplots:export} also discusses methods to extend the initial \TeX\ memory limits.

Another issue which arises in three dimensional visualization is depth. \PGFPlots\ supports $z$ buffering techniques up to a certain extend. It works pretty well for single scatter plots (|z buffer=sort|), mesh or surface plots (|z buffer=auto|) or parametric mesh and surface plots (|z buffer=sort|). However, it can't combine different |\addplot| commands, those will be drawn in the order of appearance.
You may encounter the limitations sometimes. Maybe it will be improved in future versions.

If you decide that you need high complexity, speed and 100\% reliable z buffers (depth information), you should consider using other visualization tools and return to \PGFPlots\ in several years. If you can wait for a complex picture and you don't even see the limitations arising from z buffering limitations, you should use \PGFPlots. Again, consider using the automatic picture externalization with the |external| library discussed in section~\ref{sec:pgfplots:export}.

Enough for now, let's continue.

\subsubsection{The \texttt{\textbackslash addplot3} Command: Three Dimensional Coordinate Input}
\label{pgfplots:sec:threedim}
\begin{addplot3generic}
	The \verbpdfref{\addplot3} command is the main interface for any three dimensional plot. It works in the same way as its two dimensional variant |\addplot| which has been described in all detail in section~\ref{cmd:pgfplots:addplot} on page~\pageref{cmd:pgfplots:addplot}.

	The \verbpdfref{\addplot3} command accepts the same input methods as the |\addplot| variant, including expression plotting, coordinates, files and tables. However, a third coordinate is necessary for each of these methods which is usually straight--forward and is explained in all detail in the following.

	Furthermore, \verbpdfref{\addplot3} has a way to decide whether a \emph{line} visualization or a \emph{mesh} visualization has to be done. The first one is map from one dimension into $\R^3$ and the latter one a map from two dimensions to $\R^3$. Here, the keys |mesh/rows| and |mesh/cols| are used to define mesh sizes (matrix sizes). Usually, you don't have to care about that because the coordinate input routines already allow either one--dimensional or two dimensional structure.
\end{addplot3generic}

\begin{addplot3operation}[]{coordinates}{\marg{coordinate list}}
	The \verbpdfref{\addplot3 coordinates} method works like its two--dimensional variant, \verbpdfref{\addplot coordinates} which is described in all detail on page~\pageref{pgfplots:addplot:coordinates}:

	A long list of coordinates |(|\meta{x}|,|\meta{y}|,|\meta{z}|)| is expected, separated by white spaces. The input list can be either an unordered series of coordinates, for example for scatter or line plots. It can also have matrix structure, in which case an empty input line (which is equivalent to ``|\par|'') marks the end of one matrix row. Matrix structure can also be provided if one of |mesh/rows| or |mesh/cols| is provided explicitly.
	
\long\def\temporarytest{\noexpand\par}
\begin{codeexample}[newline=\temporarytest]
\begin{tikzpicture}
	\begin{axis}
		% this yields a 3x4 matrix:
		\addplot3[surf] coordinates {
			(0,0,0) (1,0,0)   (2,0,0)   (3,0,0)

			(0,1,0) (1,1,0.6) (2,1,0.7) (3,1,0.5)

			(0,2,0) (1,2,0.7) (2,2,0.8) (3,2,0.5)
		};
	\end{axis}
\end{tikzpicture}
\end{codeexample}
	\noindent Here, \verbpdfref{\addplot3} reads a matrix with three rows and four columns. The empty lines separate one row from the following.

	As for the two--dimensional |plot coordinates|, it is possible to provide (constant) mathematical expressions inside of single coordinates. The syntax |(|\meta{x}|,|\meta{y}|,|\meta{z}|) |\oarg{meta} can be used just as for two dimensional |plot coordinates| to provide explicit color data; error bars are also supported.
\end{addplot3operation}

\begin{addplot3operation}[]{file}{\marg{name}}
	The \verbpdfref{\addplot3 file} input method is the same as \verbpdfref{\addplot file} -- it only expects one more coordinate.
	Thus, the input file contains $x_i$ in the first column, $y_i$ in the second column and $z_i$ in the third. 
	
