blob: 9fb33aee1350de763923245890fcec3dce611c3c (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
|
\providecommand{\eulersidentity}{%
\begin{equation*}
\E[\I\pi]+1=0
\end{equation*}
}
\providecommand{\sample}[1]{%
%
\newacronym{nwejm-\languagename}{nwejm}{North-Western European Journal of Mathematics}
%
\begin{abstract}
\lipsum[1]
\end{abstract}
%
\keywords{foo,bar,baz}
%
\msc{11B13,11B30,11P70}
%
\acknowledgments{Thanks to mum, daddy and all my buddies.}
%
\maketitle
%
\section*{Introduction}
%
\subsection{Citations tests}
#1
%
\subsection{Cross-references tests}
Cf. \vref{thm:bolzano-weierstrass-\languagename,rmk:euler-\languagename} \&
\vref{eq:euler-\languagename} \& \vref{sec:first-numbered-\languagename}.
%
\subsection{Miscellaneaous}
\begin{itemize}
\item It has been proved in the \century{19} \aside{more than 100 years ago}
that...
\item This has been conceptualized in the \century{-3} \aside*{more than 2000
years ago}.
\item \acrshort{nwejm-\languagename} \ie{} \acrlong*{nwejm-\languagename}.
\item \acrshort{nwejm-\languagename} \ie*{} \acrlong*{nwejm-\languagename}.
\end{itemize}
%
\subsection{Acronyms tests}
\begin{enumerate}
\item The present article is published in the \gls{nwejm-\languagename}.
\item Moreover, the present article is published in the \gls{nwejm-\languagename}.
\end{enumerate}
%
\subsection{Theorems tests}
\begin{theorem}[Bolzano–Weierstrass]\label{thm:bolzano-weierstrass-\languagename}
A subset of $\bbR^n$ ($n\in\bbN^*$) is sequentially compact if and only if it is
closed and bounded.
\end{theorem}
\begin{proof}[not that easy!]
...
\end{proof}
\begin{definition}
In Cartesian space $\bbR^n$ with the $p$-norm $L_p$, an open ball is the set
\[
B(r)=\set{x\in \bbR^n}[\sum _{i=1}^n\left|x_i\right|^p<r^p]
\]
\end{definition}
\begin{remark}[Euler's identity]\label{rmk:euler-\languagename}
One of the most beautiful mathematical equation:
\begin{equation}
\E[\I\pi]+1=0
\end{equation}
\end{remark}
\begin{lemma*}[Zorn]
Suppose a partially ordered set $P$ has the property that every chain has an
upper bound in $P$. Then the set $P$ contains at least one maximal element.
\end{lemma*}
\begin{axiom}\label{my-axiom-\languagename}
The following assertions are considered as true.
\begin{assertions}
\item\label{rare-expensive-\languagename} Anything that is scarce also is
expensive.
\item\label{cheap-horse-\languagename} A cheap horse is scarce.
\end{assertions}
\end{axiom}
According to \vref{rare-expensive-\languagename,cheap-horse-\languagename}
from \vref{my-axiom-\languagename}, a cheap horse is expensive.
%
\subsection{Dummy text and nice equation}
%
\lipsum[2-6]
%
\begin{equation}\label{eq:euler-\languagename}
\E[\I\pi]+1=0
\end{equation}
%
\lipsum[8-15]
%
\section{First (numbered) section}\label{sec:first-numbered-\languagename}
\lipsum[2]
\subsection{First subsection}
\lipsum[3-8]
\subsection{Second subsection}
\lipsum[9-15]
\section{Second (numbered) section}
\lipsum[16-38]
\printbibliography
}
|