1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
|
<center><h1> <tt>mathspic</tt> in Perl </h1></center>
<center><h2>
<table>
<tr><td><address>
<b>Apostolos Syropoulos</b><br>
366, 28th October Str.<br>
GR-671 00 Xanthi<br>
Greece<br>
email: <tt>asyropoulos@yahoo.com</tt>
</address></td>
<td><address>
<b>R.W.D. Nickalls</b><br>
Department of Anaesthesia<br>
Nottingham City Hospital NHS Trust<br>
Hucknall Road<br>
Nottingham, NG5-1PB<br>
United Kingdom<br>
email: <tt>dicknickalls@compuserve.com</tt>
</address></td>
</table></h2>
version 1.10 Feb 18, 2007
</center>
@ <h3><b>Introduction</b></h3><p>
<tt>mathspic</tt> is a graphics program which implements a simple
programming notation, <i>mathspic</i>, suitable for the
creation of diagrams or mathematical figures.
<tt>mathspic</tt>'s input is a LaTeX file containing
<tt>mathspic</tt> plotting commands.
<tt>mathspic</tt>'s output is the equivalent LaTeX file
containing PiCTeX plotting commands.
Technically, therefore, <tt>mathspic</tt>
is a preprocessor or `filter' for use with the PiCTeX drawing engine.
<tt>mathspic</tt> was originally written in PowerBASIC 3.5, a
DOS-based programming language. Since, many
potential users are working in rather different programming environments,
the authors thought of porting <tt>mathspic</tt> into another programming
cross-platform language which would be widely available.
The authors decided to rewrite <tt>mathspic</tt> in Perl
since not only is Perl pretty stable, but it has
extensive mathematical support.<p>
<h3><b>Program Structure</b></h3><p>
Initially, we define a little package that is used to implement the [[loop]]
command. Then, we must do is to check the possible command line arguments.
Next, we process the input file.
If the user has used the [[-b]] (see below), the program will `beep'
if any errors are found during processing.
We need some auxiliary subroutines in order to properly parse the input
file and of course to handle the various commands. We also need a
few global variables.
<<*>>=
#!/usr/bin/perl
#
#(c) Copyright 2005-2007
# Apostolos Syropoulos & R.W.D. Nickalls
# asyropoulos@yahoo.com dicknickalls@compuserve.com
#
# This program can be redistributed and/or modified under the terms
# of the LaTeX Project Public License Distributed from CTAN
# archives in directory macros/latex/base/lppl.txt; either
# version 1 of the License, or any later version.
#
<<package <tt>DummyFH</tt> >>
package main;
use Math::Trig;
<<Define global variables>>
<<subroutine definitions>>
<<Check for command line arguments>>
<<process file>>
print $alarm if $no_errors > 0;
__END__
@ The package [[DummyFH]] is used in the implementation of the [[loop]] command.
It creates a dummy filehandle that is associated with an array of strings. Since
we only read data from this dummy filehandle, we implement the [[READLINE]] subroutine.
When we read a line from this dummy filehandle, we actually requesting the next entry
of the array (if any). That is why we use the package variable [[$index]]. When there
are no more entries in the array, subroutine [[READLINE]] returns the value [[undef]]
so to falsify loop that controls the consumption of input from this dummy filehandle.
<<package <tt>DummyFH</tt> >>=
package DummyFH;
my $index = 0;
sub TIEHANDLE {
my $class = shift;
my $self= shift;
bless $self, $class;
}
sub READLINE {
my $self = shift;
#shift @$self;
if ($index > $#$self) {
$index = 0;
return undef;
}
else {
return $self->[$index++];
}
}
@ <tt>mathspic</tt> accepts at most four command-line switches, namely
<tt>-b</tt> for enabling the beep, <tt>-s</tt> for automatic
screen viewing of the output-file,
<tt>-c</tt> for cleaning out all comment-lines,
and <tt>-o</tt> with a following file-name
for specifying the output file-name.
<tt>mathspic</tt> requires the name of an existing input-file
(the so-called <tt>mathspic</tt>-file) containing
<tt>mathspic</tt>commands.
If no command-line arguments are supplied, we print a
suitable usage message indicating the syntax.
For each command-line argument we set a global
variable. The default behavior is that the `bell' does not beep
and comment-lines are not removed from the output-file.
<<Check for command line arguments>>=
our $alarm="";
our $comments_on=1;
our $out_file="default";
our $argc=@ARGV;
if ($argc == 0 || $argc > 5 ){ # no command line arguments or more than 4
# arguments
die "\nmathspic version $version_number\n" .
"Usage: mathspic [-h] [-b] [-c] [-o <out file>] <in file>\n\n";
}
else {
<<Process command line arguments>>
print "This is mathspic version $version_number\n";
}
<<Check if .m file exists>>
@ In order to get the various command-line arguments we use a simple
[[while]] loop that checks each element of the array [[@ARGV]]. We check
for all the switches, and we get the name of the input-file.
<<Process command line arguments>>=
our $file = "";
SWITCHES:
while($_ = $ARGV[0]) {
shift;
if (/^-h$/) {
die "\nThis is mathspic version $version_number\n" .
"Type \"man mathspic\" for detailed help\n".
"Usage:\tmathspic [-h] [-b] [-c] [-o <out file>] <in file>\n" .
"\twhere,\n" .
"\t[-b]\tenables bell sound if error exists\n" .
"\t[-c]\tdisables comments in ouput file\n" .
"\t[-h]\tgives this help listing\n" .
"\t[-o]\tcreates specified output file\n\n";
}
elsif (/^-b$/) {
$alarm = chr(7);
}
elsif (/^-c$/) {
$comments_on = 0;
}
elsif (/^-o$/) {
die "No output file specified!\n" if !@ARGV;
$out_file = $ARGV[0];
shift;
}
elsif (/^-\w+/) {
die "$_: Illegal command line switch!\n";
}
else {
$file = $_;
}
}
die "No input file specified!\n" if $file eq "";
@ In order to check whether the input-file exists, we simply use the
[[-e]] operator. First we check to see if [[$file]] exits.
If the input-file does exist then the variable [[$file]] contains
the file name. In case the user has not specified an output
file, the default output file name is the name of the input file with
extension [[.mt]]. Finally, the program outputs all error messages to
the screen and to a log file. The name of the log file consists of
the contents of the variable [[$file]] and the extension [[.mlg]].
<<Check if .m file exists>>=
our ($source_file, $log_file);
if (! -e $file) {
die "$file: no such file!\n" if (! (-e "$file.m"));
$source_file = "$file.m";
}
else {
$source_file = $file;
$file = $1 if $file =~ /(\w[\w-\.]+)\.\w+/;
}
$out_file= "$file.mt" if $out_file eq "default";
$log_file= "$file.mlg";
@ Now that we have all the command line arguments, we can start processing
the input file. This is done by calling the subroutine [[process_input]].
Before that we must open all necessary files. Next,
we print some `header' information to the output file and to the log file.
<<process file>>=
open(IN,"$source_file")||die "Can't open source file: $source_file\n";
open(OUT,">$out_file")||die "Can't open output file: $out_file\n";
open(LOG,">$log_file")||die "Can't open log file: $log_file\n";
print_headers;
process_input(IN,"");
@ In this section we define a few global variables. More specifically:
the variable [[$version_number]] contains the current version number of the
program, the variable [[$commandLineArgs]] contains the command line arguments.
These two variables are used in the [[print_headers]] subroutine.
The variable [[$command]] will contain the whole current input line.
Hash [[%PointTable]] is used to store point names and related
information. Hash [[%VarTable]] is used to store mathspic variable names
and related information, while the associative array [[%ConstTable]] contains the
names of constants. Note that the values of both constants and variables are
kept in [[%VarTable]].
The variable [[$no_errors]] is incremented whenever the
program encounters an error in the input file. The variables [[$xunits]],
[[$yunits]] and [[$units]] are related to the [[paper]] command.
In particular, the variable [[$units]] is used to parse the unit part of the
[[unit]] part of the [[paper]] command. The variable [[$defaultsymbol]] is used to
set the point shape. The constant [[PI]] holds the value of the mathematical
constant pi.
The constant [[R2D]] holds the transformation factor to transform radians to
degrees. The constant [[D2R]] holds the transformation factor
to transform degrees to radians, i.e., the value [[1/R2D]]. The global variables
[[$arrowLength]], [[$arrowAngleB]] and [[$arrowAngleC]] are actually parameters that
are used by the subroutines that draw arrows. Since [[$arrowLength]] is actually
a length, variable [[$arrowLenghtUnits]] holds the units of measure in which
this length is expressed. The hash table [[%DimOfPoint]] contains the side or the
radius of a point whose plot-symbol is a square or a circle, respectively. In case the
default point symbol is a circle or a square, variable [[$GlobalDimOfPoints]] is used
to store the length of the radius or the length of the side of default point symbol,
respectively. Variable [[$LineThickness]] holds the current line thickness (the
default value is 0.4 pt).
<<Define global variables>>=
our $version_number = "1.10 Feb 18, 2007";
our $commandLineArgs = join(" ", @ARGV);
our $command = "";
our $curr_in_file = "";
our %PointTable = ();
our %VarTable = ();
our %ConstTable = ();
our $no_errors = 0;
our $xunits = "1pt";
our $yunits = "1pt";
our $units = "pt|pc|in|bp|cm|mm|dd|cc|sp";
our $defaultsymbol = "\$\\bullet\$";
our $defaultLFradius = 0;
use constant PI => atan2(1,1)*4;
use constant R2D => 180 / PI;
use constant D2R => PI / 180;
our $arrowLength = 2;
our $arrowLengthUnits = "mm";
our $arrowAngleB = 30;
our $arrowAngleC = 40;
our %DimOfPoint = ();
our $GlobalDimOfPoints = 0;
our @Macros = ();
our $LineThickness = 0.4;
@ In this section we define the various subroutines that are needed in order
to process the input file.
<p> Subroutine <tt>mpp</tt> is a mathspic preprocessor that allows the definition
and use of macros with or without arguments. For the moment it is an experimental
feature and it should be used with care.
<p> Subroutine <tt>PrintErrorMessage</tt> is used to print error messages
to the screen, to the output file and to the log file.
<p> Subroutine <tt>PrintWarningMessage</tt> is used to print warning messages
to the screen, to the output file and to the log file.
<p> Subroutine <tt>PrintFatalError</tt> is used to print an error message
to the screen and to abort execution, where the error is considered fatal
and not recoverable.
<p>Subroutine <tt>chk_lparen</tt> checks whether the next input
character is a left parenthesis. Subroutine <tt>chk_rparen</tt>
checks whether the next input character is a right parenthesis. Subroutine
<tt>chk_comment</tt> checks whether a given command is followed by a trailing
comment. In the same spirit, we define the subroutines <tt>chk_lcb</tt>,
<tt>chk_rcb</tt>, <tt>chk_lsb</tt>, and <tt>chk_rsb</tt> which check for
opening and closing curly and square brackets respectively.
The subroutine [[chk_comma]] checks whether the next token is a comma.
<p> Subroutine [[print_headers]] is used to print a header to the output file,
so a user knows that the file has been generated by <tt>mathspic</tt>.
<p> Subroutine [[get_point]] is used to parse a point name and to
check whether the point exists (i.e whether the point has been defined).
<p> Subroutine [[perpendicular]] is used to compute the coordinates of the
foot of perpendicular line from some point P to a line AB.
<p> Subroutine [[Length]] is used to compute the distance between two
points A and B.
<p> Subroutine [[triangleArea]] computes the area of a triangle defined
by three points.
<p> Subroutine [[PointOnLine]] is used to compute the coordinates of
a point on a line segment AB and a distance d units from A towards B.
<p> Subroutine [[circumCircleCenter]] takes six arguments that are the
coordinates of three points and computes the center of the circle that
passes through the three points which define the triangle.
<p> Subroutine [[ComputeDist]] is used to compute a numeric value that is
specified by either a variable name, a pair of points, or just a number.
<p> Subroutine [[intersection4points]] is used to compute the coordinates
of the point of intersection of two lines specified by the four arguments
(i.e. two arguments for each point).
<p> Subroutine [[IncircleCenter]] is used to compute the center and
the radius of a circle that touches internally the sides of a triangle,
the coordinates of the three points which define the triangle
being the arguments of the subroutine.
<p> Subroutine [[Angle]] determines the opening in degrees of an angle
defined by three points which are the arguments of this subroutine.
<p> Subroutine [[excircle]] computes the center and the radius of
a circle that externally touches a given side (4th and 5th arguments) of
triangle (determined by the 1st, the 2nd and the 3rd argument).