	A further column is read after $z_i$ if |point meta=explicit| has been requested, see the documentation of \verbpdfref{\addplot file} on page~\pageref{pgfplots:addplot:file} for details.
	
	As for \verbpdfref{\addplot3 coordinates}, an empty line in the file marks the end of one matrix row.
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}
		% We have `plotdata/first3d.dat' with
		%---------
		% 0 0 0.8
		% 1 0 0.56
		% 2 0 0.5
		% 3 0 0.75
		%
		% 0 1 0.6
		% 1 1 0.3
		% 2 1 0.21
		% 3 1 0.3
		%
		% 0 2 0.68
		% 1 2 0.22
		% 2 2 0.25
		% 3 2 0.4
		%
		% 0 3 0.7
		% 1 3 0.5
		% 2 3 0.58
		% 3 3 0.9
		% -> yields a 4x4 matrix:
		\addplot3[surf] file {plotdata/first3d.dat};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

	For matrix data in files, it is important to specify the ordering in which the matrix entries have been written. The default configuration is |mesh/ordering=x varies|, so you need to change it to |mesh/ordering=y varies| in case you have columnwise ordering.
\end{addplot3operation}

\begin{addplot3operation}[]{table}{\oarg{column selection}\marg{file}}
	The \verbpdfref{\addplot3 table} input works in the same way as its two dimensional counterpart \verbpdfref{\addplot table}. It only expects a column for the $z$ coordinates. Furthermore, it interprets empty input lines as end--of--row (more generally, end--of--scanline) markers, just as for |plot file|. The remarks above about the |mesh/ordering| applies here as well.
\end{addplot3operation}

\begin{pgfplotskeylist}{mesh/rows=\marg{integer},mesh/cols=\marg{integer}}
	For visualization of mesh or surface plots which need some sort of matrix input, the dimensions of the input matrix need to be known in order to visualize the plots correctly. The matrix structure may be known from end--of--row marks (empty lines as general end--of--scanline markers in the input stream) as has been described above.

	If the matrix structure is not yet known, it is necessary to provide at least one of |mesh/rows| or |mesh/cols| where |mesh/rows| indicates the number of samples for $y$ coordinates whereas |mesh/cols| is the number of samples used for $x$ coordinates (see also |mesh/ordering|). 

	Thus, the following example is also a valid method to define an input matrix.
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}
		% this yields also a 3x4 matrix:
		\addplot3[surf,mesh/rows=3] coordinates {
			(0,0,0) (1,0,0)   (2,0,0)   (3,0,0)
			(0,1,0) (1,1,0.6) (2,1,0.7) (3,1,0.5)
			(0,2,0) (1,2,0.7) (2,2,0.8) (3,2,0.5)
		};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

	It is enough to supply one of |mesh/rows| or |mesh/cols| -- the missing values will be determined automatically.
	
	If you provide one of |mesh/rows| or |mesh/cols|, any end--of--row marker seen inside of input files or coordinate streams will be ignored.

\end{pgfplotskeylist}

\begin{pgfplotskeylist}{mesh/scanline verbose=\mchoice{true,false} (initially false)}
	Provides debug messages in the \LaTeX\ output about end--of--scanline markers.

	The message will tell whether end--of--scanlines have been found and if they are the same.
\end{pgfplotskeylist}

\begin{pgfplotskey}{mesh/ordering=\mchoice{x varies,y varies,rowwise,colwise} (initially x varies)}
	Allows to configure the sequence in which matrices (meshes) are read from \verbpdfref{\addplot3 coordinates}, \verbpdfref{\addplot3 file} or \verbpdfref{\addplot3 table}.

	Here, \declaretext{x varies} means a sequence of points where $n$=|mesh/cols| successive points have the $y$ coordinate fixed. This is intuitive when you write down a function because $x$ is horizontal and $y$ vertical. Note that in matrix terminology, $x$ refers to \emph{column indices} whereas $y$ refers to \emph{row indices}. Thus, |x varies| is equivalent to \declaretext{rowwise} ordering in this sense. This is the initial configuration.
	
