summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/numerica/numerica-plus.tex
blob: 049418f1a1108d8980988b4865d5c105c2347841 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
%% LyX 2.4.0-alpha1 created this file.  For more info, see https://www.lyx.org/.
%% Do not edit unless you really know what you are doing.
\documentclass[english,tableposition=top]{report}
\usepackage{lmodern}
\renewcommand{\sfdefault}{lmss}
\renewcommand{\ttdefault}{lmtt}
\usepackage[T1]{fontenc}
\usepackage{textcomp}
\usepackage[latin9]{inputenc}
\setcounter{secnumdepth}{3}
\usepackage{color}
\definecolor{shadecolor}{rgb}{0.667969, 1, 1}
\usepackage{babel}
\usepackage{array}
\usepackage{wrapfig}
\usepackage{booktabs}
\usepackage{framed}
\usepackage{url}
\usepackage{amsmath}
\usepackage[unicode=true,pdfusetitle,
 bookmarks=true,bookmarksnumbered=true,bookmarksopen=true,bookmarksopenlevel=2,
 breaklinks=true,pdfborder={0 0 1},backref=section,colorlinks=true]
 {hyperref}

\makeatletter

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LyX specific LaTeX commands.
%% Because html converters don't know tabularnewline
\providecommand{\tabularnewline}{\\}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Textclass specific LaTeX commands.
\newenvironment{centred}%
  {\begin{center}\baselineskip=13pt\parskip=1pt}{\end{center}}
\newenvironment{lyxcode}
	{\par\begin{list}{}{
		\setlength{\rightmargin}{\leftmargin}
		\setlength{\listparindent}{0pt}% needed for AMS classes
		\raggedright
		\setlength{\itemsep}{0pt}
		\setlength{\parsep}{0pt}
		\normalfont\ttfamily}%
	 \item[]}
	{\end{list}}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% User specified LaTeX commands.
\usepackage[plus]{numerica}

\newcommand\rel{\,\varrho\;}
\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\gd}{gd}

\reuse

\usepackage{upquote}

\makeatother

\begin{document}
\title{\texttt{numerica-plus}~\\
}
\author{Andrew Parsloe\\
(\url{ajparsloe@gmail.com})}
\maketitle
\begin{abstract}
In this module of the \verb`numerica` package, commands are defined
which iterate and find fixed points of functions of a single variable,
which find the zeros or extrema of such functions, and which calculate
the terms of recurrence relations.\\
\\
\noindent\begin{minipage}[t]{1\columnwidth}%
\begin{shaded}%

\paragraph*{Note:}
\begin{itemize}
\item {\normalsize This document applies to version 1.0.0 of }{\normalsize\texttt{numerica-plus}}{\normalsize .def.}{\small\par}
\item {\normalsize Reasonably recent versions of the \LaTeX 3 bundles }{\normalsize\texttt{l3kernel}}{\normalsize{}
and }{\normalsize\texttt{l3packages}}{\normalsize{} are required.}{\small\par}
\item {\normalsize I refer a number of times in this document to }{\normalsize\emph{Handbook
of Mathematical Functions}}{\normalsize , edited by Milton Abramowitz
and Irene A. Segun, Dover, 1965. This is abbreviated to }{\normalsize\emph{HMF}}{\normalsize .}{\small\par}
\end{itemize}
\end{shaded}%
\end{minipage}
\end{abstract}
\tableofcontents{}

\chapter{Introduction}

By calling \texttt{numerica} with the \texttt{plus} package option
in the preamble,
\begin{lyxcode}
\textbackslash usepackage{[}plus{]}\{numerica\}
\end{lyxcode}
a number of additional commands are loaded:
\begin{itemize}
\item \verb`\nmcIterate`, a command to iterate a function (apply it repeatedly
to itself), including finding fixed points (values $x$ where $f(x)=x$);
\item \verb`\nmcSolve`, a command to find the zeros of functions of a single
variable (values $x$ for which $f(x)=0$) or, failing that, local
maxima or minima of such functions;
\item \verb`\nmcRecur`, a command to calculate the values of terms in recurrence
relations in a single (recurrence) variable (like the terms of the
Fibonacci sequence or Legendre polynomials).
\end{itemize}
These commands are defined in the package \texttt{numerica-plus.def}
which is loaded with \texttt{numerica.sty} when the \texttt{plus}
option is used. The new commands all share the syntax of the \verb`\nmcEvaluate`
command. I will discuss them individually in later chapters but turn
first to an example that illustrates their use and gives a sense of
`what they are about'.

\section{Example of use: the rotating disk}

\label{sec:introExampleOfUse}Consider a disk rotating uniformly with
angular velocity $\omega$ in an anticlockwise sense in an inertial
system in which the disk's centre \textbf{0} is at rest. Three distinct
points \textbf{1}, \textbf{2}, \textbf{3} are fixed in the disk and,
in a co-rotating polar coordinate system centred at \textbf{0}, have
polar coordinates $(r_{i},\theta_{i})$ ($i,j=1,2,3$). Choose \textbf{01}
as initial line so that $\theta_{1}=0$.

The cosine rule for solving triangles tells us that the time $t_{ij}$
in the underlying inertial system for a signal to pass from \textbf{i}
to \textbf{j} satisfies the equation
\[
t_{ij}=c^{-1}\sqrt{r_{i}^{2}+r_{j}^{2}-2r_{i}r_{j}\cos(\theta_{j}-\theta_{i}+\omega t_{ij})}\equiv f(t_{ij}),
\]
where $c$ is the speed of light. (Equally, we could be describing
an acoustic signal between points on a disk rotating uniformly in
a still, uniform atmosphere \textendash{} in which case $c$ would
be the speed of sound.) Although the equation doesn't solve algebraically
for the time $t_{ij},$ it does tell us that $t=t_{ij}$ is a \emph{fixed
point} of the function $f(t)$. To calculate fixed points we use the
command \verb`\nmcIterate`, or its short-name form \verb`\iter`,
with the star option, \verb`\iter*`. For \verb`\iter` the star option
means: continue iterating until a fixed point has been reached and,
as with the \verb`\eval` command, suppress all elements from the
display save for the numerical result. 

First, though, values need to be assigned to the various parameters.
Suppose we use units in which $c=30,$ $r_{1}=10$ and $r_{3}=20$;
also $\omega=0.2$ radians per second and $\theta_{13}\equiv\theta_{3}-\theta_{1}=0.2$
radians. We shall give $t$ an initial value $1$ (plucked from the
air). Its position as the rightmost item in the vv-list tells \verb`\iter`
that $t$ is the iteration variable:
\begin{verbatim}
    \iter*{ c^{-1}\sqrt{r_1^2+r_3^2-2r_1 r_3
              \cos(\theta_{13}+\omega t)}
          }[ c=30,r_1=10,r_3=20,\theta_{13}=0.2,
             \omega=0.2,t=1 ], \quad\info{iter}.
\end{verbatim}
$\Longrightarrow$ \iter*{ c^{-1}\sqrt{r_1^2+r_3^2-2r_1 r_3
              \cos(\theta_{13}+\omega t)}
          }[ c=30,r_1=10,r_3=20,\theta_{13}=0.2,
             \omega=0.2,t=1 ],
\quad\info{iter}. The \verb`\nmcInfo` command or, more briefly \verb`\info`, can
be used to display the number of iterations required to attain the
fixed-point value. 

To six figures, only five iterations are needed, which seems rapid
but we can check this by substituting $t=0.356899$ back into the
formula and \verb`\eval`-uating it:
\begin{verbatim}
    \eval*{ c^{-1}\sqrt{r_1^2+r_3^2-2r_1 r_3
              \cos(\theta_{13}+\omega t)}
          }[ c=30,r_1=10,r_3=20,\theta_{13}=0.2,
             \omega=0.2,t=0.356899 ]
\end{verbatim}
$\Longrightarrow$  \eval*{ c^{-1}\sqrt{r_1^2+r_3^2-2r_1 r_3
              \cos(\theta_{13}+\omega t)}
          }[ c=30,r_1=10,r_3=20,\theta_{13}=0.2,
             \omega=0.2,t=0.356899 ], confirming that we have indeed calculated a fixed point. That it
took only $5$ iterations can be checked by omitting the asterisk
from the \verb`\iter` command and specifying the total number of
iterations to perform. I choose \texttt{do=}7 to show not just the
$5$th iteration but also the next two just to confirm that the result
is stable. We shall view all $7$: \texttt{see=7}. I have also suppressed
display of the vv-list by giving the key \texttt{vvd}\emph{ }an empty
value,\footnote{See the associated document \texttt{numerica-basics.pdf}, the chapter
on settings.} since there are too many variables to display on a line:
\begin{verbatim}
    \iter[do=7,see=7,vvd=]
      {\[ c^{-1}\sqrt{r_1^2+r_3^2-2r_1 r_3
        \cos(\theta_{13}+\omega t)} \]}
          [ c=30,r_1=10,r_3=20,\theta_{13}=0.2,
            \omega=0.2,t=1 ]
\end{verbatim}
$\Longrightarrow$ \iter[do=7,see=7,vvd=]
      {\[ c^{-1}\sqrt{r_1^2+r_3^2-2r_1 r_3
        \cos(\theta_{13}+\omega t)} \]}
          [ c=30,r_1=10,r_3=20,\theta_{13}=0.2,
            \omega=0.2,t=1 ]
\noindent \begin{flushleft}
This display makes clear that on the $5$th iteration, the $6$-figure
value has been attained. 
\par\end{flushleft}

Alternatively, we could use the \verb`\nmcRecur` command, or its
short-name form \verb`\recur`, to view the successive iterations
since an iteration is a first-order recurrence: $f_{n+1}=f(f_{n})$:
\begin{verbatim}
    \recur[do=8,see1=0,see2=5,vvd={,\\(vv)\\},*]
      {\[ f_{n+1}=c^{-1}\sqrt{r_1^2+r_3^2-2r_1 r_3
        \cos(\theta_{13}+\omega f_{n})} \]}
          [ c=30,r_1=10,r_3=20,\theta_{13}=0.2,
            \omega=0.2, f_{0}=1 ]
\end{verbatim}
$\Longrightarrow$     \recur[do=8,see1=0,see2=5,vvd={\\(vv)\\},*]
      {\[ f_{n+1}=c^{-1}\sqrt{r_1^2+r_3^2-2r_1 r_3
        \cos(\theta_{13}+\omega f_{n})} \]} 
          [ c=30,r_1=10,r_3=20,\theta_{13}=0.2,
            \omega=0.2, f_{0}=1 ]

\noindent I have specified \texttt{do=8} terms rather than $7$ since
the zero-th term ($f_{0}=1$) is included in the count. I've chosen
to view the last $5$ of them but none prior to those by writing \texttt{see1=0,see2=5}.
The vv-list has been suppressed from the display (\texttt{vvd=} )
and the numerical results forced onto a new line (without an equation
number \textendash{} the \texttt{{*}} in the vv-list).

Another and perhaps more obvious way to find the value of $t_{13}$,
is to look for a zero of the function $f(t)-t$. That means using
the command \verb`\nmcSolve` or its short-name form \verb`\solve`.
I shall do so with the star option \verb`\solve*` which suppresses
display of all but the numerical result. A trial value for $t$ is
required. I have chosen \texttt{t=0}:
\begin{verbatim}
    \solve*{ c^{-1}\sqrt{r_1^2+r_3^2-2r_1 r_3
      \cos(\theta_{13}+\omega t)} - t }
        [ c=30,r_1=10,r_3=20,\theta_{13}=0.2,
          \omega=0.2,t=0 ], \quad\nmcInfo{solve}.
\end{verbatim}
$\Longrightarrow$ \solve*{ c^{-1}\sqrt{r_1^2+r_3^2-2r_1 r_3
              \cos(\theta_{13}+\omega t)}-t
          }[ c=30,r_1=10,r_3=20,\theta_{13}=0.2,
             \omega=0.2,t=0],
\quad\nmcInfo{solve}. 

Nearly the same answer as before is attained but this time many more
steps have been required. This is to be expected. The \verb`\solve`
command uses the bisection method. Since $1/2^{10}\approx1/10^{3}$
or $10$ bisections for $3$ decimal places, we can expect about $20$
bisections being needed for a $6$-decimal-place answer. The particular
form of the \verb`\nmcInfo` command display, `$1+20$ steps', indicates
that it took $1$ search step to find an interval in which the function
vanished and, having found that interval, $20$ bisections to narrow
the position of the zero to $6$-figures.

\subsection{Circuits}

Okay, so we can calculate the time taken in the underlying inertial
system for a signal to pass from one point of the rotating disk to
another. How long does it take to traverse the circuit \textbf{1}
to \textbf{2} to \textbf{3} back to \textbf{1}? That means forming
the sum $t_{12}+t_{23}+t_{31}$, hence calculating the separate $t_{ij}$
and then using \verb`\eval` to calculate their sum. 