<p> Subroutine [[DrawLineOrArrow]] is used to parse the arguments of the commands
[[drawline]], [[drawthickline]], [[drawarrow]], [[drawthickarrow]] and
[[drawCurve]].
<p> Subroutine [[drawarrows]] is used to draw one or more arrows between points.
<p> Subroutine [[drawlines]] is used to draw one or more lines between points.
<p> Subroutine [[drawCurve]] is used to draw a curve between an odd number of points.
<p> Subroutine [[drawpoints]] is used to draw the point symbol of one or more points.
<p> Subroutine [[drawAngleArc]] is used to draw an arc line within an angle.
<p> Subroutine [[drawAngleArrow]] is used to draw an arc line with an arrow on the end,
within an angle.
<p> Subroutine [[expr]] and subroutines [[term]], [[factor]] and
[[primitive]] are used to parse an expression that follows a variable
declaration.
<p> Subroutine [[memberOf]] is used to determine whether a string is a
member of a list of strings.
<p> Subroutine [[tand]] computes the tangent of an angle, where the
angle is expressed in degrees.
<p> Subroutine [[get_string]] scans a string in order to extract a
valid mathspic string.
<p> Subroutine [[is_tainted]] checks whether a string contains data that
may be proved harmful if used as arguments to a shell escape.
<p> Subroutine [[noOfDigits]] has one argument which is a number and
returns the number of decimal digits it has.
<p> Subroutine [[drawsquare]] has one argument which is the radius of point
and yields LaTeX code that draws a square.
<p> Subroutine [[X2sp]] can be used to transform a length to sp units.
<p> Subroutine [[sp2X]] can be used to transform a length expressed in sp units
to any other acceptable unit.
<p> Subroutine [[setLineThickness]] is used to determine the length of the
linethickness in the current paper units.
<p> Subroutine [[process_input]] parses the input file and any other file
being included in the main file, and generates output.
<<subroutine definitions>>=
<<subroutine <tt>mpp</tt> >>
<<subroutine <tt>PrintErrorMessage</tt> >>
<<subroutine <tt>PrintWarningMessage</tt> >>
<<subroutine <tt>PrintFatalError</tt> >>
<<subroutine <tt>chk_lparen</tt> >>
<<subroutine <tt>chk_rparen</tt> >>
<<subroutine <tt>chk_lcb</tt> >>
<<subroutine <tt>chk_rcb</tt> >>
<<subroutine <tt>chk_lsb</tt> >>
<<subroutine <tt>chk_rsb</tt> >>
<<subroutine <tt>chk_comma</tt> >>
<<subroutine <tt>chk_comment</tt> >>
<<subroutine <tt>print_headers</tt> >>
<<subroutine <tt>get_point</tt> >>
<<subroutine <tt>perpendicular</tt> >>
<<subroutine <tt>Length</tt> >>
<<subroutine <tt>triangleArea</tt> >>
<<subroutine <tt>pointOnLine</tt> >>
<<subroutine <tt>circumCircleCenter</tt> >>
<<subroutine <tt>ComputeDist</tt> >>
<<subroutine <tt>intersection4points</tt> >>
<<subroutine <tt>IncircleCenter</tt> >>
<<subroutine <tt>Angle</tt> >>
<<subroutine <tt>excircle</tt> >>
<<subroutine <tt>DrawLineOrArrow</tt> >>
<<subroutine <tt>drawarrows</tt> >>
<<subroutine <tt>drawlines</tt> >>
<<subroutine <tt>drawCurve</tt> >>
<<subroutine <tt>drawpoints</tt> >>
<<subroutine <tt>drawAngleArc</tt> >>
<<subroutine <tt>drawAngleArrow</tt> >>
<<subroutine <tt>expr</tt> >>
<<subroutine <tt>memberOf</tt> >>
<<subroutine <tt>tand</tt> >>
<<subroutine <tt>get_string</tt> >>
<<subroutine <tt>is_tainted</tt> >>
<<subroutine <tt>noOfDigits</tt> >>
<<subroutine <tt>drawsquare</tt> >>
<<subroutine <tt>X2sp</tt> >>
<<subroutine <tt>sp2X</tt> >>
<<subroutine <tt>setLineThickness</tt> >>
<<subroutine <tt>process_input</tt> >>
@ Subroutine <tt>mpp</tt> is an implementation of a mathspic preprocessor that allows
the definition of one-line macros with or without arguments. Macro definition has the
following syntax:
<center>
<tt>"%def" macro_name "(" [ parameters ] ")" macro_code
</center>
where parameters is a list of comma separated strings (e.g., x,y,z). Once a macro is
defined it can be used or it can be undefined. To undefine a macro one has to use
the following command:
<center>
<tt>"%undef" [ macro_name ]
</center
This means that an undef command without an accompanying macro name has no effect
at all. In order to use a macro we simply type its name and its arguments in
parentheses. Note that macro arguments should not contain spaces. If a macro has no
argument, there is no need to type any parentheses. We will now describe briefly how
the macro processor operates.
<p> If the current input line starts with <tt>%def</tt>, then we assume that we have
a macro definition. We parse each component of the macro definition and finally we
store the macro name, the macro code and the macro parameters (if any) in an anonymous
hash that eventually becomes part of an array. If we encounter any error, we simply
skip to the next line after printing a suitable error message. Now, if the first tokens
of an input line are <tt>%undef</tt>, we assume the user wants to delete a macro.
In case these tokens are not followed by a macro name or the macro name has not been
defined we simply go on. Otherwise, we delete the corresponding macro data from the
global array [[@Macros]] that contains all the macro information. Macro expansion is
more difficult and it will be described in detail in a separate document. At this point
we would like to thank Joachim Schneider <joachim at hal dot rhein-necker dot de>
for a suggestion on improving macro expansion.
<<subroutine <tt>mpp</tt> >>=
sub mpp {
my $in_line;
chomp($in_line = shift);
my $LC = shift;
my $out_line = $in_line;
my $macro_name = "";
my @macro_param = ();
my $macro_code = "";
if ($in_line =~ s/^%def\s*//) {
if ($in_line =~ s/^(\w+)\s*//){
$macro_name = $1;
}
else {
PrintErrorMessage("No macro name has been found",$LC);
return ""
}
if ($in_line =~ s/^\(\s*//) {
# do nothing
}
else {
PrintErrorMessage("No left parenthesis after macro name has been found",$LC);
return "";
}
if ($in_line =~ s/^\)//) {
# Macro has no parameters!
}
else {
MACROS: while (1) {
if ($in_line =~ s/^(\w+)\s*//) {
push (@macro_param, $1);
}
else {
PrintErrorMessage("No macro parameter name has been found",$LC);
return "";
}
if ($in_line =~ s/^,\s*//) {
next MACROS;
}
else {
last MACROS;
}
}
if ($in_line =~ s/^\)//) {
# do nothing!
}
else {
PrintErrorMessage("No closing parenthesis after macro parameters",$LC);
return "";
}
}
$in_line =~ s/([^%]+)(%.*)/$1/;
$macro_code = $in_line;
push ( @Macros , { 'macro_name' => $macro_name,
'macro_code' => $macro_code,
'macro_param' => \@macro_param });
return $out_line;
}
elsif ($in_line =~ s/^%undef\s*//) {
if ($in_line =~ s/^(\w+)//) {
my $undef_macro = $1;
for(my $i = $#Macros; $i >= 0; $i--) {
if ($Macros[$i]->{'macro_name'} eq $undef_macro) {
splice(@Macros,$i,1);
}
}
}
return $out_line;
}
elsif ($in_line =~ s/^\s*%//) {
return $out_line;
}
else {
my $comment = $2 if $in_line =~ s/([^%]+)(%.+)/$1/;
EXPANSIONLOOP: while () {
my $org_in_line = $in_line;
for(my $i = $#Macros; $i >= 0; $i--) {
my $macro_name = $Macros[$i]->{'macro_name'};
if ($in_line =~ /&$macro_name\b/) { ############################
my $num_of_macro_args = @{$Macros[$i]->{'macro_param'}};
if ( $num_of_macro_args > 0 ) {
# Macro with parameters
my $pattern = "&$macro_name\\(";
foreach my $p ( 1..$num_of_macro_args ) {
my $comma = ($p == $num_of_macro_args) ? "\\s*" : "\\s*,\\s*";
$pattern .= "\\s*[^\\s\\)]+$comma";
}
$pattern .= "\\)";
while($in_line =~ /&$macro_name\b/) {
if ($in_line =~ /$pattern/) {
my $before = $`;
my $after = $';
my $match = $&;
my $new_code = $Macros[$i]->{'macro_code'};
$match =~ s/^&$macro_name\(\s*//;
$match =~ s/\)$//;
foreach my $arg ( 0..($num_of_macro_args - 1) ) {
my $old = $Macros[$i]->{'macro_param'}->[$arg];
my $comma = ($arg == ($num_of_macro_args - 1)) ? "" : ",";
$match =~ s/^\s*([^\s,]+)\s*$comma//;
my $new = $1;
# 'g': Parameter may occur several times
# in $new_code.
# '\b': Substitute only whole words
# not x in xA
$new_code =~ s/\b$old\b/$new/g;
}
$in_line = "$before$new_code$after";
}
else {
PrintErrorMessage("Usage of macro &$macro_name does not " .
"match its definition", $LC);
return "";
}
}
}
else {
# Macro without parameters
my $replacement = $Macros[$i]->{'macro_code'};
# '\b': Substitute only whole words
# not x in xA
$in_line =~ s/&$macro_name\b/$replacement/g;
}
}
}
last EXPANSIONLOOP if ( $org_in_line eq $in_line );
}
return "$in_line$comment";
}
}
@ Subroutine <tt>PrintErrorMessage</tt> has two parameters: the
error message that will be printed on the screen, the log file and
the output file, and the line number of the line containing the
error was detected.
The general form of the error message is the following:
<pre>
line X: paper{units(
,mm)xrange(0,20)yrange(0,30)axes(B)ticks(10,10)}
***Error: Error_Message
</pre>
where [[X]] denotes the line number and [[Error_Message]] is the
actual error message. Note, that we print the tokens processed so far
and on the text line the unprocessed tokens, so that the user knows
exactly where the error is. In the variable [[$A]] we store the processed
tokens, while the variable [[$l]] holds the length of [[$A]] plus the
length of the [[$error_line]] (that is the number of the input line where
the error occurred) plus 7, i.e., 4 (the length of the word
[[line]]) plus 2 (the two blank spaces) plus 1 (the symbol [[:]]).
Finally, we increment the error counter (variable [[$no_errors]]). Note, that
in case the user has specified the [[-c]] command line switch, we will not
print any messages to the output file.
<<subroutine <tt>PrintErrorMessage</tt> >>=
sub PrintErrorMessage {
my $errormessage = shift;
my $error_line = shift;
my ($l,$A);
$l = 1+length($command)-length;
$A = substr($command,0,$l);
$l += 7 +length($error_line);
for my $fh (STDOUT, LOG) {
print $fh "$curr_in_file", "Line $error_line: $A\n";
print $fh " " x $l ,$_,"***Error: $errormessage\n";
}
if ($comments_on) { #print to output file file
print OUT "%% *** $curr_in_file", "Line $error_line: $A\n";
print OUT "%% *** "," " x $l ,$_,"%% ... Error: $errormessage\n";
}
$no_errors++;
}
@ Subroutine <tt>PrintWarningMessage</tt> behaves exactly like the subroutine
<tt>PrintErrorMessage</tt>. The only difference is that the second
subroutine prints only a warning message. A warning is issued when
the system detects parameters that do nothing.
<<subroutine <tt>PrintWarningMessage</tt> >>=
sub PrintWarningMessage {
my $warningMessage = shift;
my $warning_line = shift;
my ($l,$A);
$l = 1+length($command)-length;
$A = substr($command,0,$l);
$l += 7 +length($warning_line);
for my $fh (STDOUT, LOG) {
print $fh "$curr_in_file", "Line $warning_line: $A\n";
print $fh " " x $l ,$_,"***Warning: $warningMessage\n";
}
if ($comments_on) { #print to output file file
print OUT "%% *** $curr_in_file", "Line $warning_line: $A\n";
print OUT "%% *** "," " x $l ,$_,"%% ... Warning: $warningMessage\n";
}
}
@ The subroutine <tt>PrintFatalError</tt> behaves similarly to the subroutine
<tt>PrintErrorMessage</tt>. It prints an error message to the
screen and aborts execution.