\long\def\temporarytest{\noexpand\par}
\begin{codeexample}[newline=\temporarytest]
\begin{tikzpicture}
\begin{axis}[mesh/ordering=x varies]
	% this yields a 3x4 matrix in `x varies'
	% ordering:
	\addplot3[surf] coordinates {
		(0,0,0) (1,0,0)   (2,0,0)   (3,0,0)

		(0,1,0) (1,1,0.6) (2,1,0.7) (3,1,0.5)

		(0,2,0) (1,2,0.7) (2,2,0.8) (3,2,0.5)
	};
\end{axis}
\end{tikzpicture}
\end{codeexample}

	Consequently, |mesh/ordering=|\declaretext{y varies} provides points such that successive $m$=|mesh/rows| points form a column, i.e. the $x$ coordinate is fixed and the $y$ coordinate changes. In this sense, |y varies| is equivalent to \declaretext{colwise} ordering, it is actually a matrix transposition.
\long\def\temporarytest{\noexpand\par}
\begin{codeexample}[newline=\temporarytest]
\begin{tikzpicture}
\begin{axis}[mesh/ordering=y varies]
	% this yields a 3x4 matrix in colwise ordering:
	\addplot3[surf] coordinates {
		(0,0,0) (0,1,0)   (0,2,0)

		(1,0,0) (1,1,0.6) (1,2,0.7)

		(2,0,0) (2,1,0.7) (2,2,0.8)

		(3,0,0) (3,1,0.5) (3,2,0.5)
	};
\end{axis}
\end{tikzpicture}
\end{codeexample}
	Again, note the subtle difference to the common matrix indexing where a column has the second index fixed. \PGFPlots\ refers to the way one would write down a function on a sheet of paper (this is consistent with how Matlab (tm) displays discrete functions with matrizes).

	Please note that |shader=interp| relies on low level shadings which need to be given in row wise ordering, so a (potentially expensive) transposition of the data matrix will be performed in this case. If possible, supply your data in row wise ordering for |shader=interp|.
\end{pgfplotskey}

\begin{addplot3operation}[]{\marg{math expression}}{}
\label{cmd:addplot3:expr}
	\pgfmanualpdflabel{\textbackslash addplot3 expression}{}%
	Expression plotting also works in the same way as for two dimensional plots. Now, however, a two dimensional mesh is sampled instead of a single line, which may depend on |x| and |y|.

	The method \verbpdfref{\addplot3} \marg{math expr} visualizes the function $f(x,y) = $\meta{math expr} where $ f \colon [x_1,x_2] \times [y_1,y_2] \to \R$. The interval $[x_1,x_2]$ is determined using the |domain| key, for example using |domain=0:1|. The interval $[y_1,y_2]$ is determined using the |y domain| key. If |y domain| is empty, $[y_1,y_2] = [x_1,x_2]$ will be assumed. If |y domain=0:0| (or any other interval of length zero), it is assumed that the plot does not depend on |y| (thus, it is a line plot).

	The number of samples in $x$ direction is set using the |samples| key. The number of samples in $y$ direction is set using the |samples y| key. If |samples y| is not set, the same value as for $x$ is used. If |samples y|$\le 1$, it is assumed that the plot does not depend on |y| (meaning it is a line plot).

\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}
		\addplot3[surf] {y};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[colorbar]
		\addplot3
			[surf,faceted color=blue,
			 samples=15,
			 domain=0:1,y domain=-1:1]
			{x^2 - y^2};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

	Expression plotting sets |mesh/rows| and |mesh/cols| automatically; these settings don't have any effect for expression plotting.
\end{addplot3operation}

\begin{addplot3operation}[]{expression}{\marg{math expr}}
	The syntax

	\verbpdfref{\addplot3} \marg{math expression}|;|

	as short-hand equivalent for

	\verbpdfref{\addplot3 expression} \marg{math expression}|;|
\end{addplot3operation}

\begin{addplot3operation}[]{(\meta{$x$ expression},\meta{$y$ expression},\meta{$z$ expression})}{}
	A variant of \verbpdfref{\addplot3 expression} which allows to provide different coordinate expressions for the $x$, $y$ and $z$ coordinates. This can be used to generate parameterized plots.