To make things neater and easier to read, I assume a little symmetry.
Let the coordinates of \textbf{1} be $(a,0),$ of \textbf{2} be $(r,-\theta)$,
and of \textbf{3} be $(r,\theta)$: \textbf{2} and \textbf{3} are
at the same radial distance from the centre \textbf{0} and at the
same angular distance but on opposite sides of the line \textbf{01},
\textbf{3} an angle $\theta$ ahead of \textbf{1}, \textbf{2} an angle
$\theta$ behind \textbf{1}. The rotation is in the direction of positive
$\theta$. Rather than just calculate $t_{12}+t_{23}+t_{31}$ for
the circuit \textbf{1231}, I also calculate the time $t_{13}+t_{32}+t_{21}$
for a signal to traverse the opposite circuit \textbf{1321} and compare
them (form the difference). 

Note that with \textbf{2} and \textbf{3} positioned as they are relative
to \textbf{1}, 
\[
t_{31}=c^{-1}\sqrt{r^{2}+a^{2}-2ra\cos(\theta-\omega t_{31})}
\]
and 
\[
t_{12}=c^{-1}\sqrt{a^{2}+r^{2}-2ar\cos(\theta-\omega t_{12})}.
\]
Both $t_{12}$ and $t_{31}$ are fixed points of the same function
\[
F_{-1}(t)=c^{-1}\sqrt{r^{2}+a^{2}-2ra\cos(\theta-\omega t).}
\]
Similarly, both $t_{13}$ and $t_{21}$ are fixed points of 
\[
F_{+1}(t)=c^{-1}\sqrt{r^{2}+a^{2}-2ra\cos(\theta+\omega t)}.
\]
 Geometrically one can show that $t_{31}=t_{12}$ and $t_{13}=t_{21}$.
Analytically, with the values $c=30,a=10,r=20$, 
\[
0<F_{\pm1}(t)\le c^{-1}\sqrt{r^{2}+a^{2}+2ar}=c^{-1}(r+a)=1,
\]
so that we need look for fixed points only in the interval $[0,1]$.
Differentiating $F_{-1}(t)$ shows the derivative is negative on $[0,1]$,
hence that $F_{-1}$ is strictly decreasing there and can intersect
the identity mapping at most once on the interval. Similarly, differentiating
$F_{+1}(t)$ shows the derivative 
\[
\frac{ar\omega\sin(\theta+\omega t)}{c\sqrt{r^{2}+a^{2}-2ar\cos(\theta+\omega t)}}
\]
is positive on $[0,1]$, but with the given values for $c,a$ and
$r$, and with $\theta=0.2,\omega=0.2$, $F'_{+1}(t)<0.1$ on $[0,1]$:
hence $F_{+1}$ increases sufficiently slowly on the interval that
the identity mapping can intersect it at most once there. In both
cases, there can be at most one fixed point.

It follows that $t_{12}=t_{31}$ and $t_{13}=t_{21}$ and the round
trip times are $2t_{12}+t_{23}$ and $2t_{13}+t_{32}$.

\subsubsection{Nesting commands}

The calculation to compare the round trip times can be done `in one
go' by nesting the \verb`\iter*` commands to calculate the $t_{ij}$
inside an \verb`\eval*` command to form the sum of their results
and then take the difference. 
\begin{verbatim}
    $ 
    \eval*{ % circuit 1231
        2\iter*{ c^{-1}\sqrt{a^2+r^2-2ar
                  \cos(\theta-\omega t)} }
      + \iter*{ c^{-1}\sqrt{2r^2-2r^2
                  \cos(2\theta+\omega t)} }
    % circuit 1321
      - 2\iter*{ c^{-1}\sqrt{a^2+r^2-2ar
                  \cos(\theta+\omega t)} }
      - \iter*{ c^{-1}\sqrt{2r^2-2r^2
                  \cos(2\theta-\omega t)} }
          }[ c=30,a=10,r=20,\theta=0.2,\omega=0.2, t=1 ] 
    $
\end{verbatim}
$\Longrightarrow$     $ 
    \eval*{ % circuit 1231
        2\iter*{ c^{-1}\sqrt{a^2+r^2-2ar
                  \cos(\theta-\omega t)} }
      + \iter*{ c^{-1}\sqrt{2r^2-2r^2
                  \cos(2\theta+\omega t)} }
    % circuit 1321
      - 2\iter*{ c^{-1}\sqrt{a^2+r^2-2ar
                  \cos(\theta+\omega t)} }
      - \iter*{ c^{-1}\sqrt{2r^2-2r^2
                  \cos(2\theta-\omega t)} }
          }[ c=30,a=10,r=20,\theta=0.2,\omega=0.2, t=1 ] 
    $. 

By itself this result is of little interest beyond seeing that \texttt{numerica}
can handle it. What \emph{is} interesting is to find values of $\theta$,
say, given the other parameters and especially the value of $r$,
such that the time difference vanishes. Is there a circuit, despite
the rotation of the disk, such that it takes a signal the same time
to travel in opposite directions around the circuit? That is a job
for \verb`\nmcSolve` (or \verb`\solve`):
\begin{verbatim}
    \solve[p=.,var=\theta,vvi=]{$ % circuit 1231
        2\times\iter*[var=t]{ c^{-1}\sqrt{a^2+r^2-2ar
                  \cos(\theta-\omega t)} }
      + \iter*[var=t]{ c^{-1}\sqrt{2r^2-2r^2
                  \cos(2\theta+\omega t)} }
    % circuit 1321
      - 2\times\iter*[var=t]{ c^{-1}\sqrt{a^2+r^2-2ar
                  \cos(\theta+\omega t)} }
      - \iter*[var=t]{ c^{-1}\sqrt{2r^2-2r^2
                  \cos(2\theta-\omega t)} }
          $}[ c=30,a=10,r=20,\theta=0.1,\omega=0.2, {t}=1 ]
\end{verbatim}
$\Longrightarrow$ \solve[p=.,var=\theta,vvi=]{$ % circuit 1231
        2\times\iter*[var=t]{ c^{-1}\sqrt{a^2+r^2-2ar
                  \cos(\theta-\omega t)} }
      + \iter*[var=t]{ c^{-1}\sqrt{2r^2-2r^2
                  \cos(2\theta+\omega t)} }
    % circuit 1321
      - 2\times\iter*[var=t]{ c^{-1}\sqrt{a^2+r^2-2ar
                  \cos(\theta+\omega t)} }
      - \iter*[var=t]{ c^{-1}\sqrt{2r^2-2r^2
                  \cos(2\theta-\omega t)} }
          $}[ c=30,a=10,r=20,\theta=0.1,\omega=0.2, {t}=1 ]

One point to note here is the use of \verb`\times` (in \verb`2\times\iter*`)
as against the previous example with \verb`\eval*` where \verb`\times`
was not used. In the present case the formula is displayed (\verb`\solve`
wraps around math delimiters); the star on the \verb`\eval` command
in the previous example suppressed display of the formula. Without
the \verb`\times` the `$2$'s would be juxtaposed against the following
decimals, making it look as if the signal travel times were $20.537778$
and $20.614419$ and no doubt causing perplexity. Also note the \texttt{vvi=}
to suppress display of the vv-list.

But this is not a research paper on the rotating disk. I wished to
show how the different commands of \texttt{numerica-plus} can be used
to explore a meaningful problem. And although it looks as if a lot
of typing is involved, once $c^{-1}\sqrt{r^{2}+a^{2}-2ra\cos(\theta-\omega t)}$
has been formed in \LaTeX{} and values specified in the vv-list, much
of the rest is copy-and-paste followed by minor editing.

\section{Shared syntax of the new commands}

\texttt{numerica-plus} offers three new commands for three processes:
\verb`\nmcIterate` (short-name form \verb`\iter`) for iterating
functions, \verb`\nmcSolve` (short-name form \verb`\solve`) for
finding the zeros or (local) extrema of functions, and \verb`\nmcRecur`
(short-name form \verb`\recur`) for calculating terms of recurrence
relations.

All three commands share the syntax of the \verb`\nmcEvaluate` (or
\verb`\eval`) command detailed in the associated document \texttt{numerica-basics.pdf}.
When all options are used then the command looks like
\begin{centred}
\noindent \verb`\nmcIterate*[settings]{expr.}[vv-list][num. format]`
\end{centred}
You can substitute \verb`\nmcSolve`, or \verb`\nmcRecur` for \verb`\nmcIterate`
here. The arguments are similar to those for \verb`\nmcEvaluate`. 
\begin{enumerate}
\item \verb`*` optional switch; if present ensures a single number output
with no formatting, or an appropriate error message if the single
number cannot be produced;
\item \verb`[settings]` optional comma-separated list of \emph{key=value
}settings for this particular command and calculation;
\item \verb`{expr.}` the only mandatory argument; the mathematical expression
in \LaTeX{} form that is the object of interest;
\item \verb`[vv-list]` optional comma-separated list of \emph{variable=value
}items; for \verb`\iter` and \verb`\solve` the \emph{rightmost}
(or innermost) variable in the vv-list may have special significance;
\item \verb`[num. format]` optional format specification for presentation
of the numerical result (rounding, padding with zeros, scientific
notation); boolean output is suppressed for these commands.
\end{enumerate}
Boolean output makes little sense for these three commands and is
turned \emph{off}. Entering a question mark in the trailing number-format
option of each command has no effect \textendash{} see §. 

All commands also share with \verb`\nmcEvaluate` changes in the way
the result is displayed depending on whether they wrap around math
delimiters, or are wrapped within math delimiters, or are employed
in the absence of math delimiters. These distinctions are relevant\emph{
only if the optional star {*} is absent.}
\begin{itemize}
\item When the star option is used, the \emph{result} is a number only without
any formatting or vv-list display, or an error message is displayed.
\item When the star option is not used and one of the following is the case
\begin{itemize}
\item the command wraps around math delimiters, e.g. \verb`\iter{$ expr. $}`,
then the result is displayed in the form \emph{expression~=~result}
or the form \emph{expression~$\rightarrow$~result} as appropriate,
where \emph{result} may be multi-line and may include the vv-list,
\item the command is used within math delimiters, e.g. \verb`\[\iter...\]`,
then only the \emph{result} is presented, where \emph{result} may
be multi-line and may include the vv-list,
\item the command is used in the absence of delimiters, then the result
is presented as if it had been used between \verb`\[` and \verb`\]`.
\end{itemize}
\end{itemize}
Looking at the various examples in the preceding section on the rotating
disk you will see illustrations of all these situations.

\subsection{Settings}

\begin{table}
\noindent \centering{}\caption{\protect\label{tab:introSettingsInherited}Inherited settings options}
\noindent \begin{center}
\begin{tabular}{ll>{\raggedright}p{4cm}>{\raggedright}p{4cm}}
\toprule 
{\small key} & {\small type} & {\small meaning} & {\small default}\tabularnewline
\midrule
{\small\texttt{dbg}} & {\small int} & {\small debug `magic' integer} & {\small\texttt{0}}\tabularnewline
{\small\texttt{\textasciicircum}} & {\small char} & {\small exponent mark for sci. notation input} & {\small\texttt{e}}\tabularnewline
{\small\texttt{xx}} & {\small int (0/1)} & {\small multi-token variable switch} & {\small\texttt{1}}\tabularnewline
{\small\texttt{()}} & {\small int (0/1/2)} & {\small trig. function arg. parsing} & {\small\texttt{0}}\tabularnewline
{\small\texttt{o}} &  & {\small degree switch for trig. funcions} & \tabularnewline
{\small\texttt{log}} & {\small num} & {\small base of logarithms for }{\small{\small\verb`\log`}} & {\small\texttt{10}}\tabularnewline
{\small\texttt{vvmode}} & {\small int (0/1)} & {\small vv-list calculation mode} & {\small\texttt{0}}\tabularnewline
{\small\texttt{vvd}} & {\small tokens} & {\small vv-list display-style spec.} & {\small\texttt{\{,\}\textbackslash mskip 12mu plus 6mu minus 9mu(vv)}}\tabularnewline
{\small\texttt{vvi}} & {\small token(s)} & {\small vv-list text-style spec.} & {\small\texttt{\{,\}\textbackslash mskip 36mu minus 24mu(vv)}}\tabularnewline
{*} &  & {\small suppress equation numbering if }{\small\texttt{\textbackslash\textbackslash}}{\small{}
in }{\small\texttt{vvd}} & \tabularnewline
{\small\texttt{p}} & char(s) & {\small punctuation (esp. in display-style)} & {\small\texttt{, (comma)}}\tabularnewline
{\small\texttt{S+}} & {\small int} & {\small extra rounding for stopping criterion for sums} & {\small\texttt{2}}\tabularnewline
{\small\texttt{S?}} & {\small$\text{int}\ge0$} & {\small stopping criterion query terms for sums} & {\small\texttt{0}}\tabularnewline
{\small\texttt{P+}} & {\small int} & {\small extra rounding for stopping criterion for products} & {\small\texttt{2}}\tabularnewline
{\small\texttt{P?}} & {\small$\text{int}\ge0$} & {\small stopping criterion query terms for products} & {\small\texttt{0}}\tabularnewline
\bottomrule
\end{tabular}
\par\end{center}
\end{table}
Nearly all the settings available to the \verb`\eval` command are
available to these other commands. To save switching between documents
I reproduce in Table~\ref{tab:introSettingsInherited} the options
found in \texttt{numerica-basics.pdf}, although for discussion of
the options you will need to refer to that document. In addition,
each of the present commands also has settings of its own, discussed
at the relevant parts of the following chapters.