<<subroutine <tt>PrintFatalError</tt> >>=
sub PrintFatalError {
my $FatalMessage = shift;
my $fatal_line = shift;
my ($l,$A);
$l = 1+length($command)-length;
$A = substr($command,0,$l);
$l += 7 +length($fatal_line);
die "$curr_in_file", "Line $fatal_line: $A\n" .
(" " x $l) . $_ . "***Fatal Error: $FatalMessage\n";
}
@ The subroutine <tt>chk_lparen</tt> accepts two arguments: the name
of the token that should be immediately before the left parenthesis (variable
[[$token]]), and the current line number (variable [[$lc]]). First we
skip any leading white space and then check whether the next
input character is a left parenthesis, then the subroutine skips any
trailing white space; otherwise it prints an error message.
<<subroutine <tt>chk_lparen</tt> >>=
sub chk_lparen {
my $token = $_[0];
my $lc = $_[1];
s/\s*//;
if (/^[^\(]/) {
PrintErrorMessage("Missing ( after $token",$lc);
}
else {
s/^\(\s*//;
}
}
@ The subroutine <tt>chk_rparen</tt> accepts two parameters: the name
of the token that should be immediately after a right parenthesis (variable
[[$token]]), and the current line number (variable [[$lc]]). Initially, we
skip any leading white space and then we check whether the next input
token is a right parenthesis. If it is not we issue a error message and
return, otherwise we skip the parenthesis and any trailing white space.
<<subroutine <tt>chk_rparen</tt> >>=
sub chk_rparen {
my $token = $_[0];
my $lc = $_[1];
s/\s*//;
if (s/^\)//) {
s/\s*//;
}
else {
PrintErrorMessage("Missing ) after $token",$lc);
}
}
@ The subroutine <tt>chk_lcb</tt> behaves in a similar way to the subroutine
<tt>chk_lparen</tt>.
<<subroutine <tt>chk_lcb</tt> >>=
sub chk_lcb {
my $token = $_[0];
my $lc = $_[1];
s/\s*//;
if ($_ !~ /^\{/) {
PrintErrorMessage("Missing { after $token",$lc);
}
else {
s/^{\s*//;
}
}
@ Subroutine <tt>chk_rcb</tt> behaves in a similar way to the subroutine
<tt>chk_rparen</tt>.
<<subroutine <tt>chk_rcb</tt> >>=
sub chk_rcb {
my $token = $_[0];
my $lc = $_[1];
if ($_ !~ /^\s*\}/) {
PrintErrorMessage("Missing } after $token",$lc);
}
else {
s/^\s*}\s*//;
}
}
@ Subroutine <tt>chk_lsb</tt> behaves in a similar way to the subroutine
<tt>chk_lparen</tt>.
<<subroutine <tt>chk_lsb</tt> >>=
sub chk_lsb {
my $token = $_[0];
my $lc = $_[1];
s/\s*//;
if ($_ !~ /^\[/) {
PrintErrorMessage("Missing [ after $token",$lc);
}
else {
s/^\[\s*//;
}
}
@ Subroutine <tt>chk_rsb</tt> behaves in a similar way to the subroutine
<tt>chk_rparen</tt>.
<<subroutine <tt>chk_rsb</tt> >>=
sub chk_rsb {
my $token = $_[0];
my $lc = $_[1];
s/\s*//;
if ($_ !~ /^\]/) {
PrintErrorMessage("Missing ] after $token",$lc);
}
else {
s/^\]\s*//;
}
}
@ The subroutine [[chk_comma]] checks whether the next token is a comma.
If it is not then it prints an error message, otherwise it consumes the
comma and any white space that follows the comma.
<<subroutine <tt>chk_comma</tt> >>=
sub chk_comma {
my $lc = $_[0];
s/\s*//;
if (/^[^,]/) {
PrintErrorMessage("Did not find expected comma",$lc);
}
else {
s/^,\s*//;
}
}
@ The subroutine [[chk_comment]] has only one parameter which is the current
line number. It checks whether the next input character is a comment
character and in this case it does nothing!. Otherwise, if there is some trailing text
it simply prints a warning to the screen.
<<subroutine <tt>chk_comment</tt> >>=
sub chk_comment {
my $lc = $_[0];
s/\s*//;
if (/^%/) {
# do nothing!
}
elsif (/^[^%]/) {
PrintWarningMessage("Trailing text is ignored",$lc);
}
}
@ The subroutine [[print_headers]] prints a header to the output file, as
well as a header to the LOG file.
The header contains information regarding the version of the
program, a copyright notice, the command line, date and time information,
and the names of the various files processed/generated.
<<subroutine <tt>print_headers</tt> >>=
sub print_headers
{
my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime;
$year+=1900;
$mon+=1;
$now_string = "$year/" . ($mon>9 ? "$mon/" : "0$mon/") .
($mday>9 ? "$mday " : "0$mday ") .
($hour>9 ? "$hour:" : "0$hour:") .
($min>9 ? "$min:" : "0$min:") .
($sec>9 ? "$sec" : "0$sec");
print OUT "%* -----------------------------------------------\n";
print OUT "%* mathspic (Perl version $version_number)\n";
print OUT "%* A filter program for use with PiCTeX\n";
print OUT "%* Copyright (c) 2005 A Syropoulos & RWD Nickalls \n";
print OUT "%* Command line: $0 $commandLineArgs\n";
print OUT "%* Input filename : $source_file\n";
print OUT "%* Output filename: $out_file\n";
print OUT "%* Date & time: $now_string\n";
print OUT "%* -----------------------------------------------\n";
#
print LOG "----\n";
print LOG "$now_string\n";
print LOG "mathspic (Perl version $version_number)\n";
print LOG "Copyright (c) 2005 A Syropoulos & RWD Nickalls \n";
print LOG "Input file = $source_file\n";
print LOG "Output file = $out_file\n";
print LOG "Log file = $log_file\n";
print LOG "----\n";
}
@ The subroutine [[get_point]] parses an individual point name.
If the next token is also a point name then it returns the point name
(but only if the only if
the point name exists in the PointTable). In all other cases it returns
the string [[_undef_]] to indicate that something is wrong.
<<subroutine <tt>get_point</tt> >>=
sub get_point {
my ($lc) = $_[0];
my ($PointName);
if (s/^([^\W\d_]\d{0,3})\s*//i) { #point name
$PointName = $1;
if (!exists($PointTable{lc($PointName)})) {
PrintErrorMessage("Undefined point $PointName",$lc);
return "_undef_";
}
else {
return lc($PointName);
}
}
else {
PrintErrorMessage("Point name expected",$lc);
return "_undef_";
}
}
@ The subroutine [[perpendicular]] has 6 parameters that correspond to the
coordinates of some point P and to the coordinates of two points A and
B that define a line. The subroutine returns
a pair of numbers that correspond to the coordinates of a point that lies
at the foot of the perpendicular to the line AB that passes through point P.
The slope of line AB is m<sub>1</sub> and so its equation is
y=m<sub>1</sub>x+c<sub>1</sub>. Similarly, the slope of the line PF is
m<sub>2</sub>=-1/m<sub>1</sub> and its equation is
y=m<sub>2</sub>x+c<sub>2</sub>. Since the line AB passes through A, then
c<sub>1</sub>=y<sub>A</sub>-m<sub>1</sub>x<sub>A</sub>. Similarly, as P is
on line PF, then c<sub>2</sub>=y<sub>P</sub>-m<sub>2</sub>x<sub>P</sub>.
Now point F is on both lines, therefore
y<sub>F</sub>=m<sub>2</sub>x<sub>F</sub>+c<sub>2</sub> and
y<sub>F</sub>=m<sub>1</sub>x<sub>F</sub>+c<sub>1</sub>. Solving these
equations for x<sub>F</sub> and y<sub>F</sub> gives:
<center>
x<sub>F</sub>=(c<sub>2</sub>-c<sub>1</sub>)/(m<sub>1</sub>-m<sub>2</sub>)<br>
y<sub>F</sub>=(m<sub>1</sub>c<sub>2</sub>-m<sub>2</sub>c<sub>1</sub>)/
(m<sub>1</sub>-m<sub>2</sub>)
</center>
<<subroutine <tt>perpendicular</tt> >>=
sub perpendicular {
my ($xP, $yP, $xA, $yA, $xB, $yB) = @_;
my ($xF, $yF, $deltax, $deltay, $m1, $m2, $c1, $c2, $factor);
$deltax = $xA - $xB;
return ($xA, $yP) if abs($deltax) < 0.0000001;
$deltay = $yA - $yB;
return ($xP, $yA) if abs($deltay) < 0.0000001;
$m1 = $deltay / $deltax;
eval { $m2 = (-1) / $m1;};
PrintFatalError("Division by zero",$lc) if $@;
$c1 = $yA - $m1 * $xA;
$c2 = $yP - $m2 * $xP;
eval { $factor = 1 / ($m1 - $m2)};
PrintFatalError("Division by zero",$lc) if $@;
return (($c2 - $c1) * $factor, ($m1 * $c2 - $m2 * $c1) * $factor);
}
@ The subroutine [[Length]] computes the distance between two points A and B.
Notice, that the name of the subroutine starts with a capital L, just
to avoid conflict with the predefined Perl function. The subroutine
requires four parameters which are the coordinates of the two points.
<<subroutine <tt>Length</tt> >>=
sub Length {
my ($xA, $yA, $xB, $yB)=@_;
return sqrt(($xB - $xA)**2 + ($yB - $yA)**2);
}
@ The subroutine [[triangleArea]] computes the area of a triangle by using
Heron's formula, i.e., given a triangle ABC, we first compute
s=(AB+BC+CA)/2 and then the area of the triangle is equal to the
square root of s times (s-AB) times (s-BC) times (s-BA), where AB, BC, and CA
are the lengths of the three sides of the triangle. The subroutine accepts 6
parameters, which correspond to the coordinates of three points that define
the triangle.
<<subroutine <tt>triangleArea</tt> >>=
sub triangleArea {
my ($xA, $yA, $xB, $yB, $xC, $yC)=@_;
my ($lenAB, $lenBC, $lenCA, $s);
$lenAB = Length($xA,$yA,$xB,$yB);
$lenBC = Length($xB,$yB,$xC,$yC);
$lenCA = Length($xC,$yC,$xA,$yA);
$s = ($lenAB + $lenBC + $lenCA) / 2;
return sqrt($s * ($s - $lenAB)*($s - $lenBC)*($s - $lenCA));
}
@ The subroutine [[poinOnLine]] accepts five arguments: the coordinates of two
points and the decimal number which corresponds to the distance from the
first point towards the second one. The way we compute the coordinates of
the point is fairly simple.
<<subroutine <tt>pointOnLine</tt> >>=
sub pointOnLine {
my ($xA, $yA, $xB, $yB, $dist)=@_;
my ($deltax, $deltay, $xPol, $yPol);
$deltax = $xB - $xA;
$deltay = $yB - $yA;
$xPol = $xA + ($dist * $deltax / &Length($xA,$yA,$xB,$yB));
$yPol = $yA + ($dist * $deltay / &Length($xA,$yA,$xB,$yB));
return ($xPol, $yPol);
}
@ As we have mentioned above the subroutine [[circumCircleCenter]] takes six
arguments that correspond to the coordinates of three points that
define a triangle. The subroutine computes the coordinates of
the center of a circle that passes through these three points, and the radius of
the circle. We now describe how the subroutine computes the center
of the circle and its radius. Let the triangle points be [[t1]], [[t2]]
and [[t3]]. We use the two pairs of points to define two sides,
i.e., [[t1t2]] and [[t2t3]]. For each
side we locate the midpoints and get the their coordinates. We check
whether either of these two lines is either vertical or horizontal. If this
is true, we know that one of the coordinates of the center of the circumcircle
is the same as that of the midpoints of the horizontal or vertical line.
Next, we determine the slopes of the lines [[t1t2]] and [[t2t3]].
We now determine the slope of lines at right-angles to these lines. We solve the
resulting equations and obtain the center of the circumcircle. Now we get the
radius, and then we are done.