	Please note that |\addplot (x,y,x^2)| is equivalent to |\addplot expression {x^2}|.

	Note further that since the complete point expression is surrounded by round braces, round braces inside of \meta{$x$ expression}, \meta{$y$ expression} or \meta{$z$ expression} need to be treated specially. Surround the expressions (which contain round braces) with curly braces:

	|\addplot3 (|\marg{$x$ expr}|, |\marg{$y$ expr}|, |\marg{$z$ expr}|);|
\end{addplot3operation}

\subsubsection{Line Plots}

Three dimensional line plots are generated if the input source has no matrix structure. Line plots take the input coordinates and connect them in the order of appearance.

\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[xlabel=$x$,ylabel=$y$]
	\addplot3 coordinates {(0,0,0) (0,0.5,1) (0,1,0)};
	\addplot3 coordinates {(0,1,0) (0.5,1,1) (1,1,0)};
	\end{axis}
\end{tikzpicture}
\end{codeexample}
If there is no value for both, |mesh/rows| and |mesh/cols| or if one of them is |1|, \PGFPlots\ will draw a line plot. This is also the case if there is no end--of--scanline marker (empty line) in the input stream.

For \verbpdfref{\addplot3 expression}, this requires to set |samples y=0| to disable the generation of a mesh.
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[view={60}{30}]
\addplot3+[domain=0:5*pi,samples=60,samples y=0] 
	({sin(deg(x))},
	 {cos(deg(x))},
	 {2*x/(5*pi)});
\end{axis}
\end{tikzpicture}
\end{codeexample}

Three dimensional line plots will usually employ lines to connect points (i.e.\ the initial |sharp plot| handler of \Tikz). The |smooth| method of \Tikz\ might also prove be an option. Note that no piecewise constant plot, comb or bar plot handler is supported for three dimensional axes.

\subsubsection{Scatter Plots}

Three dimensional scatter plots have the same interface as for two dimensional scatter plots, so all examples of section~\ref{sec:pgfplots:scatter:2d} can be used for the three dimensional case as well. 
The key features are to use |only marks| and/or |scatter| as plot styles. 

We provide some more examples which are specific for the three dimensional case.

Our first example uses |only marks| to place the current plot |mark| at each input position:
\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[
		xlabel=$x$,
		ylabel=$y$,
		zlabel={$f(x,y) = x\cdot y$},
		title=A Scatter Plot Example]
	% `pgfplotsexample4_grid.dat' contains a
	% large sequence of input points of the form
	% x_0   x_1     f(x)    
	% 0     0       0       
	% 0     0.03125 0       
	% 0     0.0625  0       
	% 0     0.09375 0       
	% 0     0.125   0       
	% 0     0.15625 0       
	\addplot3+[only marks] table
		{plotdata/pgfplotsexample4_grid.dat};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

If we add the key |scatter|, the plot mark will also use the colors of the current |colormap|:
\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[
		xlabel=$x$,
		ylabel=$y$,
		zlabel={$f(x,y) = x\cdot y$},
		title=A Scatter Plot Example]
	\addplot3+[only marks,scatter] table 
		{plotdata/pgfplotsexample4_grid.dat};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

A more sophisticated example is to draw the approximated function as a |surf| plot (which requires matrix data) and the underlying grid (which is |scatter|ed data) somewhere into the same axis. We choose to place the $(x,y)$ grid points at $z=1.4$. Furthermore, we want the grid points to be colored according to the value of column |f(x)| in the input table:
\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[
		3d box,
		zmax=1.4,
		colorbar,
		xlabel=$x$,
		ylabel=$y$,
		zlabel={$f(x,y) = x\cdot y$},
		title={Using Coordinate Filters to fix $z=1.4$}]
	% `pgfplotsexample4.dat' contains similar data as in 
	% `pgfplotsexample4_grid.dat', but it uses a uniform
	% matrix structure (same number of points in every scanline).
	% See examples above for extracts.
	\addplot3[surf,mesh/ordering=y varies] 
		table {plotdata/pgfplotsexample4.dat};
	\addplot3[scatter,scatter src=\thisrow{f(x)},only marks, z filter/.code={\def\pgfmathresult{1.4}}] 
		table {plotdata/pgfplotsexample4_grid.dat};
	\end{axis}
\end{tikzpicture}
\end{codeexample}
\noindent We used |z filter| to fix the $z$ coordinate to $1.4$. We could also have used the |table/z expr=1.4| feature
\begin{codeexample}[code only]
	\addplot3[scatter,scatter src=\thisrow{f(x)},only marks] 
		table[z expr=1.4] {plotdata/pgfplotsexample4_grid.dat};
\end{codeexample}
\noindent to get exactly the same effect. Choose whatever you like best. The |z filter| works for every coordinate input routine, the |z expr| feature is only available for |plot table|.