\subsection{Nesting}

Provided the starred form of a command actually does produce a numerical
result and not an error message then it can be nested within the main
argument of any one of the commands, including itself. The example
of use, §\ref{sec:introExampleOfUse} above, shows several examples
of this. The starred form can also be used in the vv-list of any one
of the commands, including itself. The associated document \texttt{numerica-basics.pdf}
shows examples of an \verb`\eval*` command being used in the vv-list
of an \verb`\eval` command. 

\chapter{Iterating functions: \texttt{\textbackslash nmcIterate}}

\label{chap:Iterating-functions}Only in desperation would one try
to evaluate a continued fraction by stacking fraction upon fraction
upon fraction like so:
\[
1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1}}}}}}}}}}}}
\]
\texttt{numerica-plus} provides a command for tackling problems like
this sensibly. In such problems a function is repeatedly applied to
itself (\emph{iterated}). This can be achieved in \texttt{numerica}
through the command \verb`\nmcIterate` or (short-name form) \verb`\iter`.
Thus to evaluate this continued fraction we write
\begin{centred}
\verb`\iter[do=15,see=5]{\[ 1+1/x \]}[x=1]` $\Longrightarrow$ \iter[do=15,see=5]{\[ 1+1/x \]}[x=1]
\end{centred}
The \verb`\iter` command evaluates $1+1/x$ when $x=1$ and then
uses this value as a new $x$-value to substitue into $1+1/x$, to
once again evaluate and use as a new $x$-value, and so on. It looks
as if the repeated iterations are approaching \verb`\eval{$ \tfrac{\sqrt{5}+1}2 $}`
$\Longrightarrow$ \eval{$ \tfrac{\sqrt{5}+1}2 $}. 

Increasing the number of iterations in the example from \texttt{do=15}
to, say, \texttt{do=18}, shows that this is indeed the case. I've
taken the opportunity to also put a question mark in the number-format
option to get boolean output in order to show that it has \emph{no}
effect:
\begin{centred}
\verb`\iter[do=18,see=5]{\[ 1+1/x \]}[x=1][?]` $\Longrightarrow$
\iter[do=18,see=5]{\[ 1+1/x \]}[x=1][?] 
\end{centred}
But iteration of functions is not limited to continued fractions.
Particularly since the emergence of chaos theory, iteration has become
an important study in its own right. Any function whose range lies
within its domain can be iterated \textendash{} repeatedly applied
to itself. The cosine, for instance, 
\begin{centred}
\verb`\iter[do=20,see=4]{\[ \cos x \]}[x=\pi/2]` $\Longrightarrow$
\iter[do=20,see=4]{\[ \cos x \]}[x=\pi/2]
\end{centred}
which displays the first one and last four of 20 iterations of $\cos x$
when $x=\tfrac{\pi}{2}$. It looks as if the cosine is `cautiously'
approaching a limit, perhaps around $0.738$ or $0.739$. You need
to nearly double the number of iterations (\texttt{do=40}) to confirm
that this is so.

The logistic function $kx(1-x)$ exhibits a variety of behaviours
depending on the value of $k$. For instance, with $k=3.5$ we get
a period-4 cycle:
\begin{centred}
\verb`\iter[do=12,see=8]{\[ kx(1-x) \]}[k=3.5,x=0.5]` $\Longrightarrow$
 \iter[do=12,see=8]{\[ kx(1-x) \]}[k=3.5,x=0.5]
\end{centred}
and with $k=3.1$ we get a period-2 cycle, although it takes many
more iterations to stabilize there:
\begin{centred}
\verb`\iter[do=44,see=8]{\[ kx(1-x) \]}[k=3.1,x=0.5]` $\Longrightarrow$
\iter[do=44,see=8]{\[ kx(1-x) \]}[k=3.1,x=0.5]
\end{centred}

\section{Star (\texttt{{*}}) option: fixed points}

In the first two of these examples, iteration eventually ended at
a \emph{fixed point}. This is a point $x$ where $f(x)=x$ and, by
induction, $f^{n}(x)=x$. Appending a star (asterisk) to the \verb`\iter`
command is the signal for iteration to continue until a fixed point
has been reached at the specified rounding value:
\begin{centred}
\verb`\iter*{ 1+a/x }[a=n(n+1),n=1,x=1]` $\Longrightarrow$ \iter*{ 1+a/x }[a=k(k+1),k=1,x=1]
\end{centred}
(with the default rounding value $6$).\footnote{For your own interest try also putting $n=2,3,4,\ldots$ .}
The star overrides any value for the number of iterations to perform
(the \texttt{do} key) that may have been entered in the settings option.
It also overrides any elements of the display other than the numerical
result. With the star option math delimiters are irrelevant \textendash{}
other than displaying minus signs correctly when \verb`\iter*` is
between them.

A function may not approach a fixed point when iterated \textendash{}
see the examples with the logistic function above. To prevent an infinite
loop \verb`\iter*` counts the number of iterations performed and
when that number reaches a certain cut-off value \textendash{} the
default is $100$ \textendash{} the loop terminates and a message
is displayed:
\begin{centred}
\verb`\iter*{kx(1-x)}[k=3.5,x=0.5]` $\Longrightarrow$ \iter*{kx(1-x)}[k=3.5,x=0.5]
\end{centred}
In this case we \emph{know} that a fixed point does not exist, but
that may not always be the case. One response is to change parameter
values or starting value of the iteration variable. For instance,
changing the parameter value to $k=1.5$,
\begin{centred}
\verb`\iter*{kx(1-x)}[k=1.5,x=0.5]` $\Longrightarrow$ \iter*{kx(1-x)}[k=1.5,x=0.5],
\end{centred}
and a fixed point is now attained. 

But should a fixed point still not eventuate after `fiddling' with
parameter and start values, there are two general adjustments one
might try: either 
\begin{enumerate}
\item reduce the rounding value, from the default $6$ (or the one specified),
to a smaller value, or
\item increase the cut-off figure from the default 100 to some higher value. 
\end{enumerate}
The former is done via the trailing \verb`[num format]` optional
argument; the latter is done via the settings option, see §\ref{sec:iterSettings-option}. 

\subsection{Use with \texttt{\textbackslash nmcInfo}}

It is of interest to know how many iterations are required to reach
a fixed point at a particular rounding value. That knowledge allows
a good guess as to whether a fixed point will be attained at a greater
rounding value. Thus when iterating the function
\[
f(t_{ij})=c^{-1}\sqrt{r_{i}^{2}+r_{j}^{2}-2r_{i}r_{j}\cos(\theta_{j}-\theta_{i}+\omega t_{ij})}
\]
in §\ref{sec:introExampleOfUse} only $5$ iterations were required
to attain $6$-figure accuracy for the fixed point. That information
came by following the \verb`\iter*` command with \verb`\nmcInfo`
(or \verb`\info`) with the argument \verb`iter`. And generally,
for any `infinite' process, follow the command with an \verb`\info`
command if you want to know how many `steps' \textendash{} in the
present case iterations \textendash{} are required to achieve the
result. So, if $5$ iterations achieve $6$-figure accuracy, presumably
something like $10$ iterations will achieve $12$-figure accuracy:
\begin{verbatim}
    \iter*{ c^{-1}\sqrt{r_i^2+r_j^2-2r_i r_j
              \cos(\theta_{ij}+\omega t)}
          }[ c=30,r_i=10,r_j=20,\theta_{ij}=0.2,
             \omega=0.2,t=1 ][12],
    \quad\info{iter}. 
\end{verbatim}
$\Longrightarrow$ \iter*{ c^{-1}\sqrt{r_i^2+r_j^2-2r_i r_j
              \cos(\theta_{ij}+\omega t)}
          }[ c=30,r_i=10,r_j=20,\theta_{ij}=0.2,
             \omega=0.2,t=1 ][12],
\quad\info{iter}. Only $9$ iterations suffice to achieve $12$-figure accuracy. Or
again, with another earlier example,
\begin{centred}
\verb`$ \iter*{\cos x}[x=\pi/2] $,\ \info{iter}.` $\Longrightarrow$
$\iter*{\cos x}[x=\pi/2] $,\ \info{iter}.
\end{centred}
That suggests that around $74$ iterations will give $12$-figure
accuracy, well within the cut-off figure of $100$:
\begin{centred}
\verb`$ \iter*{\cos x}[x=\pi/2][12] $,\ \info{iter}.` $\Longrightarrow$
$\iter*{\cos x}[x=\pi/2][12] $,\ \info{iter}.
\end{centred}

\section{Settings option}

\label{sec:iterSettings-option}The settings option is a comma-separated
list of items of the form \emph{key~=~value}.

\subsection{Inherited settings}

Nearly all of the keys discussed in the settings\emph{ }option for
\verb`\nmcEvaluate` are available for \verb`\nmcIterate`. Table~\ref{tab:introSettingsInherited}
above lists these, repeating a table from \texttt{numerica-basics.pdf}.
Thus should a quantity in the vv-list depend on the iteration variable,
forcing an implicit mode calculation, simply enter (as with \verb`\eval`)
\texttt{vvmode=1} in the settings option:
\begin{centred}
\verb`\iter*[vvmode=1]{$ 1+f(x) $}[f(x)=a/x,a=12,x=1]` $\Longrightarrow$
\iter*[vvmode=1]{$ 1+f(x) $}[f(x)=a/x,a=12,x=1].
\end{centred}
Implicit in this example is the default multi-token setting \texttt{xx=1}
inherited from \verb`\eval` and ensuring that the multi-token variable
$f(x)$ is treated correctly. 

Let's add \verb`dbg=1` to the example:
\begin{centred}
\verb`\iter*[dbg=1,vvmode=1]{$ 1+f(x) $}[f(x)=a/x,a=12,x=1]` $\Longrightarrow$
\iter*[dbg=1,vvmode=1]{$ 1+f(x) $}[f(x)=a/x,a=12,x=1]
\end{centred}
The multi-token variable \verb`f(x)` has been changed to the single-token
\verb`\_nmcu`. The values of \verb`x` and \verb`\_nmcu` shown are
those of the \emph{final} iteration.

\subsection{\texttt{\textbackslash iter}-specific settings}

In addition to the inherited settings there are some specific to \verb`\nmcIterate`.
These are listed in Table~\ref{tab:iterSettings}.

\subsubsection{Iteration variable}

In nearly all of the examples so far, the iteration variable has been
the rightmost variable in the vv-list and has not needed to be otherwise
specified. However it is sometimes not feasible to indicate the variable
in this way. In that case, entering
\begin{lyxcode}
var~=~<variable~name>
\end{lyxcode}
in the settings option enables the variable to be specified, irrespective
of what the rightmost variable in the vv-list is. Here, \texttt{<variable
name>} will generally be a character like \texttt{x} or \texttt{t}
or a token like \verb`\alpha`, but it could also be a multi-token
name like {\ttfamily\verb`x'`}\texttt{ }or \texttt{\textbackslash beta\_\{ij\}}
(or even \texttt{Fred} if you so chose). Although the iteration variable
can be independently specified like this, it must still be given an
initial \emph{value} in the vv-list \textendash{} only it need not
be the rightmost variable.

In the following example the rightmost variable is $a$ which is clearly
\emph{not} the iteration variable:
\begin{centred}
\verb`\iter[var=x'',do=40,see=5]{$ 1+a/x'' $}[x''=a/6,a=6][*]` $\Longrightarrow$
\iter[var=x'',do=40,see=5]{$ 1+a/x'' $}[x''=a/6,a=6][*]
\end{centred}

\subsubsection{Extra rounding for fixed-point calculations}

\begin{table}
\centering{}\caption{\protect\label{tab:iterSettings}Settings for \texttt{\textbackslash nmcIterate}}
\begin{center}
\begin{tabular}{llll}
\toprule 
{\small key} & {\small type} & {\small meaning} & {\small default}\tabularnewline
\midrule
{\small\texttt{var}} & {\small token(s)} & {\small iteration variable} & \tabularnewline
{\small\texttt{+}} & {\small int} & {\small fixed point extra rounding} & {\small\texttt{0}}\tabularnewline
{\small\texttt{max}} & {\small int > 0} & {\small max. iteration count (fixed points)} & {\small\texttt{100}}\tabularnewline
{\small\texttt{do}} & {\small int > 0} & {\small number of iterations to perform} & {\small\texttt{5}}\tabularnewline
{\small\texttt{see}} & {\small int > 0} & {\small number of final iterations to view} & {\small\texttt{4}}\tabularnewline
{\small\texttt{reuse}} & {\small int ($\mathtt{0}/\mathtt{1}/\mathtt{2}$)} & {\small form of result saved with }{\small{\small\verb`\reuse`}} & {\small\texttt{0}}\tabularnewline
\bottomrule
\end{tabular}
\par\end{center}
\end{table}
\texttt{numerica} determines that a fixed point has been reached when
the difference between successive iterations vanishes when rounded
to the current rounding value. One might want reassurance that this
really is the correct value by seeking a fixed point at a higher rounding
value than that displayed. This extra rounding is achieved by entering 
\begin{lyxcode}
+~=~<integer>
\end{lyxcode}
in the settings option. By default this extra rounding is set to zero. 