<<subroutine <tt>circumCircleCenter</tt> >>=
sub circumCircleCenter {
my ($xA, $yA, $xB, $yB, $xC, $yC, $lc)=@_;
my ($deltay12, $deltax12, $xs12, $ys12);
my ($deltay23, $deltax23, $xs23, $ys23);
my ($xcc, $ycc);
my ($m23, $mr23, $c23, $m12, $mr12, $c12);
my ($sideA, $sideB, $sideC, $a, $radius);
if (abs(triangleArea($xA, $yA, $xB, $yB, $xC, $yC)) < 0.0000001)
{
PrintErrorMessage("Area of triangle is zero!",$lc);
return (0,0,0);
}
$deltay12 = $yB - $yA;
$deltax12 = $xB - $xA;
$xs12 = $xA + $deltax12 / 2;
$ys12 = $yA + $deltay12 / 2;
#
$deltay23 = $yC - $yB;
$deltax23 = $xC - $xB;
$xs23 = $xB + $deltax23 / 2;
$ys23 = $yB + $deltay23 / 2;
#
CCXYLINE:{
if (abs($deltay12) < 0.0000001)
{
$xcc = $xs12;
if (abs($deltax23) < 0.0000001)
{
$ycc = $ys23;
last CCXYLINE;
}
else
{
$m23 = $deltay23 / $deltax23;
$mr23 = -1 / $m23;
$c23 = $ys23 - $mr23 * $xs23;
$ycc = $mr23 * $xs12 + $c23;
last CCXYLINE;
}
}
if (abs($deltax12) < 0.0000001)
{
$ycc = $ys12;
if (abs($deltay23) < 0.0000001)
{
$xcc = $xs23;
last CCXYLINE;
}
else
{
$m23 = $deltay23 / $deltax23;
$mr23 = -1 / $m23;
$c23 = $ys23 - $mr23 * $xs23;
$xcc = ($ys12 - $c23) / $mr23;
last CCXYLINE;
}
}
if (abs($deltay23) < 0.0000001)
{
$xcc = $xs23;
if (abs($deltax12) < 0.0000001)
{
$ycc = $ys12;
last CCXYLINE;
}
else
{
$m12 = $deltay12 / $deltax12;
$mr12 = -1 / $m12;
$c12 = $ys12 - $mr12 * $xs12;
$ycc = $mr12 * $xcc + $c12;
last CCXYLINE;
}
}
if (abs($deltax23) < 0.0000001)
{
$ycc = $ys23;
if (abs($deltay12) < 0.0000001)
{
$xcc = $xs12;
last CCXYLINE;
}
else
{
$m12 = $deltay12 / $deltax12;
$mr12 = -1 / $m12;
$c12 = $ys12 - $mr12 * $xs12;
$xcc = ($ycc - $c12) / $mr12;
last CCXYLINE;
}
}
$m12 = $deltay12 / $deltax12;
$mr12 = -1 / $m12;
$c12 = $ys12 - $mr12 * $xs12;
#-----
$m23 = $deltay23 / $deltax23;
$mr23 = -1 / $m23;
$c23 = $ys23 - $mr23 * $xs23;
$xcc = ($c23 - $c12) / ($mr12 - $mr23);
$ycc = ($c23 * $mr12 - $c12 * $mr23) / ($mr12 - $mr23);
}
#
$sideA = &Length($xA,$yA,$xB,$yB);
$sideB = &Length($xB,$yB,$xC,$yC);
$sideC = &Length($xC,$yC,$xA,$yA);
$a = triangleArea($xA, $yA, $xB, $yB, $xC, $yC);
$radius = ($sideA * $sideB * $sideC) / (4 * $a);
#
return ($xcc, $ycc, $radius);
}
@ The subroutine [[ComputeDist]] is used to compute a distance that is
specified by either a float number, a pair of points, or a variable
name. In case we have a pair of identifiers, we check whether the first
one is a point. If it isn't a point we assume we have a variable followed
by a keyword. Otherwise, i.e., if it is a point name, we check whether
the second identifier is also a point name. If it is, we simply return
the distance between them, otherwise we issue an error message.
If we have only a single identifier, we check whether it is a
variable that has already been defined, and if so we return its value.
Since, this
subroutine is heavily used, it actually returns a pair of numbers:
the first one being the computed distance and the second one being an
error indicator. If the value of this indicator is 0, then there is no
error. If its value is 1, then there is an error. Moreover, in case there
is an error the distance is assumed to be equal to zero.
<<subroutine <tt>ComputeDist</tt> >>=
sub ComputeDist {
my ($lc) = $_[0];
my ($v1, $v2);
if (s/^((\+|-)?\d+(\.\d+)?([eE](\+|-)?\d+)?)//) #is it a number?
{
return ($1, 1);
}
elsif (/^[^\W\d_]\d{0,3}[^\W\d_]\d{0,3}/) #it is a pair of IDs?
{
s/^([^\W\d_]\d{0,3})//i;
$v1 = $1;
if (!exists($PointTable{lc($v1)})) {
if (exists($VarTable{lc($v1)})) {
return ($VarTable{lc($v1)}, 1);
}
PrintErrorMessage("Point $v1 has not been defined", $lc);
s/^\s*[^\W\d_]\d{0,3}//i;
return (0,0);
}
$v1 = lc($v1);
s/^\s*([^\W\d_]\d{0,3})//i;
$v2 = $1;
if (!exists($PointTable{lc($v2)}))
{
PrintErrorMessage("Point $v2 has not been defined", $lc);
return (0,0);
}
$v2 = lc($v2);
my ($x1,$y1,$pSV1,$pS1) = unpack("d3A*",$PointTable{$v1});
my ($x2,$y2,$pSV2,$pS2) = unpack("d3A*",$PointTable{$v2});
return (Length($x1,$y1,$x2,$y2), 1);
}
elsif (s/^([^\W\d_]\d{0,3})//i) # it is a single id
{
$v1 = $1;
if (!exists($VarTable{lc($v1)})) #it isn't a variable
{
PrintErrorMessage("Variable $v1 has not been defined", $lc);
return (0,0);
}
return ($VarTable{lc($v1)}, 1);
}
else
{
PrintErrorMessage("Unexpected token", $lc);
return (0,0);
}
}
@ The subroutine [[intersection4points]] has 8 parameters that correspond to the
coordinates of four points that uniquely determine two lines, and computes the
the point of intersection of these two lines.
<<subroutine <tt>intersection4points</tt> >>=
sub intersection4points {
my ($x1, $y1, $x2, $y2, $x3, $y3, $x4, $y4) = @_;
my ($deltay12, $deltax12, $deltay34, $deltax34);
my ($xcc, $ycc, $m34, $c34, $m12, $c12);
$deltay12 = $y2 - $y1;
$deltax12 = $x2 - $x1;
#
$deltay34 = $y4 - $y3;
$deltax34 = $x4 - $x3;
I4PXYLINE:{
if (abs($deltay12) < 0.0000001)
{
$ycc = $y1;
if (abs($deltax34) < 0.0000001)
{
$xcc = $x3;
last I4PXYLINE;
}
else
{
$m34 = $deltay34 / $deltax34;
$c34 = $y3 - $m34 * $x3;
$xcc = ($ycc - $c34) / $m34;
last I4PXYLINE;
}
}
if (abs($deltax12) < 0.0000001)
{
$xcc = $x1;
if (abs($deltay34) < 0.0000001)
{
$ycc = $y3;
last I4PXYLINE;
}
else
{
$m34 = $deltay34 / $deltax34;
$c34 = $y3 - $m34 * $x3;
$ycc = $m34 * $xcc + $c34;
last I4PXYLINE;
}
}
if (abs($deltay34) < 0.0000001)
{
$ycc = $y3;
if (abs($deltax12) < 0.0000001)
{
$xcc = $x1;
last I4PXYLINE;
}
else
{
$m12 = $deltay12 / $deltax12;
$c12 = $y1 - $m12 * $x1;
$xcc = ($ycc - $c12) / $m12;
last I4PXYLINE;
}
}
if (abs($deltax34) < 0.0000001)
{
$xcc = $x3;
if (abs($deltay12) < 0.0000001)
{
$ycc = $y1;
last I4PXYLINE;
}
else
{
$m12 = $deltay12 / $deltax12;
$c12 = $y1 - $m12 * $x1;
$ycc = $m12 * $xcc + $c12;
last I4PXYLINE;
}
}
$m12 = $deltay12 / $deltax12;
$c12 = $y1 - $m12 * $x1;
$m34 = $deltay34 / $deltax34;
$c34 = $y3 - $m34 * $x3;
$xcc = ($c34 - $c12) / ($m12 - $m34);
$ycc = ($c34 * $m12 - $c12 * $m34) / ($m12 - $m34);
}
return ($xcc, $ycc);
}
@ The subroutine [[IncircleCenter]] computes the center and the
radius of the circle that is inside a triangle and touches the sides of
the triangle. The subroutine has six arguments that correspond to the
coordinates of three points that uniquely determine the triangle. Here are
the details:
<ul>
<li> Let the triangle points be A, B, C and sides a, b, c, where side B
is opposite angle B, etc. </li>
<li> Use angles A and B only.</li>
<li> Let the bisector of angle A meet side a in point A1, and let the
distance of A1 from B be designated BA1</li>
<li> Using the sine rule, one gets: BA1/c = a/(b+c), that is
BA1 = c * a/(b+c).</li>
<li> Now do the same for side b, and determine equivalent point B1.
CB1/a = b/(b+c), that is CB1 = a * b/(b+c).</li>
<li> We can now find the intersection of the line from point A to point A1,
and the line from point B to point B1. We have four points, so we use the
mathspic internal [[intersection4points]] subroutine to return the
coordinates of the intersection X<sub>i</sub>, Y<sub>i</sub>.</li>
<li> Now get the radius: R=(area of triangle)/(a+b+c)/2</li>
<li>Finally, return the radius and the coordinates of the center.