The following example uses |mark=cube*| and |z buffer=sort| to place boxes at each input coordinate. The color for each box is determined by |point meta={x+y+3}|. The remaining keys are just for pretty printing.
\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[
	view={120}{40},
	width=220pt,
	height=220pt,
	grid=major,
	z buffer=sort,
	xmin=-1,xmax=9,
	ymin=-1,ymax=9,
	zmin=-1,zmax=9,
	enlargelimits=upper,
	xtick={-1,1,...,19},
	ytick={-1,1,...,19},
	ztick={-1,1,...,19},
	xlabel={$l_1$},
	ylabel={$l_2$},
	zlabel={$l_3$},
	point meta={x+y+z+3},
	colormap={summap}{
		color=(black); color=(blue); 
		color=(black); color=(white) 
		color=(orange) color=(violet) 
		color=(red)
	},
	scatter/use mapped color={
		draw=mapped color,fill=mapped color!70},
	]
	% `pgfplots_scatter4.dat' contains a large sequence of
	% the form
	% l_0   l_1     l_2     
	% 1     6       -1      
	% -1    -1      -1      
	% 0     -1      -1      
	% -1    0       -1      
	% -1    -1      0       
	% 1     -1      -1      
	% 0     0       -1      
	% 0     -1      0       
	\addplot3[only marks,scatter,mark=cube*,mark size=7] 
		table {plotdata/pgfplots_scatterdata4.dat};

\end{axis}
\end{tikzpicture}
\end{codeexample}


\subsubsection{Mesh Plots}
\label{sec:2d:mesh}
\begin{plottype}[/pgfplots]{mesh}
	A mesh plot uses different colors for each mesh segment. Each mesh segment gets the same color. The color is determined using a ``color coordinate'' which is also called ``meta data'' throughout this document. It is the same data which is used for surface and scatter plots as well, see section~\ref{pgfplots:pointmeta}. In the initial configuration, the ``color coordinate'' is the $z$ axis (or the $y$ axis for two dimensional plots). This color coordinate is mapped linearly into the current color map to determine the color for each mesh segment. Thus, if the smallest occurring color data is, say, $-1$ and the largest is $42$, points with color data $-1$ will get the color at the lower end of the color map and points with color data $42$ the color of the upper end of the color map.

\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}
		\addplot3[mesh] {x^2};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

	A mesh plot can be combined with markers or with the |scatter| key which does also draw markers in different colors.

\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}
	\addplot3+[mesh,scatter,samples=10,domain=0:1] 
		{x*(1-x)*y*(1-y)};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[grid=major,view={210}{30}]
	\addplot3+[mesh,scatter,samples=10,domain=0:1] 
		{5*x*sin(2*deg(x)) * y*(1-y)};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

	\paragraph{Details:}
	\begin{itemize}
		\item 
	A mesh plot uses the same implementation as |shader=flat| to get one color for each single segment. Thus, if |shader=flat mean|, the color for a segment is determined using the \emph{mean} of the color data of adjacent vertices. If |shader=flat corner|, the color of a segment is the color of \emph{one} adjacent vertex.
		\item As soon as |mesh| is activated, |color=mapped color| is installed. This is \emph{necessary} unless one needs a different color -- but |mapped color| is the only color which reflects the color data.

		It is possible to use a different color using the |color=|\meta{color name} as for any other plot.