We have seen before that $\cos x$ starting at $x=\tfrac{1}{2}\pi$
takes $37$ iterations to reach a $6$-figure fixed point $0.739085$,
about $6$ iterations per decimal place. By entering \texttt{+=1}
in the settings option the number of iterations is increased to $43$,
$6$ more than $37$ but, reassuringly, the $6$-figure result that
is displayed remains unchanged:
\begin{centred}
\verb`$ \iter*[+=1]{\cos x}[x=\pi/2] $,\ \info{iter}.` $\Longrightarrow$
$ \iter*[+=1]{\cos x}[x=\pi/2] $,\ \info{iter}.
\end{centred}

\subsubsection{Maximum {\small iteration count for fixed point searches}}

To prevent a fixed-point search from continuing indefinitely when
no fixed point exists, there needs to be a maximum number of iterations
specified after which point the search is called off. By default this
number is $100$. To change it enter
\begin{lyxcode}
max~=~<positive~integer>
\end{lyxcode}
in the settings option.

\subsubsection{Number of iterations to perform}

To specify the number of iterations to perform enter
\begin{lyxcode}
do~=~<positive~integer>
\end{lyxcode}
in the settings option. Note that if the \verb`*` option is present
this value will be ignored and iteration will continue until either
a fixed point or the maximum iteration count is reached. By default
\texttt{do} is set to $5$. (Note that \texttt{do} can be set to a
greater number than \texttt{max}; \texttt{max} applies only to \verb`\iter*`.)

\subsubsection{Number of iterations to view}

To specify the number of final iteations to view enter 
\begin{lyxcode}
see~=~<positive~integer>
\end{lyxcode}
in the settings option. By default \texttt{see} is set to $4$. Always
it is the \emph{last} \texttt{see} iterations that are displayed.
If \texttt{see} is set to a greater value than \texttt{do}, all iterations
are shown. If the star option is used the \texttt{see} value is ignored.

\subsubsection{Form of result saved by \texttt{\textbackslash reuse}}

By entering
\begin{lyxcode}
reuse~=~<integer>
\end{lyxcode}
in the settings option of the \verb`iter` command it is possible
to specify the form of result that is saved when using \verb`\nmcReuse`.
(This setting has no effect when the star option is used with \verb`\nmcIterate`.
In that case only the numerical result of the fixed point calculation
\textendash{} if successful \textendash{} is saved.) The possibilities
are:
\begin{itemize}
\item \texttt{int=0} (or any integer $\mathtt{\ne1,2}$) saves the display
resulting from the \verb`\iter` command (the default);
\item \texttt{int=1} saves a comma-separated list of pairs of the form:\texttt{ }~\\
\texttt{\{$k$, value-of-$k$-th-iterate\}};
\item \texttt{int=2} saves a comma-separated list of iterate values.
\end{itemize}
Note that the number and content of the items in the lists are those
resulting from the \texttt{see} setting (the number of iterations
to view).
\begin{verbatim}
    \iter[reuse=1,do=12,see=4]
      {\[ kx(1-x) \]}[k=3.5,x=0.5]
        \reuse[logistic]
\end{verbatim}
$\Longrightarrow$ \iter[reuse=1,do=12,see=4]{\[ kx(1-x) \]}[k=3.5,x=0.5] \reuse[logistic]

\noindent whence \verb`\logistic` $\Longrightarrow$ \logistic.
As you can see the control sequence \verb`\logistic` displays as
a comma-separated list of numbers, alternating between the ordinal
of the iterate, and the iterate value. In fact these values are grouped
as braced pairs separated by commas in \verb`\logistic`, as can be
seen by using \TeX 's \verb`\meaning` command: 
\begin{centred}
\verb`\meaning\logistic` $\Longrightarrow$ \meaning\logistic
\end{centred}

\subsection{Changing default values}

\begin{wraptable}[12]{o}{0.5\columnwidth}%
\centering{}\caption{\protect\label{tab:iterSettingsDefaults}Defaults for \texttt{\textbackslash nmcIterate}}
\begin{center}
\begin{tabular}{ll}
\toprule 
{\small key} & {\small default}\tabularnewline
\midrule
{\small iter-extra-rounding} & {\small\texttt{0}}\tabularnewline
{\small iter-max-iterations} & {\small\texttt{100}}\tabularnewline
{\small iter-do} & {\small\texttt{5}}\tabularnewline
{\small iter-see-last} & {\small\texttt{4}}\tabularnewline
{\small iter-reuse} & {\small\texttt{0}}\tabularnewline
\bottomrule
\end{tabular}
\par\end{center}\end{wraptable}%
If you wish to change the default values of the various settings for
\verb`\nmcIterate` this can be done by entering new values in a configuration
file \texttt{numerica.cfg} as described in the chapter on settings
in the associated document \texttt{numerica-basics.pdf}. The relevant
keys are listed in Table~\ref{tab:iterSettingsDefaults}, corresponding
to the \verb`+`, \verb`max`, \verb`do`, \verb`see` and \verb`reuse`
settings of the \verb`\iter` command. (Obviously it makes no sense
to have a default setting for the iteration variable. That will change
from case to case.)

\section{Errors}

By errors I refer to \texttt{numerica} errors rather than \LaTeX{}
errors. We have already met one in the discussion of fixed points:
\begin{centred}
\verb`\iter*{kx(1-x)}[k=3.5,x=0.5]` $\Longrightarrow$ \iter*{kx(1-x)}[k=3.5,x=0.5]
\end{centred}
For a function to be iterated indefinitely, its range must lie within
or be equal to its domain. If even part of the range of a function
lies outside its domain, then on repeated iteration there is a chance
that a value will eventually be calculated which lies in this `outside'
region. Iteration cannot continue beyond this point and an error message
is generated. As an example consider the inverse cosine, \verb`\arccos`.
This can be iterated only so far as the iterated values lie between
$\pm1$ inclusive. If we try to iterate \verb`\arccos` at 0 for example,
since $\cos\frac{1}{2}\pi=0$, $\arccos0=\eval{0.5\pi}[4]$ (which
is $\tfrac{1}{2}\pi$) so only a first iterate is possible. But we
could choose an initial value more carefully; $37$ iterations of
the cosine at $\tfrac{1}{2}\pi$ led to a fixed point $0.739085$,
so let's choose $0.739085$ as initial point and perform $37$ iterations:
\begin{centred}
\verb`\iter[do=37,see=4]{\[ \arccos x \]}[x=0.739085]` $\Longrightarrow$
\iter[do=37,see=4]{\[ \arccos x \]}[x=0.739085]
\end{centred}
The result of the $37$th iteration is greater than $1$. Thus increasing
the number of iterations to 38 should generate an error message:
\begin{centred}
\verb`\iter[do=38,see=4]{\[ \arccos x \]}[x=0.739085]` $\Longrightarrow$\iter[do=38,see=4]{\[ \arccos x \]} [x=0.739085]  
\end{centred}
\verb`l3fp` objects when asked to find the inverse cosine of a number
greater than $1$.

\chapter{Finding zeros and extrema: \texttt{\textbackslash nmcSolve}}

\texttt{numerica} provides a command\textbf{ }\verb`\nmcSolve` (short-name
form \verb`\solve`) for finding a zero of a function, should it have
one. In the following example, 
\begin{centred}
\verb`\solve[p]{\[ e^{ax}-bx^2 \]}[a=2,b=3,{x}=0]` $\Longrightarrow$
\solve[p]{\[ e^{ax}-bx^2 \]}[a=2,b=3,{x}=0]
\end{centred}
I have sought and found a solution $x$ to the equation $e^{ax/2}-bx^{2}=0$
when $a=2$ and $b=3$, starting with a trial value $x=0$, entered
as the \emph{rightmost} variable in the vv-list (and em-braced since
I don't want this trial value displaying in the presentation of the
result). Although $x$ has been found to the default six-figure accuracy,
it is evident that the function vanishes only to five figures. Let's
check:
\begin{centred}
\verb`\eval{$ bx^2 $}[b=3,x=x=-0.390647]` $\Longrightarrow$ \eval{$ bx^2 $}[b=3,x=-0.390647], 

\verb`\eval{$ e^{ax} $}[a=2,x=-0.390646]` $\Longrightarrow$ \eval{$ e^{ax} $}[a=2,x=-0.390647]; 
\end{centred}
the values agree save in the final digit.

This discrepancy in the final decimal place or places is a general
feature of solutions found by \verb`\solve`. It is the value of $x$,
not the value of $f(x)$, that is being found (in this case) to six
figures. If the graph of a function crosses the $x$-axis steeply
then the $x$ value (the zero) may be located to a higher precision
than the function value. Conversely, if the graph of a function crosses
the $x$-axis gently (at a shallow angle) then the function value
will vanish to a greater number of decimal places than the zero (the
$x$ value) is located.

A second example, which we can check with values tabulated in \emph{HMF},
is 
\begin{centred}
\verb`\solve{$ \tan x - \lambda x $}[\lambda=-1/0.8,{x}=1][5]` $\Longrightarrow$
\solve{$ \tan x - \lambda x $}[\lambda=-1/0.8,{x}=1][5].
\end{centred}
Table 4.19 of \emph{HMF }lists values of $x$ against $\lambda$ and
this is the value tabulated there.

\section{Extrema}

A function may not have a zero or for the given initial trial value
and initial step in the search for a zero there may be a local extremum
in the way. In that case \texttt{numerica} may well locate the local
extremum (maximum or minimum but not a saddle point). For example
for the quadratic $(2x-1)^{2}+3x+1$ the \verb`\solve` command gives
the result 
\begin{centred}
\verb`\solve[vvi=]{$ (2x-1)^2+3x+1 $}[x=2]` $\Longrightarrow$\solve[vvi=]{$ (2x-1)^2+3x+1 $}[{x}=2]. 
\end{centred}
Since $(2x-1)^{2}+3x+1\ne0$ for any (real number) $x$, we deduce
that the quadratic takes a minimum value $1.9375$ at $x=0.125$ \textendash{}
easily confirmed analytically. This particular minimum is a global
minimum but in general any extremum found is only \emph{local}. The
function may well take larger or smaller values (or vanish for that
matter) further afield.

It is also worth noting in this example the \verb`vvi=` in the settings
option which suppresses display of the vv-list. (The only member of
the vv-list is the trial value \verb`x=2` which we do not want to
display.)