</ul>
<<subroutine <tt>IncircleCenter</tt> >>=
sub IncircleCenter {
my ($Ax, $Ay, $Bx, $By, $Cx, $Cy) = @_;
my ($sideA, $sideB, $sideC);
my ($ba1, $xA1, $yA1, $cb1, $ac1, $xB1, $yB1, $xC1, $yC1, $a, $s, $r);
#determine the lengths of the sides
$sideA = Length($Bx, $By, $Cx, $Cy);
$sideB = Length($Cx, $Cy, $Ax, $Ay);
$sideC = Length($Ax, $Ay, $Bx, $By);
#
$ba1 = ($sideC * $sideA) / ($sideB + $sideC);
($xA1, $yA1) = pointOnLine($Bx, $By, $Cx, $Cy, $ba1);
$cb1 = ($sideA * $sideB) / ($sideC + $sideA);
($xB1, $yB1) = pointOnLine($Cx, $Cy, $Ax, $Ay, $cb1);
$ac1 = ($sideB * $sideC) / ($sideA + $sideB);
($xC1, $yC1) = pointOnLine($Ax, $Ay, $Bx, $By, $ac1);
($xcenter, $ycenter) = &intersection4points($Ax, $Ay, $xA1, $yA1,
$Bx, $By, $xB1, $yB1);
# get radius
$a = &triangleArea($Ax, $Ay, $Bx, $By, $Cx, $Cy);
$s = ($sideA + $sideB +$sideC) / 2;
$r = $a / $s;
return ($xcenter, $ycenter, $r);
}
@ The subroutine [[Angle]] takes six arguments which correspond to the
coordinates of three points that define an angle. The subroutine computes
the opening of the angle in degrees. In case there is an error it returns
the number -500. ****EXPLAIN THE ALGORITHM****
<<subroutine <tt>Angle</tt> >>=
sub Angle {
my ($Ax, $Ay, $Bx, $By, $Cx, $Cy) = @_;
my ($RAx, $RAy, $RBx, $RBy, $RCx, $RCy, $deltax, $deltay);
my ($lineBA, $lineBC, $lineAC, $k, $kk, $angle);
my ($T, $cosT, $sinT) = (0.3, cos(0.3), sin(0.3));
$RAx = $Ax * $cosT + $Ay * $sinT;
$RAy = -$Ax * $sinT + $Ay * $cosT;
$RBx = $Bx * $cosT + $By * $sinT;
$RBy = -$Bx * $sinT + $By * $cosT;
$RCx = $Cx * $cosT + $Cy * $sinT;
$RCy = -$Cx * $sinT + $Cy * $cosT;
$deltax = $RBx - $RAx;
$deltay = $RBy - $RAy;
$lineBA = sqrt($deltax*$deltax + $deltay*$deltay);
if ($lineBA < 0.0000001)
{
return -500;
}
$deltax = $RBx - $RCx;
$deltay = $RBy - $RCy;
$lineBC = sqrt($deltax*$deltax + $deltay*$deltay);
if ($lineBC < 0.0000001)
{
return -500;
}
$deltax = $RAx - $RCx;
$deltay = $RAy - $RCy;
$lineAC = sqrt($deltax*$deltax + $deltay*$deltay);
if ($lineAC < 0.0000001)
{
return -500;
}
$k = ($lineBA*$lineBA + $lineBC*$lineBC - $lineAC*$lineAC ) /
(2 * $lineBA * $lineBC);
$k = -1 if $k < -0.99999;
$k = 1 if $k > 0.99999;
$kk = $k * $k;
if (($kk * $kk) == 1)
{
$angle = PI if $k == -1;
$angle = 0 if $k == 1;
}
else
{
$angle = (PI / 2) - atan2($k / sqrt(1 - $kk),1);
}
return $angle * 180 / PI;
}
@ The subroutine [[excircle]] computes the center and the radius of a circle that
externally touches a given side (4th and 5th arguments) of triangle (determined
by the 1rst, the 2nd and 3rd argument). Here are the details:
<ul>
<li> Let the triangle points be A, B, C, and the given side be BC.</li>
<li> Now calculate the radius of Excircle = (triangle area)/(s - side length),
where s = (a+b+c)/2</li>
<li>Calculate the distance from the angle (A) (opposite the given side BC)
to the excircle center = radius/sin(A/2)</li>
<li> Now determine the the Excircle center by locating it on the angle bisector
(i.e., same line that the IncircleCenter is on), but at distance d further
away from angle A. So, we now have the Incircle center (I),
determine deltaX and deltaY from I to A, calculate the distance AI,
and then extend the line from I by distance d to Excenter Xc, Yc.</li>
</ul>
<<subroutine <tt>excircle</tt> >>=
sub excircle {
my ($A, $B, $C, $D, $E) = @_;
my ($Ax,$Ay,$Bx,$By,$Dx,$Dy,$Ex,$Ey,$ASVA,$ASA);
($Ax,$Ay,$ASVA,$ASA)=unpack("d3A*",$PointTable{$A});
($Bx,$By,$ASVA,$ASA)=unpack("d3A*",$PointTable{$B});
($Cx,$Cy,$ASVA,$ASA)=unpack("d3A*",$PointTable{$C});
($Dx,$Dy,$ASVA,$ASA)=unpack("d3A*",$PointTable{$D});
($Ex,$Ey,$ASVA,$ASA)=unpack("d3A*",$PointTable{$E});
my ($sideA, $sideB, $sideC, $s, $R, $theAdeg, $d);
my ($Xmypoint, $Ymypoint, $deltax, $deltay, $mylength, $xc, $yc);
$sideA = &Length($Bx, $By, $Cx, $Cy);
$sideB = &Length($Cx, $Cy, $Ax, $Ay);
$sideC = &Length($Ax, $Ay, $Bx, $By);
$s = ($sideA + $sideB + $sideC) / 2;
$R = triangleArea($Ax, $Ay, $Bx, $By, $Cx, $Cy) /
($s - &Length($Dx, $Dy, $Ex, $Ey));
if (($D eq $A && $E eq $B) || ($D eq $B && $E eq $A))
{
$theAdeg = &Angle($Bx, $By, $Cx, $Cy, $Ax, $Ay);
$Xmypoint = $Cx;
$Ymypoint = $Cy;
}
elsif (($D eq $B && $E eq $C) || ($D eq $C && $E eq $B))
{
$theAdeg = &Angle($Cx, $Cy, $Ax, $Ay, $Bx, $By);
$Xmypoint = $Ax;
$Ymypoint = $Ay;
}
elsif (($D eq $C && $E eq $A) || ($D eq $A && $E eq $C))
{
$theAdeg = &Angle($Ax, $Ay, $Bx, $By, $Cx, $Cy);
$Xmypoint = $Bx;
$Ymypoint = $By;
}
else
{
return (0,0,0);
}
$d = $R / sin($theAdeg * PI / 180 / 2);
my ($xIn, $yIn, $rin) = &IncircleCenter($Ax, $Ay, $Bx, $By, $Cx, $Cy);
$deltax = $xIn - $Xmypoint;
$deltay = $yIn - $Ymypoint;
$mylength = sqrt($deltax*$deltax + $deltay*$deltay);
$xc = $Xmypoint + $d * $deltax / $mylength;
$yc = $Ymypoint + $d * $deltay / $mylength;
return ($xc, $yc, $R);
}
@ The [[DrawLineOrArrow]] subroutine is used to parse the arguments of the commands
[[drawline]], [[drawthickline]], [[drawarrow]], [[drawthickarrow]] and
[[drawCurve]]. In general, these commands have as arguments a list of points separated by
commas that are used to draw a set of lines. The list of points is
enclosed in parentheses. Here we give only the syntax of the [[drawline]]
comma, as the syntax of the other commands is identical:
<pre>
drawline ::= "drawline" "(" Points { "," Points } ")"
Points ::= Point { separator Point}
separator ::= blank | empty
</pre>
In the following code we
scan a list of points (possibly separated by blanks) and we stop when
we encounter either a comma or some other character. In case we have found
a comma, we check whether we have a [[drawline]] command and if this is
the case we plot the list of points. We continue with the next list of points,
until there are no more points. The inner while-loop is used to control the
consumption of point tokens and the external to reset the array [[PP]] which
holds the point names.
<<subroutine <tt>DrawLineOrArrow</tt> >>=
sub DrawLineOrArrow {
my $draw_Line = shift;
my $lc = shift;
my $lineLength = -1;
my $stacklen = 0;
my @PP = ();
# if ($draw_Line != 2) {
# s/\s*//;
# if (s/^\[\s*//) { # optional length specifier
# $lineLength = expr($lc);
# if ($lineLength <= 0) {
# PrintErrorMessage("length must greater than zero",$lc);
# $lineLength = -1;
# }
# chk_rsb("optional part",$lc);
# }
# }
chk_lparen("$cmd",$lc);
DRAWLINES:while(1) {
@PP = () ;
while(1) {
if (s/^([^\W\d_]\d{0,3})\s*//i) { #point name
$P = $1;
if (!exists($PointTable{lc($P)})) {
PrintErrorMessage("Undefined point $P",$lc);
}
else {
push (@PP,$P);
}
}
else {
$stacklen = @PP;
if ($draw_Line != 2) {
if ($stacklen <= 1) {
PrintErrorMessage("Wrong number of points",$lc);
}
else {
push(@PP,$lc);
if ($draw_Line == 0) {
drawarrows(@PP);
}
elsif ($draw_Line == 1) {
drawlines(@PP);
}
}
}
if (s/^,\s*// and $draw_Line != 2) {
next DRAWLINES;
}
else {
last DRAWLINES;
}
}
}
}
if ($draw_Line == 2) {
$stacklen = @PP;
if ($stacklen < 2) {
PrintErrorMessage("Wrong number of points",$lc);
}
elsif ($stacklen % 2 == 0) {
PrintErrorMessage("Number of points must be odd",$lc);
}
else {
drawCurve(@PP);
}
}
chk_rparen("arguments of $cmd",$lc);
chk_comment($lc);
}
@ The subroutine [[drawarrows]] is used to draw one or more lines. The subroutine
accepts as argument an array which contains the names of the points which
define the lines, plus the current program line number. Each arrow is printed
using the following code:
<center>
<tt>\arrow < </tt>ArrowLength <tt> mm> [</tt> beta <tt>,</tt> gamma <tt>] from
x1 y1 to x2 y2 </tt>
</center>
where beta is equal to tan([[$arrowAngleB]] * [[d2r]] /2) and gamma is equal to
2*tan([[$arrowAngleC]] * [[d2r]] / 2).
<<subroutine <tt>drawarrows</tt> >>=
sub drawarrows {
my ($NoArgs);
$NoArgs = @_;
my ($lc) = $_[$NoArgs-1]; #line number is the last argument
my ($NumberOfPoints, $p, $q, $r12, $d12);
my ($px,$py,$pSV,$pS, $qx,$qy,$qSV,$qS);
$NumberOfPoints = $NoArgs - 1;
LOOP: for(my $i=0; $i < $NumberOfPoints - 1; $i++)
{
$p = $_[$i];
$q = $_[$i+1];
($px,$py,$pSV,$pS) = unpack("d3A*",$PointTable{lc($p)});
($qx,$qy,$qSV,$qS) = unpack("d3A*",$PointTable{lc($q)});
$pSV = $defaultLFradius if $pSV == 0;
$qSV = $defaultLFradius if $qSV == 0;
$r12 = $pSV + $qSV;
$d12 = Length($px,$py,$qx,$qy);
if ($d12 <= $r12)
{
if($d12 == 0)
{
PrintErrorMessage("points $p and $q are the same", $lc);
next LOOP;
}
PrintWarningMessage("arrow $p$q not drawn: points too close or ".
"radii too big", $lc);
next LOOP;
}
($px, $py) = pointOnLine($px, $py, $qx, $qy, $pSV) if $pSV > 0;
($qx, $qy) = pointOnLine($qx, $qy, $px, $py, $qSV) if $qSV > 0;
my ($beta, $gamma);
$beta = tan($arrowAngleB * D2R / 2);
$gamma = 2 * tan($arrowAngleC * D2R / 2);
printf OUT "\\arrow <%.5f%s> [%.5f,%.5f] from %.5f %.5f to %.5f %.5f\n",
$arrowLength, $arrowLengthUnits, $beta, $gamma, $px, $py, $qx, $qy;
}
}
@ The subroutine [[drawlines]] is used to draw one or more lines. The subroutine
accepts as argument an array which contains the names of the points which
define the lines, plus the current program line number. If there are only
two points (i.e., only one line), then we output the following PiCTeX code:
<center>
<tt> \plot x1 y1 x2 y2 / %% pointname1 pointname2</tt>
</center>
If there are more than two points, then we need to write the PiCTeX code in
pairs with two points on each line (just to keep things simple) as follows:
<center>
<tt> \plot x1 y1 x2 y2 / %% pointname1 pointname2</tt>
<tt> \plot x2 y2 x3 y3 / %% pointname2 pointname3</tt>
<tt> \plot x3 y3 x4 y4 / %% pointname3 pointname4</tt>
</center>
An important part of the subroutine is devoted to checking whether either
or both of the pairs of points are associated with a line-free zone, and if
so, then we must take care not to draw the line inside the line-free zone. If
a point does have a line-free zone, then we use the [[pointOnLine]]
subroutine to determine the point on the line which is just on the line-free
boundary, and draw the line to the that point instead of to the exact
point-location.
<<subroutine <tt>drawlines</tt> >>=
sub drawlines {
my ($NoArgs);
$NoArgs = @_;
my ($lc) = $_[$NoArgs-1]; #line number is the last argument
my ($NumberOfPoints, $p, $q, $r12, $d12);
my ($px,$py,$pSV,$pS, $qx,$qy,$qSV,$qS);
$NumberOfPoints = $NoArgs - 1;
LOOP: for(my $i=0; $i < $NumberOfPoints - 1; $i++)
{
$p = $_[$i];
$q = $_[$i+1];
($px,$py,$pSV,$pS) = unpack("d3A*",$PointTable{lc($p)});
($qx,$qy,$qSV,$qS) = unpack("d3A*",$PointTable{lc($q)});
$pSV = $defaultLFradius if $pSV == 0;
$qSV = $defaultLFradius if $qSV == 0;
$r12 = $pSV + $qSV;
$d12 = Length($px,$py,$qx,$qy);
if ($d12 <= $r12)
{
if($d12 == 0)
{
PrintErrorMessage("points $p and $q are the same", $lc);
next LOOP;
}
PrintWarningMessage("line $p$q not drawn: points too close or ".
"radii too big", $lc);
next LOOP;
}
($px, $py) = pointOnLine($px, $py, $qx, $qy, $pSV) if $pSV > 0;
($qx, $qy) = pointOnLine($qx, $qy, $px, $py, $qSV) if $qSV > 0;
if ($px == $qx || $py == $qy)
{
printf OUT "\\putrule from %.5f %.5f to %.5f %.5f %%%% %s%s\n",
$px,$py,$qx,$qy,$p,$q;
}
else
{
printf OUT "\\plot %.5f %.5f\t%.5f %.5f / %%%% %s%s\n",
$px, $py,$qx,$qy,$p,$q;
}
}
}
@ The subroutine [[drawCurve]] is used to draw a curve that passes through an odd
number of points. The subroutine has as argument an array which contains the names of the
points which define the lines plus the current program line number. The subroutine
emits code that has the following general form:
<pre>
\setquadratic
\plot
X1 Y1
X2 Y2
X3 Y3
\setlinear
</pre>
<<subroutine <tt>drawCurve</tt> >>=
sub drawCurve {
my ($NoArgs);
$NoArgs = @_;
my ($lc) = $_[$NoArgs-1]; #line number is the last argument
my ($NumberOfPoints, $p);
$NumberOfPoints = $NoArgs - 1;
print OUT "\\setquadratic\n\\plot\n";
for(my $i=0; $i <= $NumberOfPoints; $i++)
{
$p = $_[$i];
my ($px,$py,$pSV,$pS) = unpack("d3A*",$PointTable{lc($p)});
printf OUT "\t%0.5f %0.5f", $px, $py;
print OUT (($i == $NumberOfPoints) ? " / %$p\n" : " %$p\n");
}
print OUT "\\setlinear\n";
}
@ The subroutine [[drawpoints]] is used to draw one or more points. The subroutine
has as arguments a list of points. For each point we produce code that has
the following general form:
<center>
<tt> \put {SYMBOL} at Px PY</tt>
</center>
where [[SYMBOL]] is either the default plot symbol, i.e., [[$\bullet$]],
whatever the user has set with the [[PointSymbol]] command, or the plot
symbol specified in the definition of the point.