		\item It is easily possible to add |mark=|\meta{marker name} to mesh plots, |scatter| is also possible. Scatter plots will use the same color data as for the mesh.
	\end{itemize}

\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[view/az=14]
	\addplot3[mesh,draw=red,samples=10] {x^2-y^2};	
	\end{axis}
\end{tikzpicture}
\end{codeexample}
	
	Mesh plots use the |mesh legend| style to typeset legend images.
\end{plottype}

\begin{pgfplotskey}{mesh/check=\mchoice{false,warning,error} (initially error)}
	Allows to configure whether an error is generated if |mesh/rows| $\times$ |mesh/cols| does not equal the total number of coordinates.

	If you know exactly what you are doing, it may be useful to disable the check. If you are unsure, it is best to leave the initial setting.
\end{pgfplotskey}

\begin{pgfplotskey}{z buffer=\mchoice{default,none,auto,sort,reverse x seq,reverse y seq,reverse xy seq} (initially default)}
	This key allows to choose between different $z$ buffering strategies. A $z$ buffer determines which parts of an image should be drawn in front of other parts. Since both, the graphics packages \PGF\ and the final document format |.pdf| are inherently two dimensional, this work has to be done in \TeX. Currently, several (fast) heuristics can be used which work reasonably well for simple mesh- and surface plots. Furthermore, there is a (time consuming) sorting method which does also work if the fast heuristics fails.

	The $z$ buffering algorithms of \PGFPlots\ apply only to a single |\addplot| command. Different |\addplot| commands will be drawn on top of each other, in the order of appearance.

	The choice \declaretext{default} checks if we are currently working with a mesh or surface plot and uses |auto| in this case. If not, it sets |z buffer=none|.

	The choice \declaretext{none} disables $z$ buffering. This is also the case for two dimensional axes which don't need $z$ buffering.

	The choice \declaretext{auto} is the initial value for any mesh- or surface plot: it uses a very fast heuristics to decide how to realize $z$ buffering for mesh and surface plots. The idea is to reverse either the sequence of all $x$ coordinates, or those of all $y$ coordinates, or both. For regular meshes, this suffices to provide $z$ buffering. In other words: the choice |auto| will use one of the three reverse strategies |reverse |*| seq| (or none at all).

	The choice \declaretext{sort} can be used for scatter, line, mesh and surface plots. It really sorts according to the depth of each point (or mesh segment)\footnote{The choice \texttt{sort} is \emph{not} available for surface plots with \texttt{shader=interp} because the low level format doesn't support sorting.}. Sorting in \TeX\ uses a slow algorithm and may require a lot of memory (although it has the expected runtime asymptotics $\mathcal O(N \log N)$).

	The remaining choices apply only to mesh/surface plots and do nothing more then their name indicates: they reverse the coordinate sequences (using quasi linear runtime). They should only be used in conjunction by |z buffer=auto|.
\end{pgfplotskey}

\subsubsection{Surface Plots}
\label{sec:pgfplots:surfplots}
\begin{plottype}[/pgfplots]{surf}
	A surface plot visualizes a two dimensional, single patch using different fill colors for each patch segment. Each patch segment is a (pseudo) rectangle, that means input data is given in form of a data matrix as is discussed in the introductory section about three dimensional coordinates,~\ref{pgfplots:sec:threedim}.

\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}
		\addplot3[surf,shader=interp] {x*y};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

	The simplest way to generate surface plots is to use the plot expression feature, but -- as discussed in section~\ref{pgfplots:sec:threedim} -- other input methods like \verbpdfref{\addplot3 table} or \verbpdfref{\addplot3 coordinates} are also possible. 

	The appearance can be configured using |colormap|s, the value of the |shader|, |faceted color| keys and the current |color| and/or |draw| / |fill| color. As for |mesh| plots, the special |color=mapped color| is installed for the faces. The stroking color for faceted plots can be set with |faceted color| (see below for details).