\noindent\begin{minipage}[t]{1\columnwidth}%
\begin{shaded}%
Note that the function for which a zero is being sought is \emph{not}
equated to zero when entered in the \verb`\solve` command. It is
\verb`\solve{ f(x) }`, not \verb`\solve{ f(x)=0 }`. This is precisely
because it may be an extremum that is found rather than a zero (if
extremum or zero is found at all \textendash{} think $e^{x}$). The
display of the result makes clear which is which, equating $f(x)$
to its value, zero or extremum depending on what has been found, as
you can see in the preceding examples.\end{shaded}%
\end{minipage}

\subsection{The search strategy}

\label{subsec:solveSearch-strategy}If you have some sense of where
a function has a zero, then choose a trial value in that vicinity.
\verb`\solve` uses a bisection method to home in on the zero. It
therefore needs \emph{two} initial values. For the first it uses the
trial value you specify, call it $a$ and for the second, by default,
it uses $a+1$. (The default value $1$ for the initial step from
the trial value can be changed in the settings option; see §\ref{sec:solveSettings-option}.)
If $f(a)$ and $f(a+1)$ have opposite signs then that is good. Bisection
of the interval $[a,a+1]$ can begin immediately in order to home
in on the precise point where $f$ vanishes. Write $b=a+1$.
\begin{itemize}
\item Let $c=\tfrac{1}{2}(a+b)$; if $f(c)=0$ the zero is found; otherwise
either $f(a),f(c)$ are of opposite signs or $f(c),f(b)$ are of opposite
signs. In the former case write $a_{1}=a,$ $b_{1}=c$; in the latter
case write $a_{1}=c$, $b_{1}=b$ and then redefine $c=\tfrac{1}{2}(a_{1}+b_{1})$.
Continue the bisection process, either until an exact zero $c$ of
$f$ is reached ($f(c)=0$) or a value $c$ is reached where the difference
between $a_{n+1}$ and $b_{n+1}$ is zero at the specified rounding
value. (But note, $f(c)$ may not vanish at that rounding value \textendash{}
the zero might be elsewhere in the interval and $f$ might cross the
axis at a steep slope.)
\end{itemize}
However $f(a)$ and $f(b)=f(a+1)$ may not have opposite signs. If
we graph the function $y=f(x)$ and suppose $f(a),f(b)$ are distinct
but of the same sign, then the line through the points $(a,f(a))$,
$(b,f(b))$ will intersect the $x$-axis to the left of $a$ or the
right of $b$ depending on its slope. We search always \emph{towards
the $x$-axis} in steps of $b-a$ ($=1$ with default values).
\begin{itemize}
\item If the line intersects the axis to the left of $a$ then $c=a-(b-a)$
and we set $a_{1}=c,b_{1}=a$; if the line intersects the axis to
the right of $b$ then $c=b+(b-a)$ and we set $b_{1}=c,a_{1}=b$.
The hope is that by always taking steps in the direction towards the
$x$-axis that eventually $f(c)$ will be found to lie on the \emph{opposite}
side of the axis from $f(a_{n})$ or $f(b_{n})$, at which point the
bisection process begins.
\item Of course this may not happen. At some point $c$ may lie to the left
of $a_{n}$ but $\left|f(c)\right|>\left|f(a_{n})\right|$, or $c$
may lie to the right of $b_{n}$ but $\left|f(c)\right|>\left|f(b_{n})\right|$.
The slope has reversed. In that case we halve the step value to $\tfrac{1}{2}(b-a)$
and try again in the same direction as before from the same point
as before ($a_{n}$ or $b_{n}$ as the case may be).
\item Should we find at some point that $f(a_{n})=f(b_{n})$ then the previous
strategy does not apply. In this case we choose $a_{n+1}$ and \textbf{$b_{n+1}$}
at the quarter and three-quarter marks between $a_{n}$ and $b_{n}$.
Either $f(a_{n+1})$ and $f(b_{n+1})$ will differ and the previous
search strategy can start again or we are on the way to finding an
extremum of $f$.
\end{itemize}
As already noted it is also possible that our function has neither
zeros nor extrema. To prevent the search continuing indefinitely,
\texttt{numerica} uses a cut-off value for the maximum number of steps
pursued \textendash{} by default set at 100.

\subsubsection{Elusive extrema}

The strategy `search always towards the $x$-axis' has a consequence:
it means that a local maximum above the $x$-axis will almost certainly
not be found, since `towards the $x$-axis' pulls the search away
from the maximum. Similarly a local minimum below the $x$-axis will
also not be found since `towards the $x$-axis' pulls the search
away from the minimum. 

One way of countering this elusiveness is to add a constant value
(possibly negative) to the function whose zeros and extrema are being
sought. The zeros of the function will change but the abscissae ($x$
values) of the extrema remain unchanged. If the constant is big enough
it will push a local minimum above the axis where it can be found
or, for a negative constant, push a local maximum below the axis where
it can be found.

For example $f(x)=x^{3}-x$ has roots at $-1,0,1$, a local maximum
at $-\tfrac{1}{\surd3}$ and a local minimum at $\tfrac{1}{\surd3}$.
To locate the minimum, I have added an unnecessarily large constant
$k$ to $f(x)$. ($k=1$ would have sufficed, but note, $k=0$ fails.)
\begin{centred}
\verb`\solve{$ x^3-x+k $}[k=5,{x}=0.5]` $\Longrightarrow$ \solve{$ x^3-x+k $}[k=5,{x}=0.5].
\end{centred}
Checking, \verb`\eval{$\tfrac1{\surd 3}$}` $\Longrightarrow$ \eval{$\tfrac1{\surd 3}$}.
There is a discrepancy in the $6$th decimal place which can be eliminated
by using the extra rounding setting; see §\ref{subsec:solveExtraRounding}.

\section{Star (\texttt{{*}}) option}

A starred form of the\textbf{ }\verb`\nmcSolve` command suppresses
all elements of display of the result apart from the numerical value.
When nesting a \verb`\solve` command within another command this
is the form to use. Thus with the `elusive' extremum example above,
we can find the actual value of the minimum by nesting the starred
\verb`\solve` command within the vv-list of an \verb`\eval` command:
\begin{centred}
\verb`\eval{$ x^3-x $}[x={\solve*{y^3-y+k}[k=5,y=0.5]}]` $\Longrightarrow$
\eval{$ x^3-x $}[x={\solve*{y^3-y+k}[k=5,y=0.5]}].
\end{centred}
(Note the braces around the \verb`\solve*` and arguments to hide
\emph{its} square-bracketed vv-list from the parsing of the vv-list
of the \verb`\eval` command.) The result is to be compared with \verb`$\eval*{x^3-x}[x=\tfrac1{\surd3}]$`
$\Longrightarrow$ $\eval*{x^3-x}[x=\tfrac1{\surd3}]$. 

\section{Settings option}

\label{sec:solveSettings-option}The settings option is a comma-separated
list of items of the form \emph{key~=~value}.

\subsection{Inherited settings}

The keys discussed in the settings\emph{ }option for \verb`\nmcEvaluate`
are also available for \verb`\nmcSolve`. The very first example in
this chapter used the punctuation option \texttt{p} (\verb`\solve[p]{\[... `)
inherited from the \verb`\eval` command to ensure a comma after the
display-style presentation of the result. We also saw in the quadratic
example illustrating extrema the use of \texttt{vvi} with no value
to suppress display of the vv-list: \verb`\solve[vvi=]{$ ...`. 

Putting \verb`dbg=1` produces a familiar kind of display. Using the
function 
\[
ct-\sqrt{a^{2}+b^{2}-2ab\cos(\beta+\omega t)}
\]
from the rotating disk problem,
\begin{verbatim}
    \solve[dbg=1,var=t,p=.,vvd={,}\\(vv)\\,*]
      {$ ct-\sqrt{a^{2}+b^{2}-2ab\cos(\beta+\omega t)} 
      $}[c=30,a=10,b=20,\beta=1,\omega=0.1,{t}=0][4]
\end{verbatim}
$\Longrightarrow$     \solve[dbg=1,var=t,p=.,vvd={,}\\(vv)\\,*]
      {$ ct-\sqrt{a^{2}+b^{2}-2ab\cos(\beta+\omega t)} 
      $}[c=30,a=10,b=20,\beta=1,\omega=0.1,{t}=1][4]

\subsubsection{Multi-line display of the result}

\label{subsec:solveMulti-line-display}By default the result is presented
on a single line. Unless the star option is being used, this can be
of the form \emph{function = function value, (vv-list) $\rightarrow$
result}. It takes only a slightly complicated formula and only a few
variables in the vv-list before this becomes a crowded line, likely
to exceed the line width and extend into the margin. To split the
display over two lines choose a \texttt{vvd} specification in the
vv-list like, for instance, \texttt{vvd=\{,\}\textbackslash\textbackslash (vv)}.
The \texttt{\textbackslash\textbackslash} is a trigger for \texttt{numerica}
to replace whatever environment the \texttt{\textbackslash eval}
command is wrapped around with a \texttt{multline} environment. An
asterisk in the vv-list replaces \texttt{multline} with \texttt{multline{*}}
so that no equation number is used:
\begin{verbatim}
    \solve[p=.,vvd={,}\\(vv),*]
      {$ ct-\sqrt{a^{2}+b^{2}-2ab\cos(\beta+\omega t)} 
      $}[c=30,a=10,b=20,\beta=1,\omega=0.1,{t}=0][4]
\end{verbatim}
$\Longrightarrow$ \solve[p=.,vvd={,}\\(vv),*]
      {$ ct-\sqrt{a^{2}+b^{2}-2ab\cos(\beta+\omega t)} 
      $}[c=30,a=10,b=20,\beta=1,\omega=0.1,{t}=0][4]
\begin{verbatim}

\end{verbatim}
You could introduce a third line if you wished to display the result
on a line of its own by using the spec. \texttt{vvd=\{,\}\textbackslash\textbackslash (vv)\textbackslash\textbackslash}:
\begin{verbatim}
    \solve[p=.,vvd={,}\\(vv)\\,*]
      {$ ct-\sqrt{a^{2}+b^{2}-2ab\cos(\beta+\omega t)} 
      $}[c=30,a=10,b=20,\beta=1,\omega=0.1,{t}=0][4]
\end{verbatim}
$\Longrightarrow$ \solve[p=.,vvd={,}\\(vv)\\,*]
      {$ ct-\sqrt{a^{2}+b^{2}-2ab\cos(\beta+\omega t)} 
      $}[c=30,a=10,b=20,\beta=1,\omega=0.1,{t}=0][4]

The function evaluates to $-0.0015$. Is this a zero that has been
found or an extremum? To find out, the calculation needs to be carried
out to a higher rounding value which is the reason why \verb`\nmcSolve`
has an extra rounding setting; see §\ref{subsec:solveExtraRounding}
below.

\subsection{\texttt{\textbackslash solve}-specific settings}

In addition there are some settings peculiar to \verb`\nmcSolve`.
These are listed in Table~\ref{tab:solveSettings}.

\begin{table}
\centering{}\caption{\protect\label{tab:solveSettings}Settings for \texttt{\textbackslash nmcSolve}}
\begin{center}
\begin{tabular}{llll}
\toprule 
{\small key} & {\small type} & {\small meaning} & {\small default}\tabularnewline
\midrule
{\small\texttt{var}} & {\small token(s)} & {\small equation variable} & \tabularnewline
{\small\texttt{dvar}} & {\small real $\ne0$ } & {\small initial step size} & {\small\texttt{1}}\tabularnewline
{\small\texttt{+}} & {\small int} & {\small extra rounding} & {\small\texttt{0}}\tabularnewline
{\small\texttt{max}} & {\small int > 0} & {\small max. number of steps before cut off} & {\small\texttt{100}}\tabularnewline
{\small\texttt{reuse}} & {\small int ($\mathtt{0}/\mathtt{1}$)} & {\small form of result saved with }{\small{\small\verb`\reuse`}} & {\small\texttt{0}}\tabularnewline
\bottomrule
\end{tabular}
\par\end{center}
\end{table}


\subsubsection{Equation variable}

By default the equation variable is the \emph{rightmost} variable
in the vv-list. This may not always be convenient. A different equation
variable can be specified by entereing
\begin{lyxcode}
var~=~<variable~name>
\end{lyxcode}
in the vv-list. \texttt{<variable name>} will generally be a single
character or token \textendash{} $x$, $t$, $\alpha$, $\omega$
\textendash{} but is not necessarily of this kind. Multi-token names
are perfectly acceptable (with the default \texttt{xx=1} multi-token
setting).

\subsubsection{Initial step size}

The vv-list must contain the equation variable set to some trial value.
But \verb`\solve` needs \emph{two} initial values to begin its search
for a zero or extremum; see §\ref{subsec:solveSearch-strategy}. If
the equation variable is set to a trial value $a$ then by default
the second value is $a+1$. The `$+1$' here can be changed by entering
in the settings option
\begin{lyxcode}
dvar~=~<non-zero~real~number>
\end{lyxcode}
For instance, \texttt{dvar=-1}, or \texttt{dvar=\textbackslash pi}
are two valid specifications of initial step size.

The notation is prompted by the use of expressions like $x+dx$ in
calculus.

An example where the default step value is too big and a smaller one
needs to be specified is provided by Planck's radiation function (\emph{HMF
}Table 27.2),
\[
f(x)=\frac{1}{x^{5}(e^{1/x}-1)}.
\]
From the (somewhat coarse-grained) table in \emph{HMF }it is clear
that there is a maximum of about 21.2 when $x$ is a little more than
$0.2$. This is a maximum above the $x$-axis and hence `elusive'.
To find it, substract $100$ (say) from the formula and again use
the ability to nest commands to display the result. Note the \verb`dvar=0.1`
in the settings option of the \verb`\solve*` command: 
\begin{verbatim}
    \eval[p=.]{\[ \frac1{x^5(e^{1/x}-1)} \]}
      [ x={ \solve*[dvar=0.1]
              { \frac1{y^5(e^{1/y}-1)}-100 }[y=0.1]
          } ]
\end{verbatim}
$\Longrightarrow$     \eval[p=.]{\[ \frac1{x^5(e^{1/x}-1)} \]}
      [ x={ \solve*[dvar=0.1]
              { \frac1{y^5(e^{1/y}-1)}-100 }[y=0.1]
          } ]

\noindent The maximum is indeed a little over $21.2$ and the $x$
value a little more than $0.2$. 