<<subroutine <tt>drawpoints</tt> >>=
sub drawpoints {
my ($NumberOfPoints,$p);
$NumberOfPoints = @_;
my ($px,$py,$pSV,$pS);
for($i=0; $i < $NumberOfPoints; $i++)
{
$p = $_[$i];
($px,$py,$pSV,$pS) = unpack("d3A*",$PointTable{lc($p)});
if ($pS eq "" and $defaultsymbol =~ /circle|square/) {
$pS = $defaultsymbol;
}
POINTSWITCH: {
if ($pS eq "") # no plot symbol specified
{
printf OUT "\\put {%s} at %.5f %.5f %%%% %s\n",
$defaultsymbol, $px, $py, $p;
last POINTSWITCH;
}
if ($pS eq "circle") # plot symbol is a circle
{
my $radius = (defined($DimOfPoint{lc($p)})) ? $DimOfPoint{lc($p)} :
$GlobalDimOfPoints;
if ($radius > 0) # draw a circle using the current units
{
if ($radius == 1.5) # use \bigcirc
{
printf OUT "\\put {\$\\bigcirc\$} at %.5f %.5f %%%% %s\n",
$px, $py, $p;
}
else
{
printf OUT "\\circulararc 360 degrees from %.5f %.5f center at %.5f %.5f %%%% %s\n",
$px+$radius, $py, $px, $py, $p;
}
}
else #use \circ symbol
{
printf OUT "\\put {\$\\circ\$} at %.5f %.5f %%%% %s\n",
$px,$py,$p;
}
last POINTSWITCH;
}
if ($pS eq "square")
{
my $side = (defined($DimOfPoint{lc($p)})) ? $DimOfPoint{lc($p)} :
$GlobalDimOfPoints;
printf OUT "\\put {%s} at %.5f %.5f %%%% %s\n",
drawsquare($side), $px, $py, $p;
last POINTSWITCH;
}
printf OUT "\\put {%s} at %.5f %.5f %%%% %s\n", $pS,$px,$py,$p;
}
}
}
@ The subroutine [[drawAngleArc]] gets six arguments which correspond to
three points defining an angle (variables [[$P1]], [[$P2]] and [[$P3]]),
the radius, the internal/external specification and the direction
specification (clockwise or anticlockwise).
Depending on the values of these arguments, the subroutine
returns the corresponding PiCTeX code, the general format of
which is <pre>
\circulararc Angle degrees from x y center at x2 y2
</pre>
where [[Angle]] is the angle that the three points P1 P2 P3 define
(computed by subroutine [[Angle]]),
and [[x]] and [[y]] are the coordinates of a point
residing on line P2P1 at distance equal to a [[$radius]] from
point [[$P2]]; and [[x2]], [[y2]] are the coordinates of the
center of the circle about which the arc is drawn,
i.e., point [[$P2]].
<<subroutine <tt>drawAngleArc</tt> >>=
sub drawAngleArc {
my ($P1, $P2, $P3, $radius, $inout, $direction) = @_;
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$P1});
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$P2});
my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$P3});
my $internalAngle = Angle($x1, $y1, $x2, $y2, $x3, $y3);
my $externalAngle = 360 - $internalAngle;
my ($x, $y) = pointOnLine($x2, $y2, $x1, $y1, $radius);
my $code = "";
if ($inout eq "internal" and $direction eq "clockwise" ) {
$code = sprintf "\\circulararc %.5f degrees from %.5f %.5f center at %.5f %.5f\n",
-1 * $internalAngle, $x, $y, $x2, $y2;
}
elsif ($inout eq "internal" and $direction eq "anticlockwise" ) {
$code = sprintf "\\circulararc %.5f degrees from %.5f %.5f center at %.5f %.5f\n",
$internalAngle, $x, $y, $x2, $y2;
}
elsif ($inout eq "external" and $direction eq "clockwise" ) {
$code = sprintf "\\circulararc %.5f degrees from %.5f %.5f center at %.5f %.5f\n",
-1 * $externalAngle, $x, $y, $x2, $y2;
}
elsif ($inout eq "external" and $direction eq "anticlockwise" ) {
$code = sprintf "\\circulararc %.5f degrees from %.5f %.5f center at %.5f %.5f\n",
$externalAngle, $x, $y, $x2, $y2;
}
return $code;
}
@ The subroutine [[drawAngleArrow]] gets six arguments which correspond to
three points defining an angle (variables [[$P1]], [[$P2]] and [[$P3]]),
the radius, the internal/external specification and the direction
specification. The subroutine mainly draws the arrowhead, and
calls the subroutine [[drawAngleArc]] to draw the
arc part of the arrow.
<<subroutine <tt>drawAngleArrow</tt> >>=
sub drawAngleArrow {
my ($P1, $P2, $P3, $radius, $inout, $direction) = @_;
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$P1});
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$P2});
my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$P3});
my $code = drawAngleArc($P1, $P2, $P3, $radius, $inout, $direction);
my ($xqp, $yqp) = pointOnLine($x2, $y2, $x1, $y1, $radius);
my ($deltax, $deltay) = ($x1 - $x2, $y1 - $y2);
my $AL;
if ($xunits =~ /mm/) {
$AL = 1;
}
elsif ($xunits =~ /cm/) {
$AL = 0.1;
}
elsif ($xunits =~ /pt/) {
$AL = 2.845;
}
elsif ($xunits =~ /bp/) {
$AL = 2.835;
}
elsif ($xunits =~ /pc/) {
$AL = 0.2371;
}
elsif ($xunits =~ /in/) {
$AL = 0.03937;
}
elsif ($xunits =~ /dd/) {
$AL = 2.659;
}
elsif ($xunits =~ /cc/) {
$AL = 0.2216;
}
elsif ($xunits =~ /sp/) {
$AL = 186467.98;
}
my $halfAL = $AL / 2;
my $d = sqrt($radius * $radius - $halfAL * $halfAL);
my $alpha = atan2($d / $halfAL, 1) * R2D;
my $beta = 2 * (90 - $alpha);
my $thetaqr;
if (abs($deltay) < 0.00001) {
if ($deltax > 0 ) {$thetaqr = 0 }
elsif ($deltax < 0) {$thetaqr = -180}
}
else {
if (abs($deltax) < 0.00001) {
$thetaqr = 90;
}
else {
$thetaqr = atan2($deltay / $deltax, 1) * R2D;
}
}
my ($xqr, $yqr) = pointOnLine($x2, $y2, $x3, $y3, $radius);
$deltax = $x3 - $x2;
$deltay = $y3 - $y2;
$alpha = atan2(sqrt($radius * $radius - $halfAL * $halfAL) / $halfAL, 1) /
D2R;
$beta = 2 * (90 - $alpha);
LINE2 : {
if (abs($deltax) < 0.00001) {
if ($deltay > 0) { $thetaqr = 90 }
elsif ($deltay < 0) { $thetaqr = - 90 }
last LINE2;
}
else {
$thetaqr = atan2($deltay / $deltax, 1) * R2D;
}
if (abs($deltay) < 0.00001) {
if ($deltax > 0) { $thetaqr = 0 }
elsif ($deltax < 0) { $thetaqr = -180 }
last LINE2;
}
else {
$thetaqr = atan2($deltay / $deltax, 1) * R2D;
}
if ($deltax < 0 and $deltay > 0) { $thetaqr += 180 }
elsif ($deltax < 0 and $deltay < 0) { $thetaqr += 180 }
elsif ($deltax > 0 and $deltay < 0) { $thetaqr += 360 }
}
my $xqrleft = $x2 + $radius * cos(($thetaqr + $beta) * D2R);
my $yqrleft = $y2 + $radius * sin(($thetaqr + $beta) * D2R);
my $xqrright = $x2 + $radius * cos(($thetaqr - $beta) * D2R);
my $yqrright = $y2 + $radius * sin(($thetaqr - $beta) * D2R);
if ($inout eq "internal" and $direction eq "clockwise") {
$code .= sprintf "\\arrow <1.5mm> [0.5, 1] from %.5f %.5f to %.5f %.5f\n",
$xqrleft, $yqrleft, $xqr, $yqr;
}
elsif ($inout eq "internal" and $direction eq "anticlockwise") {
$code .= sprintf "\\arrow <1.5mm> [0.5, 1] from %.5f %.5f to %.5f %.5f\n",
$xqrright, $yqrright, $xqr, $yqr;
}
elsif ($inout eq "external" and $direction eq "clockwise") {
$code .= sprintf "\\arrow <1.5mm> [0.5, 1] from %.5f %.5f to %.5f %.5f\n",
$xqrleft, $yqrleft, $xqr, $yqr;
}
elsif ($inout eq "external" and $direction eq "anticlockwise") {
$code .= sprintf "\\arrow <1.5mm> [0.5, 1] from %.5f %.5f to %.5f %.5f\n",
$xqrright, $yqrright, $xqr, $yqr;
}
return $code;
}
@ The subroutine [[expr]] is used to parse an expression. We are using a
recursive descent parser to parse and evaluate an expression. The
general syntax of an expression is as follows:
<pre>
expr ::= term { addop term }
addop ::= "+" | "-"
term ::= factor { mulop factor }
mulop ::= "*" | "/" | "rem"
factor ::= primitive [ ** factor ]
primitive ::= [ "+" | "-"] primitive | number | variable |
pair-of-points | "(" expr ")" |
"sin (" expr ")" | "cos (" expr ")" | "area (" ThreePoints ")" |
"tan (" expr ")" | "exp (" expr ")" | "int" "(" expr ")" |
"log (" expr ")" | "atan (" expr ")" | "sgn" "(" expr ")" |
"sqrt (" expr ")" | "acos (" expr ")" | "asin (" expr ")" |
"atan (" expr ")" | "_pi_" | "_e_" |
"xcoord (" point ")" | "ycoord (" point ")" | "angle "(" ThreePoints ")"|
"angledeg" "(" ThreePoints ")" | "direction" "(" TwoPoints ")" |
"directiondeg" "(" TwoPoints ")" | "_linethickness_"
</pre>
Note that [[_pi_]] and [[_e_]] can be used to access the value of the constants
Pi and e.