\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[
		grid=major,
		colormap/greenyellow]
	\addplot3[surf,samples=30,domain=0:1] 
		{5*x*sin(2*deg(x)) * y};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}
		\addplot3[surf,faceted color=blue] {x+y};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[colormap/cool]
	\addplot3[surf,samples=10,domain=0:1,
		shader=interp] 
		{x*(1-x)*y*(1-y)};
	\end{axis}
\end{tikzpicture}
\begin{tikzpicture}
	\begin{axis}[colormap/cool]
	\addplot3[surf,samples=25,domain=0:1,
		shader=flat] 
		{x*(1-x)*y*(1-y)};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[grid=major]
		\addplot3[surf,shader=interp,
			samples=25,domain=0:2,y domain=0:1] 
			{exp(-x) * sin(pi*deg(y))};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[grid=major]
		\addplot3[surf,shader=faceted,
			samples=25,domain=0:2,y domain=0:1] 
			{exp(-x) * sin(pi*deg(y))};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

	Details about the shading algorithm are provided below in the documentation of |shader|.

	Surface plots use the |mesh legend| style to create legend images.
\end{plottype}

\begin{pgfplotskey}{shader=\mchoice{flat,interp,faceted,flat corner,flat mean} (initially faceted)}
	Configures the shader used for surface plots. The shader determines how the color data available at each single vertex is used to fill the surface patch.

	The simplest choice is to use one fill color for each segment, the choice |flat|.

\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}
	\addplot3[surf,shader=flat,
		samples=10,domain=0:1] 
		{x^2*y};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

	\noindent The |flat| shader provides full support of |z buffer|ing, that means it does also support the choice |z buffer=sort|. There are (currently) two possibilities to determine the single color for every segment:
	\begin{description}
		\item[\declaretext{flat corner}] Uses the color data of one vertex to color the segment. It is not defined which vertex is used here\footnote{\PGFPlots\ just uses the last vertex encountered in its internal processings -- but after any $z$ buffer re-orderings.}.

		\item[\declaretext{flat mean}] Uses the mean of all four color data values as segment color. This is the initial value as it provides symmetric colors for symmetric functions.
	\end{description}
	The choice |flat| is actually the same as |flat mean|. Please note that |shader=flat mean| and |shader=flat corner| also influence mesh plots -- the choices determine the mesh segment color.

	Another choice is |shader=|\declareandlabel{interp} which uses Goraud shading (smooth linear interpolation of two triangles approximating rectangles) to fill the segments. 

\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}
	\addplot3[surf,shader=interp,
		samples=10,domain=0:1] 
		{x^2*y};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

	The |shader=interp| setting requires a special low--level shading implementation which is currently (only) available for the postscript driver \declaretext{pgfsys-dvips.def} and the |pdflatex| driver \declaretext{pgfsys-pdftex.def}. For other drivers, the choice |shader=interp| will result in a warning and is equivalent to |shader=flat mean|. 
	


	Finally, the choice |shader=faceted| uses a constant fill color for every mesh segment (as for |flat|) and the value of the key |/pgfplots/faceted color| to draw the connecting mesh elements:
\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}
	\addplot3[surf,shader=faceted,
		samples=10,domain=0:1] 
		{x^2*y};
	\end{axis}
\end{tikzpicture}
\end{codeexample}


	\paragraph{Details:}
	\begin{itemize}
		\item The choice |shader=faceted| is the same as |shader=flat| -- except that it uses a special draw color.
		
		So, |shader=faceted| has the same effect as 
		
		|shader=flat,draw=\pgfkeysvalueof{/pgfplots/faceted color}|.

		\item The |flat| shader uses the current |draw| and |fill| colors. They are set with |color=mapped color| and can be overruled with |draw=|\meta{draw color} and |fill=|\meta{fill color}. The |mapped color| always contains the color of the color map. 
		
		\item The |interp| shader does not support mesh colors and it uses the current color map in any case (it simply ignores the values of |draw| and |fill|).

		\item You easily add |mark=|\meta{plot mark} to mesh and/or surface plots or even colored plot marks with |scatter|. The scatter plot feature will use the same color data as for the surface.

		But: Markers and surfaces do not share the same depth information. They are drawn on top of each other.