The default \verb`dvar=1` is too big for this problem. From the table
in \emph{HMF},\emph{ }$f(0.1)=4.540$ and $f(1.1)=0.419$. By subtracting
$100$ from $f(x)$ the `towards the $x$-axis' search strategy
leads to negative values of $x$, an artifact of the subtraction.

\subsubsection{Extra rounding}

\label{subsec:solveExtraRounding}\verb`\solve` determines that a
zero or an extremum has been reached when the difference between two
successive bisection values or step values vanishes at the specified
rounding value (the value in the final trailing optional argument
of the \verb`\solve` command; $6$ by default). If our function is
$f(x)$ then $\abs{x_{n+1}-x_{n}}=0$ to the specified rounding value
and (assuming $x_{n+1}>x_{n}$) there is a critical value $x_{c}\in[x_{n},x_{n+1}]$
such that $f(x_{c})=0$ (to all 16 places of decimals that \texttt{l3fp}
works to). But in general the critical value $x_{c}$ will not coincide
with $x_{n}$ or $x_{n+1}$. If $f(x)$ crosses the $x$-axis at a
steep angle it may well be that although $f(x_{c})$ vanishes to all
$16$ places of decimals, $f(x_{n}),f(x_{n+1})$ may well not vanish
at the (generally smaller) specified rounding value. For instance,
suppose $f(x)=1000x-3000$.
\begin{centred}
\verb`\solve[vvi=]{$ 1000x-3000 $}[x=e][4*]` $\Longrightarrow$ \solve[vvi=]{$ 1000x-3000 $}[x=e][4*].
\end{centred}
In this example, although the difference between successive $x$ values
vanishes to $4$ places of decimals, $f(x)$ does not, not even to
$2$ places. 

This suggests it would be helpful to be able to use two rounding values,
one to determine when a zero has been found and one for the visible
display. This is done through the extra rounding key in the settings
option. Enter
\begin{lyxcode}
+~=~<integer>
\end{lyxcode}
in the settings option of the \verb`\solve` command to add \texttt{<integer>}
to the rounding value determining the conclusion of the calculation.
By default the setting is \texttt{+=}0. The extra rounding setting
leaves the display rounding unaffected. 

With this option available it is easy to check that \verb`+=3` suffices
to ensure that both $x$ and $f(x)$ vanish to $4$ places of decimals,
\begin{centred}
\verb`\solve[+=3]{$ 1000x-3000 $}[x=e][4*]` $\Longrightarrow$ \solve[+=3]{$ 1000x-3000 $}[x=e][4*],
\end{centred}
and that \texttt{+=2} does not, i.e., we need to locate the zero to
$4+3=7$ figures to ensure the function vanishes to $4$ figures. 

There is no need for the \texttt{<integer>} to be positive. In fact
negative values can illuminate what is going on. In the first of the
following, the display is to $10$ places but the calculation is only
to $10-4=6$ places. In the second, the display is again to $10$
places, but the calculation is to $10-3=7$ places.
\begin{centred}
\verb`\solve[+=-4]{$ 1000x-3000 $}[x=e][10*]` $\Longrightarrow$
\solve[+=-4]{$ 1000x-3000 $}[x=e][10*],

\verb`\solve[+=-3]{$ 1000x-3000 $}[x=e][10*]` $\Longrightarrow$
\solve[+=-3]{$ 1000x-3000 $}[x=e][10*].
\end{centred}
Only in the second does $f(x)=1000x-3000$ vanish when rounded to
$4$ figures. 

Returning to an earlier example (§\ref{subsec:solveMulti-line-display})
in which it was not entirely clear whether a zero or an extremum had
been found, we can now resolve the confusion. Use the extra rounding
setting (and pad with zeros to emphasize the $4$-figure display by
adding an asterisk in the trailing optional argument):
\begin{verbatim}
    \solve[+=2,vvd={,}\\(vv),*]
      {$ 
        ct-\sqrt{a^{2}+b^{2}-2ab\cos(\beta+\omega t)} 
      $}[c=30,a=10,b=20,\beta=1,\omega=0.1,{t}=0][4*]
\end{verbatim}
$\Longrightarrow$ \solve[+=2,vvd={,}\\(vv),*]
      {$
        ct-\sqrt{a^{2}+b^{2}-2ab\cos(\beta+\omega t)} 
      $}[c=30,a=10,b=20,\beta=1,\omega=0.1,{t}=0][4*]

\subsubsection{Maximum number of steps before cut-off}

Once two function values have been found of opposite sign, bisection
is guaranteed to arrive at a result. The problem is the \emph{search}
for two such values. This may not terminate \textendash{} think of
functions like $e^{x}$or $1/x$ which lack both zeros and extrema.
To prevent an infinite loop, \verb`\solve` cuts off the search after
$100$ steps. This cut-off value can be changed for a calculation
by entering 
\begin{lyxcode}
max~=~<positive~integer>
\end{lyxcode}
in the settings option.

To illustrate, we know that $1/x$ has neither zero nor extremum,
but we do not get an infinite loop; we get an error message if we
attempt to `solve' $1/x$:
\begin{centred}
\verb`\solve{ 1/x }[x=1]` $\Longrightarrow$ \solve{ 1/x }[x=1]
\end{centred}

\subsubsection{Form of result saved by \texttt{\textbackslash reuse}}

As wth \verb`\eval` and \verb`\iter` it is possible to specify to
some extent what is saved to file when using \verb`\reuse` after
a \verb`\solve` command. The form of entry in the settings option
is
\begin{lyxcode}
reuse~=~<integer>
\end{lyxcode}
If the star option is used with the \verb`\solve` command the numerical
result is the only thing saved, but in the absence of the star option,
\begin{itemize}
\item \texttt{reuse=0} saves\emph{ the form that is displayed}. For example,
if the display is of the form \emph{function = function value, (vv-list)
$\rightarrow$ result} then that is what is saved; this is the default
behaviour;
\item \texttt{reuse=1} (or any non-zero integer) saves only the numerical
result.
\end{itemize}

\subsection{Changing default values}

\begin{wraptable}[12]{o}{0.5\columnwidth}%
\centering{}\caption{\protect\label{tab:solveSettingsDefaults}Defaults for \texttt{\textbackslash nmcSolve}}
\begin{center}
\begin{tabular}{ll}
\toprule 
{\small key} & {\small default}\tabularnewline
\midrule
{\small solve-first-step} & 1\tabularnewline
{\small solve-extra-rounding} & {\small\texttt{0}}\tabularnewline
{\small solve-max-steps} & {\small\texttt{100}}\tabularnewline
{\small solve-reuse} & {\small\texttt{0}}\tabularnewline
\bottomrule
\end{tabular}
\par\end{center}\end{wraptable}%
If you wish to change the default values of the various settings for
\verb`\nmcSolve` this can be done by entering new values in a configuration
file \texttt{numerica.cfg} as described in the chapter on settings
in the associated document \texttt{numeric-basics.pdf}. The relevant
keys are listed in Table~\ref{tab:solveSettingsDefaults}, corresponding
to the \verb`dvar`, \verb`+`, \verb`max` and \verb`reuse` settings
of the \verb`\solve` command. (Obviously it makes no sense to have
a default setting for the solution variable. That will change from
case to case.)

\chapter{Recurrence relations: \texttt{\textbackslash nmcRecur}}

One of the simplest recurrence relations is that determining the Fibonacci
numbers, $f_{n+2}=f_{n+1}+f_{n}$, with initial values $f_{0}=f_{1}=1$.
The command \verb`\nmcRecur`, short-name form \verb`\recur`, allows
calculation of the terms of this sequence:
\begin{verbatim}
    $ \nmcRecur[do=8,see1=8,...]
      { f_{n+2}=f_{n+1}+f_{n} }
        [f_{1}=1,f_{0}=1] $
\end{verbatim}
$\Longrightarrow$     $\nmcRecur[do=8,see1=8,...]
      { f_{n+2}=f_{n+1}+f_{n} }
        [f_{1}=1,f_{0}=1]$

The recurrence relation is entered in the main argument (between braces),
the initial values in the vv-list trailing the main argument, and
the display specification is placed in the settings option: \texttt{do=8}
terms to be calculated, all $8$ to be viewed (\texttt{see1=8}), and
the display to be concluded by an ellipsis to indicate that the sequence
continues (but those are three dots/periods/full stops in the settings
option).

A more complicated recurrence relation determines the Legendre polynomials:
\[
(n+2)P_{n+2}(x)-(2n+3)xP_{n+1}(x)+(n+1)P_{n}(x)=0.
\]
For the purposes of \verb`\recur` we need $P_{n+2}$ expressed in
terms of the lower order terms:
\[
P_{n+2}(x)=\frac{1}{n+2}\left((2n+3)xP_{n+1}(x)-(n+1)P_{n}(x)\right).
\]
 It is this standard form \textendash{} the term to be calculated
on the left, equated to an expression involving a fixed number of
lower-order terms on the right \textendash{} that \texttt{numerica}
works with. For $P_{0}(x)=1,~P_{1}(x)=x$ and $x=0.5$, the terms
are calculated thus:
\begin{verbatim}
    \recur[p,do=11,see1=4,see2=2,vvd={,}\\(vv)\\,*]
      {\[ P_{n+2}(x)=\frac{1}{n+2}
        \Bigl((2n+3)xP_{n+1}(x)-(n+1)P_{n}(x)\Bigr)
      \]}[P_{1}(x)=x,P_{0}(x)=1,x=0.5]
\end{verbatim}
$\Longrightarrow$     \recur[p,do=11,see1=4,see2=2,vvd={,}\\(vv)\\,*]
      {\[ P_{n+2}(x)=\frac{1}{n+2}
        \Bigl((2n+3)xP_{n+1}(x)-(n+1)P_{n}(x)\Bigr)
      \]}[P_{1}(x)=x,P_{0}(x)=1,x=0.5] 

\noindent where $P_{9}(0.5)$ and $P_{10}(0.5)$ are the last two
displayed values (and to $6$-figures are the values listed in \emph{HMF
}Table 8.1).

These examples also illustrate a common behaviour of the \texttt{numerica}
commands: when wrapped around math delimiters: the display is of the
\emph{expression=result} form, and when placed between math delimiters
the display is simply of the \emph{result}. When used without math
delimiters, \texttt{numerica} treats the command as if it had been
placed between \texttt{\textbackslash{[} \textbackslash}{]}.

\section{Notational niceties}

More than the other commands in \texttt{numerica}, \verb`\nmcRecur`
depends on getting the notation into a standard form.
\begin{itemize}
\item The terms of the recurrence must be \emph{subscripted}: $f_{n}$,
$P_{n}(x)$ are examples.
\item The recurrence relation is placed in the main (mandatory) argument
of \verb`\nmcRecur` in the form: \emph{high-order term=function of
lower-order terms}.
\item The initial-value terms in the vv-list must occur left-to-right in
the order \emph{high }to \emph{low} order.
\item The recurrence variable changes by $1$ between successive terms.
\end{itemize}
The example for Legendre polynomials in particular shows what is required.
The Fibonacci example is simpler, since the recurrence variable does
not occur independently in the recurrence relation as it does with
the Legendre polynomials. In both cases though the recurrence variable
is absent from the vv-list.

\subsection{Vv-list and recurrence variable}

The recurrence variable is required in the vv-list only when an implicit
mode calculation is undertaken. Suppose we write $A$ and $B$ for
the coefficients $2n+3$ and $n+1$ respectively in the Legendre recurrence.
$A$ and $B$ will now need entries in the vv-list which means the
recurrence variable will need a value assigned to it there too, and
we will need to add \texttt{vvmode=1} to the settings option.
\begin{verbatim}
    \recur[p,vvmode=1,do=11,see1=4,see2=2,vvd={,}\\(vv)\\,*]
      {\[ P_{n+2}(x)=\frac{1}{n+2}
        \Bigl(AxP_{n+1}(x)-BP_{n}(x)\Bigr)
      \]}[P_{1}(x)=x,P_{0}(x)=1,x=0.5,A=2n+3,B=n+1,n=0]
\end{verbatim}
$\Longrightarrow$     \recur[p,vvmode=1,do=11,see1=4,see2=2,vvd={,}\\(vv)\\,*]
      {\[ P_{n+2}(x)=\frac{1}{n+2}
        \Bigl(AxP_{n+1}(x)-BP_{n}(x)\Bigr)
      \]}[P_{1}(x)=x,P_{0}(x)=1,x=0.5,A=2n+3,B=n+1,n=0] 

Since the vv-list is evaluated from the right, the left-to-right high-to-low
ordering of the initial-value terms means the value of the lowest
order term is read first. Although \texttt{numerica} depends on this
order of occurrence of the terms, they do not need to be \emph{consecutive}
as in the examples so far (although it is natural to enter them in
this way). \texttt{numerica} reads the value of the subscript of only
the right-most term (the lowest order term), increments it by $1$
when reading the next recurrence term to the left, and so on. The
reading of the subscript of the lowest order term in the vv-list provides
the initial value of the recurrence variable.