<<subroutine <tt>expr</tt> >>=
sub expr {
my $lc = $_[0];
my($left,$op,$right);
$left = term($lc);
while ($op = addop()) {
$right = term($lc);
if ($op eq '+')
{ $left += $right }
else
{ $left -= $right }
}
return $left;
}
sub addop {
s/^([+-])// && $1;
}
sub term {
my $lc = $_[0];
my ($left, $op, $right);
$left = factor($lc);
while ($op = mulop()) {
$right = factor($lc);
if ($op eq '*')
{ $left *= $right }
elsif ($op =~ /rem/i) {
eval {$left %= $right};
PrintFatalError("Division by zero", $lc) if $@;
}
else {
eval {$left /= $right};
PrintFatalError("Division by zero", $lc) if $@;
}
}
return $left;
}
sub mulop {
(s#^([*/])## || s/^(rem)//i) && lc($1);
}
sub factor {
my $lc = $_[0];
my ($left);
$left = primitive($lc);
if (s/^\*\*//) {
$left **= factor($lc);
}
return $left;
}
sub primitive {
my $lc = $_[0];
my $val;
s/\s*//;
if (s/^\(//) { #is it an expr in parentheses
$val = expr($lc);
s/^\)// || PrintErrorMessage("Missing right parenthesis", $lc);
}
elsif (s/^-//) { # is it a negated primitive
$val = - primitive();
}
elsif (s/^\+//) { # is it a positive primitive
$val = primitive();
}
elsif (s/^angledeg//i) {
chk_lparen("angledeg",$lc);
my $point_1 = get_point($lc);
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_1});
my $point_2 = get_point($lc);
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point_2});
my $point_3 = get_point($lc);
my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point_3});
my $d12 = Length($x1, $y1, $x2, $y2);
my $d23 = Length($x2, $y2, $x3, $y3);
my $d31 = Length($x3, $y3, $x1, $y1);
if ( $d12 == 0 ) {
PrintErrorMessage("points `$point_1' and `$point_2' are the same", $lc);
$val = 0;
}
elsif ( $d23 == 0 ) {
PrintErrorMessage("points `$point_2' and `$point_3' are the same", $lc);
$val = 0;
}
elsif ( $d31 == 0 ) {
PrintErrorMessage("points `$point_1' and `$point_3' are the same", $lc);
$val = 0;
}
else {
$val = Angle($x1, $y1, $x2, $y2, $x3, $y3);
$val = 0 if $val == -500;
}
chk_rparen("Missing right parenthesis", $lc);
}
elsif (s/^angle//i) {
chk_lparen("angle".$lc);
my $point_1 = get_point($lc);
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_1});
my $point_2 = get_point($lc);
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point_2});
my $point_3 = get_point($lc);
my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point_3});
my $d12 = Length($x1, $y1, $x2, $y2);
my $d23 = Length($x2, $y2, $x3, $y3);
my $d31 = Length($x3, $y3, $x1, $y1);
if ( $d12 == 0 ) {
PrintErrorMessage("points `$point_1' and `$point_2' are the same", $lc);
$val = 0;
}
elsif ( $d23 == 0 ) {
PrintErrorMessage("points `$point_2' and `$point_3' are the same", $lc);
$val = 0;
}
elsif ( $d31 == 0 ) {
PrintErrorMessage("points `$point_1' and `$point_3' are the same", $lc);
$val = 0;
}
else {
$val = Angle($x1, $y1, $x2, $y2, $x3, $y3);
if ($val == -500) {
$val = 0;
}
else {
$val = D2R * $val;
}
}
chk_rparen("Missing right parenthesis", $lc);
}
elsif (s/^area//i) {
chk_lparen("angledeg",$lc);
my $point_1 = get_point($lc);
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_1});
my $point_2 = get_point($lc);
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point_2});
my $point_3 = get_point($lc);
my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point_3});
$val = triangleArea($x1, $y1, $x2, $y2, $x3, $y3);
chk_rparen("Missing right parenthesis", $lc);
}
elsif (s/^asin//i) {
chk_lparen("asin");
$val = expr();
PrintFatalError("Can't take asin of $val", $lc) if $val < -1 || $val > 1;
$val = asin($val);
chk_rparen("Missing right parenthesis", $lc);
}
elsif (s/^acos//i) {
chk_lparen("acos");
$val = expr();
PrintFatalError("Can't take acos of $val", $lc) if $val < -1 || $val > 1 ;
$val = acos($val);
chk_rparen("Missing right parenthesis", $lc);
}
elsif (s/^atan//i) {
chk_lparen("atan");
$val = expr();
$val = atan($val);
chk_rparen("Missing right parenthesis", $lc);
}
elsif (s/^cos//i) {
chk_lparen("cos");
$val = expr();
$val = cos($val);
chk_rparen("Missing right parenthesis", $lc);
}
elsif (s/^directiondeg//i) {
chk_lparen("directiondeg",$lc);
my $point_1 = get_point($lc);
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_1});
my $point_2 = get_point($lc);
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point_2});
my $x3 = $x1+1;
if ( ($y2 - $y1) >= 0) {
$val = Angle($x3, $y1, $x1, $y1, $x2, $y2);
$val = 0 if $val == -500;
}
else {
$val = 360 - Angle($x3, $y1, $x1, $y1, $x2, $y2);
$val = 0 if $val == -500;
}
chk_rparen("Missing right parenthesis", $lc);
}
elsif (s/^direction//i) {
chk_lparen("direction",$lc);
my $point_1 = get_point($lc);
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_1});
my $point_2 = get_point($lc);
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point_2});
my $x3 = $x1+1;
if ( ($y2 - $y1) >= 0) {
$val = Angle($x3, $y1, $x1, $y1, $x2, $y2);
$val = 0 if $val == -500;
$val = D2R * $val;
}
else {
$val = 360 - Angle($x3, $y1, $x1, $y1, $x2, $y2);
$val = 0 if $val == -500;
$val = D2R * $val;
}
chk_rparen("Missing right parenthesis", $lc);
}
elsif (s/^exp//i) {
chk_lparen("exp");
$val = expr();
$val = exp($val);
chk_rparen("Missing right parenthesis", $lc);
}
elsif (s/^int//i) {
chk_lparen("int");
$val = expr();
$val = int($val);
chk_rparen("Missing right parenthesis", $lc);
}
elsif (s/^log//i) {
chk_lparen("log");
$val = expr();
PrintFatalError("Can't take log of $val", $lc) if $val <= 0;
$val = log($val);
chk_rparen("Missing right parenthesis", $lc);
}
elsif (s/^sin//i) {
chk_lparen("sin");
$val = expr();
$val = sin($val);
chk_rparen("Missing right parenthesis", $lc);
}
elsif (s/^sgn//i) {
chk_lparen("sgn");
$val = expr();
if ($val > 0) {
$val = 1;
}
elsif ($val == 0) {
$val = 0;
}
else {
$val = -1;
}
chk_rparen("Missing right parenthesis", $lc);
}
elsif (s/^sqrt//i) {
chk_lparen("sqrt");
$val = expr();
$val = sqrt($val);
chk_rparen("Missing right parenthesis", $lc);
}
elsif (s/^tan//i) {
chk_lparen("tan");
$val = expr();
$val = sin($val)/cos($val);
chk_rparen("Missing right parenthesis", $lc);
}
elsif (s/^xcoord//i) {
chk_lparen("xcoord");
my $point_name = get_point;
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_name});
$val = $x1;
chk_rparen("Missing right parenthesis", $lc);
}
elsif (s/^ycoord//i) {
chk_lparen("ycoord");
my $point_name = get_point;
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_name});
$val = $y1;
chk_rparen("Missing right parenthesis", $lc);
}
elsif (s/^_pi_//i) {
$val = PI;
}
elsif (s/^_e_//i) {
$val = 2.71828182845905;
}
elsif (s/^_linethickness_//i) {
$val = $LineThickness / $xunits;
}
else {
my $err_code;
($val,$err_code) = ComputeDist($lc);
}
s/\s*//;
return $val;
}
@ The subroutine [[memberOf]] is used to check whether a string is part of
a list of strings. We assume that the first argument is the string in
question. We compare each list element against the string in question and
if we find it we stop and return the value [[1]] (denoting truth). Otherwise,
we simply return the value [[0]] (denoting false).
<<subroutine <tt>memberOf</tt> >>=
sub memberOf {
my $elem = shift(@_);
my $found = 0;
foreach $item (@_){
if ($item eq $elem){
$found = 1;
last;
}
}
return $found;
}
@ The subroutine [[tand]] computes the tangent of an angle. The angle is
supposed to be in degrees. We simply transform it into radians and then
compute the actual result.
<<subroutine <tt>tand</tt> >>=
sub tand {
my $d = $_[0];
$d = $d * PI / 180;
return sin($d)/cos($d);
}
@ The subroutine [[get_string]] is used to extract a leading valid mathspic string
from the input line. A string must start with a quotation mark, i.e., [["]],
and must end with the same symbol. A string may contain quotation marks which
must be escaped with a backslash, i.e., [[\]]. Initially, we remove all
leading white space. If the next character of the string is not a quotation
mark we print an error message and stop. Otherwise, we split the string into
an array of characters and store the characters up to the next quotation
mark to the array [[@cmd]]. In case the next character is a backslash and
we aren't at the end of the input string and the next character is a
quotation mark, we have an escape sequence. This means that we store these
two characters in the [[@cmd]] array and skip to characters after the quotation
mark. Otherwise, we simply store the character in the [[@cmd]] array and
skip to the next character. This process is repeated until either we consume
all the characters of the string or until we find a sole quotation mark.
Since we are not sure what has forced the loop to exit, we check whether
there are still characters in the input string and we check whether this
is a quotation mark. If these tests fail we have a string without a
closing quotation mark. In all cases we return a triplet consisting of
a number denoting success (1) or failure (0) and what we have consumed
from the input string, and what is left from the input string.
<<subroutine <tt>get_string</tt> >>=
sub get_string {
my $string = shift;
my $lc = shift;
$string =~ s/^\s+//;
if ($string !~ s/^\"//) {
PrintErrorMessage("No starting \" found",$lc);
return (1,$string,$string);
}
my @ch = split //,$string;
my @cmd;
while (@ch and $ch[0] ne "\"") {
if ($ch[0] eq "\\" and (defined $ch[1]) and $ch[1] eq "\"") {
shift @ch;
push @cmd, $ch[0];
shift @ch;
}
else {
push @cmd, $ch[0];
shift @ch;
}
}
if (! defined $ch[0]) {
PrintErrorMessage("No closing \" found",$lc);
return (1,join("",@cmd), join("",@ch))
}
else {
shift @ch;
return (0, join("",@cmd), join("",@ch))
}
}
@ The definition as well as an explanation of the functionality of the
following subroutine can be found in "Programming Perl", 3rd edition.
<<subroutine <tt>is_tainted</tt> >>=
sub is_tainted {
my $arg = shift;
my $nada = substr($arg,0,0);
local $@;
eval { eval "# $nada"};
return length($@) != 0;
}
@ The subroutine [[noOfDigits]] has one argument which is a number and returns
the number of decimal digits it has. If the number matches the regular
expression [[^\d+(?!\.)]] (a series of digits <i>not</i> followed by a
period), then the number of decimal digits is zero. If the
number matches the
regular expression [[^\d+\.(\d+)?]], then number of decimal digits equals
[[length($1)]]. Naturally, it maybe zero!
<<subroutine <tt>noOfDigits</tt> >>=
sub noOfDigits {
my $num = $_[0];
if ($num =~ /^[\+-]?\d+(?!\.)/) {
return 0;
}
elsif ($num =~ /^[\+-]\d+\.(\d+)?/) {
return length($1);
}
}
@ Subroutine [[drawsquare]] is use by the [[drawpoints]] routine to plot a
point whose point symbol is a square. The subroutine has one argument, which is
equal to the radius of the point. From this argument it computes the side of
the square.
<<subroutine <tt>drawsquare</tt> >>=
sub drawsquare {
my $s = $_[0];
#$s *= sqrt(2);
$s = sprintf "%.5f", $s;
my $code = "\\setlength{\\unitlength}{$xunits}%\n";
$code .= "\\begin{picture}($s,$s)\\put(0,0)" .
"{\\framebox($s,$s){}}\\end{picture}";
return $code;
}
@ Subroutine [[X2sp]] has two arguments: a number and a length unit. It returns
the length expresssed in sp units.
<<subroutine <tt>X2sp</tt> >>=
sub X2sp {
my $LT = shift;
my $units = shift;
if ($units eq "pc") {
return $LT * 786432;
}
elsif ($units eq "pt") {
return $LT * 65536;
}
elsif ($units eq "in") {
return $LT * 4736286.72;
}
elsif ($units eq "bp") {
return $LT * 65781.76;
}
elsif ($units eq "cm") {
return $LT * 1864679.811023622;
}
elsif ($units eq "mm") {
return $LT * 186467.981102362;
}
elsif ($units eq "dd") {
return $LT * 70124.086430424;
}
elsif ($units eq "cc") {
return $LT * 841489.037165082;
}
elsif ($units eq "sp") {
return $LT;
}
}
@ Subroutine [[sp2X]] has two arguments: a number that denotes a length in sp units
and a length unit. It returns the length expresssed in units that are specified by
the second argument.
<<subroutine <tt>sp2X</tt> >>=
sub sp2X {
my $LT = shift;
my $units = shift;
if ($units eq "pc") {
return $LT / 786432;
}
elsif ($units eq "pt") {
return $LT / 65536;
}
elsif ($units eq "in") {
return $LT / 4736286.72;
}
elsif ($units eq "bp") {
return $LT / 65781.76;
}
elsif ($units eq "cm") {
return $LT / 1864679.811023622;
}
elsif ($units eq "mm") {
return $LT / 186467.981102362;
}
elsif ($units eq "dd") {
return $LT / 70124.086430424;
}
elsif ($units eq "cc") {
return $LT / 841489.037165082;
}
elsif ($units eq "sp") {
return $LT;
}
}
@ Subroutine [[setLineThickness]] takes two arguments: the value of the variable
[[$xunits]] and a string denoting the linethickness. It returns the linthickness
expressed in the units of the [[$xunits]].