		\item For surface plots with lots of points, |shader=interp| produces smaller |pdf| documents, requires less compilation time in \TeX\ and requires less time to display in Acrobat Reader.

		\item The postscript driver did not work when I tried to write hex encoded 32 bit binary coordinates into the shading. So, the postscript driver \emph{truncates} coordinates to 24 bit -- which might result in a loss of precision (the truncation is not very intelligent). See the |surf shading/precision| key for details. To improve compatibility, this 24 bit truncation algorithm is enabled by default.
	\end{itemize}

\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}
	\addplot3[surf,shader=flat,
		draw=black,
		samples=10,domain=0:1] 
		{x^2*y};
	\end{axis}
\end{tikzpicture}
\end{codeexample}

\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}
	\addplot3[surf,shader=faceted,
		scatter,mark=*,
		samples=10,domain=0:1] 
		{x^2*y};
	\end{axis}
\end{tikzpicture}
\end{codeexample}
\end{pgfplotskey}

\begin{pgfplotskey}{faceted color=\marg{color name} (initially mapped color!80!black)}
	Defines the color to be used for meshes of faceted surface plots.
\end{pgfplotskey}

\begin{pgfplotskey}{surf shading/precision=\mchoice{pdf,postscript,ps} (initially postscript)}
	A key to configure how the low level driver for |shader=interp| writes its data. The choice |pdf| uses 32 bit binary coordinates (which is lossless). The resulting |.pdf| files appear to be correct, but they can't be converted to postscript -- the converter software always complaints about an error. 

	The choice |postscript| (or, in short, |ps|) uses 24 bit truncated binary coordinates. This results in both, readable |.ps| and |.pdf| files. However, the truncation is lossy.

	If anyone has ideas how to fix this problem: let me know. As far as I know, postscript should accept 32 bit coordinates, so it might be a mistake in the shading driver.
\end{pgfplotskey}

\subsubsection{Parameterized Plots}
Parameterized plots use the same plot types as documented in the preceding sections: both, mesh and surface plots are actually special parameterized plots where $x$ and $y$ are on cartesian grid points.

Parameterized plots just need a special way to provide the coordinates:

\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
	\begin{axis}[view={60}{30}]
	\addplot3+[domain=0:5*pi,samples=60,samples y=0] 
		({sin(deg(x))},
		 {cos(deg(x))},
		 {2*x/(5*pi)});
	\end{axis}
\end{tikzpicture}
\end{codeexample}
\noindent The preceding example uses |samples y=0| to indicate that a line shall be samples instead of a matrix. The curly braces are necessary because \TeX\ can't nest round braces. The single expressions here are used to parameterize the helix.

Another example follows. Note that |z buffer=sort| is a necessary method here.

\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[view={60}{30}]
	\addplot3[mesh,z buffer=sort,
		samples=20,domain=-1:0,y domain=0:2*pi]
		({sqrt(1-x^2) * cos(deg(y))},
		 {sqrt( 1-x^2 ) * sin(deg(y))},
		 x);
\end{axis}
\end{tikzpicture}
\end{codeexample}

\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[view={60}{30}]
	\addplot3[mesh,z buffer=sort,
		scatter,only marks,scatter src=z,
		samples=30,domain=-1:1,y domain=0:2*pi]
		({sqrt(1-x^2) * cos(deg(y))},
		 {sqrt( 1-x^2 ) * sin(deg(y))},
		 x);
\end{axis}
\end{tikzpicture}
\end{codeexample}

\pgfplotsexpensiveexample
\begin{codeexample}[]
\begin{tikzpicture}
\begin{axis}[view={60}{30}]
	\addplot3[surf,shader=flat,z buffer=sort,
		samples=30,domain=-1:0,y domain=0:2*pi]
		({sqrt(1-x^2) * cos(deg(y))},
		 {sqrt( 1-x^2 ) * sin(deg(y))},
		 x);
\end{axis}
\end{tikzpicture}
\end{codeexample}

\subsubsection{About 3D Const Plots and 3D Bar Plots}
There are currently \emph{no} equivalents of |const plot| and its variants or the bar plot types like |ybar| for three dimensional axes, sorry.