In the following example I have placed other items between $P_{1}(x)$
and $P_{0}(x)$ in the vv-list (but maintained their left-to-right
order) and given the recurrence variable $n$ a ridiculous initial
value $\pi^{2}/12$. (Because of the order in which things get done
`behind the scenes', \emph{some} value is necessary so that the
$n$ in `$B=n+1$' does not generate an `unknown token' message.)
The result is unchanged.
\begin{verbatim}
    \recur[p,vvmode=1,do=11,see1=4,see2=2,vvd={,}\\(vv)\\,*]
      {\[ P_{n+2}(x)=\frac{1}{n+2}
        \Bigl(AxP_{n+1}(x)-BP_{n}(x)\Bigr)
      \]}[A=2n+3,P_{1}(x)=x,B=n+1,n=\pi^2/12,P_{0}(x)=1,x=0.5]
\end{verbatim}
$\Longrightarrow$     \recur[p,vvmode=1,do=11,see1=4,see2=2,vvd={,}\\(vv)\\,*]
      {\[ P_{n+2}(x)=\frac{1}{n+2}
        \Bigl(AxP_{n+1}(x)-BP_{n}(x)\Bigr)
      \]}[A=2n+3,P_{1}(x)=x,B=n+1,n=\pi^2/12,P_{0}(x)=1,x=0.5]

\subsection{Form of the recurrence relation}

As noted earler, the form of the recurrence must be entered in the
main argument in the form: \emph{highest order term = function of
consecutive lower order terms}. The number of lower\emph{ }order terms
is the order of the recurrence. The Fibonacci and Legendre polynomial
recurrences are both second order and presented in the form: \emph{$n+2$-th
term = function of $n+1$-th term and $n$-th term}. We could equally
have done
\begin{verbatim}
    \nmcRecur[p,do=8,see1=8,...]
      {$ f_{n}=f_{n-1}+f_{n-2} $}
        [f_{1}=1,f_{0}=1]
\end{verbatim}
$\Longrightarrow$     \nmcRecur[p,do=8,see1=8,...]
      {$ f_{n}=f_{n-1}+f_{n-2} $}
        [f_{1}=1,f_{0}=1] where now the recurrence is of the form $n$\emph{-th term = function
of $n-1$-th term and $n-2$-th term}, or (adjusting the coefficients
as well as the recurrence terms),
\begin{verbatim}
    \recur[p=.,do=10,see1=4,see2=2,vvd={,}\\(vv)\\,*]{\[
      P_{n+1}(x)=\frac{1}{n+1}
        \Bigl((2n+1)xP_{n}(x)-nP_{n-1}(x)\Bigr)
          \]}[P_{2}(x)=-0.125,P_{1}(x)=x,x=0.5]
\end{verbatim}
$\Longrightarrow$     \recur[p=.,do=10,see1=4,see2=2,vvd={,}\\(vv)\\,*]{\[
      P_{n+1}(x)=\frac{1}{n+1}
        \Bigl((2n+1)xP_{n}(x)-nP_{n-1}(x)\Bigr)
          \]}[P_{2}(x)=-0.125,P_{1}(x)=x,x=0.5]

\noindent The recurrence here is of the form $n+1$\emph{-th term
= function of $n$-th term and $n-1$-th term}. This last example
has one further `wrinkle'. I've made $P_{1}(x)$ the lowest order
term and decreased the number of terms to calculate by $1$ accordingly. 

\subsection{First order recurrences (iteration)}

The recurrence relations for both the Fibonacci sequence and Legendre
polynomials are second order. There is no reason why the recurrence
should not be of third or higher order or, indeed, lower. A first
order recurrence provides an alternative means of iterating functions.
\verb`\recur` therefore provides a means to display the results of
an iteration in a different form from \verb`\iter`. 

Iterating $1+a/x$ in this way, $16$ terms gives the sequence
\begin{verbatim}
    \recur[do=16,see1=0,see2=3,...]{$
      x_{n+1}=1+a/x_{n}
        $}[x_{0}=1,a=1]
\end{verbatim}
$\Longrightarrow$     \recur[do=16,see1=0,see2=3,...]{$
      x_{n+1}=1+a/x_{n} 
        $}[x_{0}=1,a=1]

\noindent to be compared with the example near the start of Chapter~\ref{chap:Iterating-functions}.
(\emph{That} effected $15$ iterations; \emph{this} uses $16$ terms
because of the extra $x_{0}=1$ term.) 

\section{Star (\texttt{{*}}) option}

When the star option is used with the \verb`\nmcRecur` command, only
a single term, the \emph{last}, is presented as the result. Repeating
the last calculation, but with the star option produces
\begin{verbatim}
    \recur*[p=.,do=10]{\[
      P_{n+1}(x)=\frac{1}{n+1}
        \Bigl((2n+1)xP_{n}(x)-nP_{n-1}(x)\Bigr)
          \]}[P_{2}(x)=-0.125,P_{1}(x)=x,x=0.5]
\end{verbatim}
$\Longrightarrow$     \recur*[p=.,do=10]{\[
      P_{n+1}(x)=\frac{1}{n+1}
        \Bigl((2n+1)xP_{n}(x)-nP_{n-1}(x)\Bigr)
          \]}[P_{2}(x)=-0.125,P_{1}(x)=x,x=0.5]

Although punctuation (a full stop) was specified in the settings,
it has been ignored in the display of the result. Other settings would
also have been ignored with the exception of the \verb`do` key which
is required to know exactly which term to calculate. The star option
produces a purely numerical answer without any trimmings.

\section{Settings}

The settings option is a comma-separated list of items of the form
\emph{key~=~value}.

\subsection{Inherited settings}

Because recurrence terms are necessarily multi-token, the multi-token
key is hard-coded in \verb`\recur` to \texttt{xx=1}. 

\subsubsection{Multi-line formatting of result}

When the \verb`\recur` command wraps around math delimiters, the
\texttt{vvd} setting is available to split display of the result over
two or more lines. For example, \texttt{vvd=\{,\}\textbackslash\textbackslash (vv)}pushes
the vv-list and sequence of calculated values to a second line; or,
\texttt{vvd=\{,\}\textbackslash qquad(vv)\textbackslash\textbackslash}
pushes only the sequence of calculated values to a second line; or
\texttt{vvd=\{,\}\textbackslash\textbackslash (vv)\textbackslash\textbackslash}
pushes the vv-list, centred, to a second line and the sequence of
values, right aligned, to a third line. The \texttt{{*}} setting is
available to suppress equation numbering (by substituting \verb`multline*`
for \verb`multline`).
\begin{verbatim}
 \nmcRecur[do=8,see1=8,...,vvd={,}\qquad(vv)\\,*]
      {$ f_{n+2}=f_{n+1}+f_{n} $}
        [f_{1}=1,f_{0}=1]
\end{verbatim}
$\Longrightarrow$     \nmcRecur[do=8,see1=8,...,vvd={,}\qquad(vv)\\,*]
      {$ f_{n+2}=f_{n+1}+f_{n} $}
        [f_{1}=1,f_{0}=1]

\subsection{\texttt{\textbackslash recur}-specific settings}

\label{subsec:recurSpecific-settings}

\subsubsection{Number of terms to calculate}

By entering
\begin{lyxcode}
do~=~<integer>
\end{lyxcode}
in the settings option you can specify how many terms of a recurrence
to calculate. The default is set to $7$ (largely to show a sufficient
number of terms of the Fibonacci series to begin to be interesting).
Note that \texttt{<integer>} will generally not correspond to the
subscript on the last term calculated since that also depends on the
value of the subscript of the lowest order term in the vv-list.

\subsubsection{Number of terms to display}

\begin{table}
\centering{}\caption{\protect\label{tab:solveSettings-1}Settings for \texttt{\textbackslash nmcRecur}}
\begin{center}
\begin{tabular}{llll}
\toprule 
{\small key} & {\small type} & {\small meaning} & {\small default}\tabularnewline
\midrule
{\small\texttt{do}} & {\small int$\ge0$} & {\small number of terms to calculate} & {\small\texttt{7}}\tabularnewline
{\small\texttt{see1}} & {\small int$\ge0$} & {\small number of initial terms to display} & {\small\texttt{3}}\tabularnewline
{\small\texttt{see2}} & {\small int$\ge0$} & {\small number of final terms to display} & {\small\texttt{2}}\tabularnewline
{\small\texttt{...}} & {\small chars} & {\small follow display of values with an ellipsis} & \tabularnewline
{\small\texttt{reuse}} & {\small int ($\mathtt{0}/\mathtt{1}/\mathtt{2}$)} & {\small form of result saved with }{\small{\small\verb`\reuse`}} & {\small\texttt{0}}\tabularnewline
\bottomrule
\end{tabular}
\par\end{center}
\end{table}
By entering
\begin{lyxcode}
see1~=~<integer1>,~see2=<integer2>
\end{lyxcode}
in the settings option, you can specify how many initial terms of
the recurrence and how many of the final terms calculated you want
to view. If the sum of these settings is less than the \texttt{do}
setting, then the terms are displayed with an intervening ellipsis.
If the sum is greater than the \texttt{do} setting, then the values
are adjusted so that their sum equals the \texttt{do} setting and
all terms are displayed. 

The adjustment is preferentially to \texttt{see1}. Suppose \texttt{do=}7,
\texttt{see1=5}, \texttt{see2=4}. Then \texttt{see2} is left unchanged
but \texttt{see1} is reduced to \texttt{7-4=3}. If, say, \texttt{do=}7,
\texttt{see1=5}, \texttt{see2=8}, then \texttt{see2} is reduced to
\texttt{7} and \texttt{see1} to \texttt{-1} (rather than zero, for
technical reasons). The reason for preserving \texttt{see2} over \texttt{see1}
is for the functioning of the \texttt{reuse} setting (see above).

The default value for \texttt{see1} is $3$; the default value for
\texttt{see2} is $2$.

\subsubsection{Ellipsis}

Including three dots in the settings option
\begin{lyxcode}
...
\end{lyxcode}
ensures that a (proper) ellipsis is inserted after the final term
is displayed. An example is provided by the display of the Fibonacci
sequence at the start of this chapter. By default this option is turned
off.

\subsubsection{Form of result saved by \texttt{\textbackslash reuse}}

By entering
\begin{lyxcode}
reuse~=~<integer>
\end{lyxcode}
it is possible to specify the form of result that is saved when using
\verb`\nmcReuse`. (This setting has no effect when the star option
is used with \verb`\nmcRecur`. In that case only the numerical result
of the final term calculated is saved.) There are three different
outputs possible:
\begin{itemize}
\item \texttt{int=0} (or any integer $\mathtt{\ne1,2}$) saves the full
display (the default);
\item \texttt{int=1} saves a comma-separated list of braced pairs of the
form: \texttt{\{$k$, value-of-term-$k$\}} for the last \texttt{see2}
terms calculated;
\item \texttt{int=2} saves a comma-separated list of the values of the last
\texttt{see2} terms calculated.
\end{itemize}
As an example, using \texttt{reuse=1},
\begin{verbatim}
    \recur[reuse=1,p=.,vvmode=1,do=11,see1=4,see2=2,
      vvd={,}\\(vv)\\,*]
      {\[ P_{n+2}(x)=\frac{1}{n+2} 
            \Bigl(kxP_{n+1}(x)-(n+1)P_{n}(x)\Bigr)
      \]}[k=2n+3,n=123,P_{1}(x)=x,P_{0}(x)=1,x=0.5]
    \reuse[legendre]
\end{verbatim}
$\Longrightarrow$     \recur[reuse=1,p=.,vvmode=1,do=11,see1=4,see2=2,
      vvd={,}\\(vv)\\,*]
      {\[ P_{n+2}(x)=\frac{1}{n+2} 
            \Bigl(kxP_{n+1}(x)-(n+1)P_{n}(x)\Bigr)
      \]}[k=2n+3,n=123,P_{1}(x)=x,P_{0}(x)=1,x=0.5]
    \reuse[legendre]

\noindent Now check to see what has been saved: 
\begin{centred}
\verb`$\legendre$` $\Longrightarrow$ $ \legendre$.
\end{centred}
As you can see, the final two (because of \texttt{see2=2}) of the
$12$ Legendre polynomials calculated have been saved, each value
preceded by its index value. If the setting had been \texttt{reuse=2},
only the two values would have been saved. The \verb`\legendre` control
sequence contains the values as comma-separated braced pairs, as can
be seen by using \TeX 's \verb`\meaning` command:
\begin{centred}
\verb`\meaning\legendre` $\Longrightarrow$ \meaning\legendre
\end{centred}

\subsection{Changing default values}

\begin{wraptable}[12]{o}{0.5\columnwidth}%
\centering{}\caption{\protect\label{tab:recurSettingsDefaults}Defaults for \texttt{\textbackslash nmcRecur}}
\begin{center}
\begin{tabular}{ll}
\toprule 
{\small key} & {\small default}\tabularnewline
\midrule
{\small recur-do} & {\small\texttt{7}}\tabularnewline
{\small recur-see-first} & {\small\texttt{3}}\tabularnewline
{\small recur-see-last} & {\small\texttt{2}}\tabularnewline
{\small recur-reuse} & {\small\texttt{0}}\tabularnewline
\bottomrule
\end{tabular}
\par\end{center}\end{wraptable}%
If you wish to change the default values of the various settings for
\verb`\nmcRecur` this can be done by entering new values in a configuration
file \texttt{numerica.cfg} as described in the chapter on settings
in the associated document \texttt{numerica-basics.pdf}. The relevant
keys are listed in Table~\ref{tab:recurSettingsDefaults}, corresponding
to the \verb`do`, \verb`see1`, \verb`see2` and \verb`reuse` settings
of the \verb`\recur` command. 

\subsection{Orthogonal polynomials}

I've used Legendre polynomials in examples above, but orthogonal polynomials
generally lend themselves to the \verb`\recur` treatment. Quoting
from \emph{HMF} 22.7, orthogonal polynomials $f_{n}$ satisfy recurrence
relations of the form
\[
a_{1n}f_{n+1}(x)=(a_{2n}+a_{3n}x)f_{n}(x)-a_{4n}f_{n-1}(x),
\]
or in the standard form required by \verb`\recur`,
\[
f_{n+1}(x)=\frac{a_{2n}+a_{3n}x}{a_{1n}}f_{n}(x)-\frac{a_{4n}}{a_{1n}}f_{n-1}(x).
\]
\emph{HMF} 22.7 provides a listing of the coefficients $a_{in}$ for
the polynomials of Jacobi, Chebyshev, Legendre, Laguerre, Hermite
and others, and tables for these polynomials.

For example, Laguerre polynomials satisfy the recurrence 
\[
L_{n+1}(x)=\frac{2n+1-x}{n+1}L_{n}(x)-\frac{n}{n+1}L_{n-1}(x).
\]
with initial values $L_{0}(x)=1$ and $L_{1}(x)=1-x$. So let's calculate
the first $13$ Laguerre polynomials for, say, $x=0.5$: 
\begin{verbatim}
    \recur[do=13,see1=4,see2=2,vvd={,}\\(vv)\\,*]{\[
      L_{n+1}(x)=\frac{2n+1-x}{n+1}L_{n}(x)-
        \frac{n}{n+1}L_{n-1}(x) 
           \]}[L_{1}(x)=1-x,L_{0}(x)=1,x=0.5]
\end{verbatim}
$\Longrightarrow$     \recur[do=13,see1=4,see2=2,vvd={,}\\(vv)\\,*]{\[
      L_{n+1}(x)=\frac{2n+1-x}{n+1}L_{n}(x)-
        \frac{n}{n+1}L_{n-1}(x) 
           \]}[L_{1}(x)=1-x,L_{0}(x)=1,x=0.5]

\noindent and for $x=5$: 
\begin{verbatim}
    \recur[p=.,do=13,see1=4,see2=2,vvd={,}\\(vv)\\,*]{\[
      L_{n+1}(x)=\frac{2n+1-x}{n+1}L_{n}(x)-
        \frac{n}{n+1}L_{n-1}(x) 
           \]}[L_{1}(x)=1-x,L_{0}(x)=1,x=5]
\end{verbatim}
$\Longrightarrow$    \recur[p=.,do=13,see1=4,see2=2,vvd={,}\\(vv)\\,*]{\[
      L_{n+1}(x)=\frac{2n+1-x}{n+1}L_{n}(x)-
        \frac{n}{n+1}L_{n-1}(x) 
           \]}[L_{1}(x)=1-x,L_{0}(x)=1,x=5]

\noindent The results (reassuringly) coincide with those provided
in \emph{HMF }Table 22.11.

\subsection{Nesting}

It is possible to use the \verb`\recur*` command (but only the starred
form) in the \verb`\eval`, \verb`\iter`, and \verb`\solve` commands,
and indeed in \verb`\recur` itself, but with this caveat: if \verb`\recur*`
is nested within another command, the initial terms of the recurrence
\textendash{} e.g., $f_{1}=1,f_{0}=1$, for the Fibonacci series,
or $L_{1}(x)=1-x,L_{0}(x)=1$ for the Laguerre polynomials \textendash{}
\emph{must be located in the vv-list of that inner }\verb`\recur*`\emph{
command}. Other shared variables can often be shifted to the vv-list
of the outer command, but not these initial terms.

\noindent\begin{minipage}[t]{1\columnwidth}%
\begin{shaded}%
The terms of a recurrence relation are multi-token variables but \texttt{numerica}
requires single tokens for its calculations. The problem for \verb`\recur`
is that the terms in the recurrence relation in the main (mandatory)
argument differ from the terms in the vv-list: for instance $f_{n}$
in the main argument, $f_{0}$ in the vv-list. If left like that,
when \texttt{numerica} does its conversion from multi-token to single
token variables, $f_{n}$ would not be found since it differs from
$f_{0}$. Hence a crucial first step for \verb`\recur` is to reconcile
the different forms, which it does by converting the forms in the
vv-list to the forms in the recurrence in the main argument. To be
available for this form change, they must reside in the \emph{inner}
vv-list. In the outer vv-list they would be inaccessible to the inner
command.

{*}{*}{*}

This suggests an alternative way of proceeding: write the inital values
of the recurrence terms in the \emph{same} form in which they occur
in the recurrence relation, together with an initial value for the
recurrence variable: $f_{n+1}=1,f_{n}=1,n=0$, say. This is not how
mathematicians write the initial values in recurrence relations, which
is why I did not pursue it, but it neatly sidesteps what is otherwise
an initial awkwardness. \end{shaded}%
\end{minipage}

In the following example I multiply together (rather futilely) the
third and fourth members of the sequence of Laguerre polynomials for
$x=5$ (the answer expected is \verb`$ \eval{3.5\times2.666667} $`
$\Longrightarrow$ $ \eval{3.5\times2.666667} $). Note that although
it is tempting to shift the shared vv-lists of the inner \verb`\recur*`
commands to the vv-list of the outer \verb`\eval` command, in fact
only the \verb`x=5` entry has been transferred:
\begin{verbatim}
    \eval[p=.]{$
      \recur*[do=3]
        { L_{n+1}(x)=\frac{2n+1-x}{n+1}L_{n}(x)-
            \frac{n}{n+1}L_{n-1}(x)}
          [L_{1}(x)=1-x,L_{0}(x)=1]
      \times 
      \recur*[do=4]
        { L_{n+1}(x)=\frac{2n+1-x}{n+1}L_{n}(x)-
            \frac{n}{n+1}L_{n-1}(x)}
          [L_{1}(x)=1-x,L_{0}(x)=1]
    $}[x=5]
\end{verbatim}
$\Longrightarrow$     \eval[p=.]{$
      \recur*[do=3]
        { L_{n+1}(x)=\frac{2n+1-x}{n+1}L_{n}(x)-
            \frac{n}{n+1}L_{n-1}(x)}
              [L_{1}(x)=1-x,L_{0}(x)=1,x=5]
      \times 
      \recur*[do=4]
        { L_{n+1}(x)=\frac{2n+1-x}{n+1}L_{n}(x)-
            \frac{n}{n+1}L_{n-1}(x)}
              [L_{1}(x)=1-x,L_{0}(x)=1,x=5]
    $}

\chapter{Reference summary}

\section{Commands defined in \texttt{numerica-plus}}
\begin{enumerate}
\item \texttt{\textbackslash nmcIterate, \textbackslash iter}
\item \texttt{\textbackslash nmcSolve, \textbackslash solve}
\item \textbackslash\texttt{nmcRecur, \textbackslash recur}
\end{enumerate}

\section{Settings for the three commands}

\subsection{Settings for \texttt{\textbackslash nmcIterate}}

Settings option of \verb`\nmcIterate`:

\begin{center}
\begin{tabular}{llll}
\toprule 
{\small key} & {\small type} & {\small meaning} & {\small default}\tabularnewline
\midrule
{\small\texttt{var}} & {\small token(s)} & {\small iteration variable} & \tabularnewline
{\small\texttt{+}} & {\small int} & {\small fixed point extra rounding} & {\small\texttt{0}}\tabularnewline
{\small\texttt{max}} & {\small int > 0} & {\small max. iteration count (fixed points)} & {\small\texttt{100}}\tabularnewline
{\small\texttt{do}} & {\small int > 0} & {\small number of iterations to perform} & {\small\texttt{5}}\tabularnewline
{\small\texttt{see}} & {\small int > 0} & {\small number of final iterations to view} & {\small\texttt{4}}\tabularnewline
{\small\texttt{reuse}} & {\small int ($\mathtt{0}/\mathtt{1}/\mathtt{2}$)} & {\small form of result saved with }{\small{\small\verb`\reuse`}} & {\small\texttt{0}}\tabularnewline
\bottomrule
\end{tabular}
\par\end{center}

Configuration settings for \verb`\nmcIterate`:

\begin{center}
\begin{tabular}{ll}
\toprule 
{\small key} & {\small default}\tabularnewline
\midrule
{\small iter-extra-rounding} & {\small\texttt{0}}\tabularnewline
{\small iter-max-iterations} & {\small\texttt{100}}\tabularnewline
{\small iter-do} & {\small\texttt{5}}\tabularnewline
{\small iter-see-last} & {\small\texttt{4}}\tabularnewline
{\small iter-reuse} & {\small\texttt{0}}\tabularnewline
\bottomrule
\end{tabular}
\par\end{center}

\subsection{Settings for \texttt{\textbackslash nmcSolve}}

Settings option of \verb`\nmcSolve`:

\begin{center}
\begin{tabular}{llll}
\toprule 
{\small key} & {\small type} & {\small meaning} & {\small default}\tabularnewline
\midrule
{\small\texttt{var}} & {\small token(s)} & {\small equation variable} & \tabularnewline
{\small\texttt{dvar}} & {\small real $\ne0$} & {\small initial step size} & {\small\texttt{1}}\tabularnewline
{\small\texttt{+}} & {\small int} & {\small extra rounding} & {\small\texttt{0}}\tabularnewline
{\small\texttt{max}} & {\small int > 0} & {\small max. number of steps before cut off} & {\small\texttt{100}}\tabularnewline
{\small\texttt{reuse}} & {\small int ($\mathtt{0}/\mathtt{1}$)} & {\small form of result saved with }{\small{\small\verb`\reuse`}} & {\small\texttt{0}}\tabularnewline
\bottomrule
\end{tabular}
\par\end{center}

Configuration settings for \verb`\nmcSolve`:

\begin{center}
\begin{tabular}{ll}
\toprule 
{\small key} & {\small default}\tabularnewline
\midrule
{\small solve-first-step} & 1\tabularnewline
{\small solve-extra-rounding} & {\small\texttt{0}}\tabularnewline
{\small solve-max-steps} & {\small\texttt{100}}\tabularnewline
{\small solve-reuse} & {\small\texttt{0}}\tabularnewline
\bottomrule
\end{tabular}
\par\end{center}

\subsection{Settings for \texttt{\textbackslash nmcRecur}}

Settings option of \verb`\nmcRecur`:

\begin{center}
\begin{tabular}{llll}
\toprule 
{\small key} & {\small type} & {\small meaning} & {\small default}\tabularnewline
\midrule
{\small\texttt{do}} & {\small int$\ge0$} & {\small number of terms to calculate} & {\small\texttt{7}}\tabularnewline
{\small\texttt{see1}} & {\small int$\ge0$} & {\small number of initial terms to display} & {\small\texttt{3}}\tabularnewline
{\small\texttt{see2}} & {\small int$\ge0$} & {\small number of final terms to display} & {\small\texttt{2}}\tabularnewline
{\small\texttt{...}} & {\small chars} & {\small follow display of values with an ellipsis} & \tabularnewline
{\small\texttt{reuse}} & {\small int ($\mathtt{0}/\mathtt{1}/\mathtt{2}$)} & {\small form of result saved with }{\small{\small\verb`\reuse`}} & {\small\texttt{0}}\tabularnewline
\bottomrule
\end{tabular}
\par\end{center}

Configuration settings for \verb`\nmcRecur`:

\begin{center}
\begin{tabular}{ll}
\toprule 
{\small key} & {\small default}\tabularnewline
\midrule
{\small recur-do} & {\small\texttt{7}}\tabularnewline
{\small recur-see-first} & {\small\texttt{3}}\tabularnewline
{\small recur-see-last} & {\small\texttt{2}}\tabularnewline
{\small recur-reuse} & {\small\texttt{0}}\tabularnewline
\bottomrule
\end{tabular}
\par\end{center}
\end{document}