<<subroutine <tt>setLineThickness</tt> >>=
sub setLineThickness {
my $Xunits = shift;
my $LT = shift;
$Xunits =~ s/^((\+|-)?\d+(\.\d+)?([eE](\+|-)?\d+)?)//;
my $xlength = "$1";
$Xunits =~ s/^\s*($units)//;
my $x_in_units = $1;
$LT =~ s/^((\+|-)?\d+(\.\d+)?([eE](\+|-)?\d+)?)//;
my $LTlength = "$1";
$LT =~ s/^\s*($units)//;
my $LT_in_units = $1;
$LTlength = X2sp($LTlength,$LT_in_units);
$LTlength = sp2X($LTlength,$x_in_units);
return $LTlength;
}
@ The subroutine [[process_input]] accepts one argument which is a file handle
that corresponds to the file that the subroutine is supposed to process.
The processing cycle is fairly simple: we input one line at the time, remove
any leading space characters and the trailing new line character, and then
start the actual processing. The variable [[$INFILE]] contains the name of
the input file and the variable [[$lc]] is the local line counter. The
commands [[beginSkip]] and [[endSkip]] can be used to ignore blocks
of code and so we need to process them here. The variable [[$no_output]]
is used as a switch to toggle from process mode to no-precess mode.
If the first token is [[beginSkip]], we set the variable [[$no_output]] to 1,
print a comment to the output file and continue with the next input line.
If the first token is [[endSkip]], we check whether we are in a no-process
mode. If this is the case, we revert to process mode; otherwise we print
an error message. Finally, depending on whether we are in process or no-process
mode we process the input text or simply printed commented out to the output
file. Note, that we don't allow nested comment blocks, as this makes really
no sense!
<<subroutine <tt>process_input</tt> >>=
sub process_input {
my ($INFILE,$currInFile) = @_;
my $lc = 0;
my $no_output = 0;
$curr_in_file = $currInFile;
LINE: while(<$INFILE>) {
$lc++;
chomp($command = $_);
s/^\s+//;
if (/^beginSkip\s*/i) {
$no_output = 1;
print OUT "%%$_" if $comments_on;
next LINE;
}
elsif (/^endSkip\s*/i) {
if ($no_output == 0) {
PrintErrorMessage("endSkip without beginSkip",$lc);
}
else {
$no_output = 0;
}
print OUT "%%$_" if $comments_on and !$no_output;
next LINE;
}
elsif ($no_output == 1) {
next LINE;
}
else {
if (/^[^\\]/) {
my $out_line = mpp($command,$lc) unless /^\\/; #call macro pre-processor
$_ = "$out_line\n";
}
<<process input line>>
}
}
}
@ Each command line starts with a particular <i>token</i> and depending on
which one we have we perform different actions. If the first character
is [[%]] we have a comment line, and depending on the value of the variable
[[$comments_on]] we either output the comment on the output file (default
action) or just ignore it and continue with the next input line. In case the
first token is the name of a valid command we process the command and
output the corresponding code. Otherwise, we print an error message to
the screen and to the log file and continue with the next input line.
Note that the input language is case-insensitive and so one is free to write a
command name using any combination of upper and lower case
letters, e.g., the tokens [[lAtEx]],
[[LaTeX]], and [[latex]] are considered exactly the same.
The valid <i>MathsPIC</i> commands are the following (don't pay attention
to the case!):
<ul>
<li>
Commands [[drawAngleArc]] and [[drawAngleArrow]] are used to draw an arc and an
arrow, respectively. Since, their user interface is identical, we process
them as if they were identical commands.
</li>
<li>
Command [[drawcircle]] is used to draw a circle with a specified radius.
</li>
<li>
Command [[drawCircumCircle]] is used to draw the circumcircle of triangle
specified by three points.
</li>
<li>
Command [[drawexcircle]] is used to draw the excircle of triangle
relative to a given side of the triangle.
</li>
<li>
Command [[drawincircle]] is used to draw the incircle of triangle.
</li>
<li>
Command [[drawincurve]] is used to draw a curve that passes through a number of points.
</li>
<li> Command [[drawline]] is used to draw either
a line (not necessarily a straight one) or a number of lines from a list
or lists of points. The lines are specified as pairs of points that can
be separated by blank spaces.
<li> Command [[drawthickline]] is used to draw either
a thick line (not necessarily a straight one) or a number of lines from a list
or lists of points. The lines are specified as pairs of points that can
be separated by blank spaces.
</li>
<li>
Command [[drawPerpendicular]] draws a perpendicular line from point A to
line BC.
</li>
<li> Command [[drawpoint]] is used to draw one, two or more points.
The point names can be separated by blanks.
</li>
<li>
Command [[drawRightAngle]] draws an angle, specified by three points,
of a size specified by a side length.
</li>
<li>
Command [[drawsquare]] draws a square, centered at the coordinates of the
first arguments, which is assumed to be a point, with side equal to the
second argument.
</li>
<li>
Command [[inputfile*]] is used to verbatim include a file into the output
file.
</li>
<li>
Command [[inputfile]] is used to include a <i>MathsPIC</i> program file
into the main file.
</li>
<li>
Command [[linethickness]] should be used to set the thickness of lines.
</li>
<li>
The [[paper]] command sets the paper scale, size, axes, etc. The most
general format of the command follows:
<center>
<tt>paper{units(mm), xrange(0,120), yrange(0,100),axes(LRTB)}</tt>
</center>
Note, that one may opt not to write the commas between the different
parts of command.
</li>
<li>
Command [[point*]] allocates <i>new</i> co-ordinates and optionally
a T<sub>E</sub>X point-name, to an existing point-name.
Command [[point]] allocates co-ordinates and, optionally a T<sub>E</sub>X
point character, to a <i>new</i> point-name. Since, both commands have
identical syntax, we handle them together.
</li>
<li> Command [[PointSymbol]] is used to set or reset the default
point symbol, i.e., when one plots a point this is the symbol that will
appear on the final DVI/PostScript file.
</li>
<li>
In the original DOS version of <tt>mathspic</tt> the command
[[setPointNumber]] was used to set the length of the arrays that keep the
various point related information. Since, in Perl arrays are dynamic objects
and one can push as many objects as he/she wants, the command is implemented
as an no-op. For reasons of compatibility, we only check the syntax of the
command.
</li>
<li>
Commands [[showAngle]] and [[showArea]] can be used to get
the angle or the area determined by three points. In addition, the command
[[showLenght]] can be used to get the length between two points. These three
commands produce a comment to the output file.
</li>
<li> The [[system]] command provides a shell escape.
</li>
<li>
The [[text]] command is used to put a symbol/text at a
particular point location.
</li>
<li>
Command [[var]] is used to store a numeric value into a comma separated
list of variables.
</li>
<li>
Command [[const]] is used to store a numeric value into a comma separated
list of variables, whose value cannot be altered.
</li>
<li>
If a line starts with a backslash, [[\]], then we copy verbatim this
line to the output file. In case the second character is a space character,
then we simply output a copy of the line without the leading backslash.
</li>
</ul>
Empty lines are always ignored.
<<process input line>>=
if (/^\s*%/)
{
print OUT "$_" if $comments_on;
}
elsif (s/^\s*(beginloop(?=\W))//i) {
s/\s+//;
my $times = expr($lc);
print OUT "%% BEGINLOOP $times\n" if $comments_on;
my @C = ();
REPEATCOMMS: while (<$INFILE>) {
if (/^\s*endloop/i) {
last REPEATCOMMS;
}
else {
push @C, $_;
}
}
if (! /^\s*endloop/i) {
PrintFatalError("unexpected end of file",$lc);
}
else {
s/^\s*endloop//i;
for(my $i=1; $i<=$times; $i++) {
tie *DUMMY, 'DummyFH', \@C;
process_input(DUMMY, $currInFile);
untie *DUMMY;
}
print OUT "%% ENDLOOP\n" if $comments_on;
}
}
elsif (s/^\s*(ArrowShape(?=\W))//i)
{
my $cmd = $1;
print OUT "%% $cmd$_" if $comments_on;
<<process <tt>ArrowShape</tt> command>>
}
elsif (s/^\s*(const(?=\W))//i)
{
print OUT "%% $1$_" if $comments_on;
<<process <tt>const</tt> command>>
}
elsif (s/^\s*(dasharray(?=\W))//i)
{
my ($cmd) = $1;
print OUT "%% $cmd$_" if $comments_on;
<<process <tt>dasharray</tt> command>>
}
elsif (s/^\s*(drawAngleArc(?=\W))//i or s/^\s*(drawAngleArrow(?=\W))//i )
{
my $cmd = $1;
print OUT "%% $cmd$_" if $comments_on;
<<process <tt>drawAngleArcOrArrow</tt> command>>
}
elsif (s/^\s*(drawArrow(?=\W))//i)
{
my ($cmd) = $1;
print OUT "%% $cmd$_" if $comments_on;
DrawLineOrArrow(0,$lc);
}
elsif (s/^\s*(drawcircle(?=\W))//i)
{
my ($cmd) = $1;
print OUT "%% $cmd$_" if $comments_on;
<<process <tt>drawcircle</tt> command>>
}
elsif (s/^\s*(drawcurve(?=\W))//i)
{
my ($cmd) = $1;
print OUT "%% $cmd$_" if $comments_on;
DrawLineOrArrow(2,$lc);
}
elsif (s/^\s*(drawcircumcircle(?=\W))//i)
{
my ($cmd) = $1;
print OUT "%% $cmd$_" if $comments_on;
<<process <tt>drawcircumcircle</tt> command>>
}
elsif (s/^\s*(drawexcircle(?=\W))//i)
{
my ($cmd) = $1;
print OUT "%% $cmd$_" if $comments_on;
<<process <tt>drawexcircle</tt> command>>
}
elsif (s/^\s*(drawincircle(?=\W))//i)
{
my ($cmd) = $1;
print OUT "%% $cmd$_" if $comments_on;
<<process <tt>drawincircle</tt> command>>
}
elsif (s/^\s*(drawline(?=\W))//i)
{
my ($cmd) = $1;
print OUT "%% $cmd$_" if $comments_on;
DrawLineOrArrow(1,$lc);
}
elsif (s/^\s*(drawthickarrow(?=\W))//i)
{
my ($cmd) = $1;
print OUT "%% $cmd$_" if $comments_on;
print OUT "\\setplotsymbol ({\\usefont{OT1}{cmr}{m}{n}\\large .})%\n";
print OUT "{\\setbox1=\\hbox{\\usefont{OT1}{cmr}{m}{n}\\large .}%\n";
print OUT " \\global\\linethickness=0.31\\wd1}%\n";
DrawLineOrArrow(0,$lc);
print OUT "\\setlength{\\linethickness}{0.4pt}%\n";
print OUT "\\setplotsymbol ({\\usefont{OT1}{cmr}{m}{n}\\tiny .})%\n";
}
elsif (s/^\s*(drawthickline(?=\W))//i)
{
my ($cmd) = $1;
print OUT "%% $cmd$_" if $comments_on;
print OUT "\\setplotsymbol ({\\usefont{OT1}{cmr}{m}{n}\\large .})%\n";
print OUT "{\\setbox1=\\hbox{\\usefont{OT1}{cmr}{m}{n}\\large .}%\n";
print OUT " \\global\\linethickness=0.31\\wd1}%\n";
DrawLineOrArrow(1,$lc);
print OUT "\\setlength{\\linethickness}{0.4pt}%\n";
print OUT "\\setplotsymbol ({\\usefont{OT1}{cmr}{m}{n}\\tiny .})%\n";
}
elsif (s/^\s*(drawperpendicular(?=\W))//i)
{
my ($cmd) = $1;
print OUT "%% $cmd$_" if $comments_on;
<<process <tt>drawPerpendicular</tt> command>>
}
elsif (s/^\s*(drawpoint(?=\W))//i)
{
my ($cmd) = $1;
print OUT "%% $cmd$_" if $comments_on;
<<process <tt>drawpoint</tt> command>>
}
elsif (s/^\s*(drawRightAngle(?=\W))//i)
{
my ($cmd) = $1;
print OUT "%% $cmd$_" if $comments_on;
<<process <tt>drawRightAngle</tt> command>>
}
elsif (s/^\s*(drawsquare(?=\W))//i)
{
my ($cmd) = $1;
print OUT "%% $cmd$_" if $comments_on;
<<process <tt>drawsquare</tt> command>>
}
elsif (s/^\s*inputfile\*//i)
{
<<process <tt>inputfile*</tt> command>>
}
elsif (s/^\s*(inputfile(?=\W))//i)
{
my ($cmd) = $1;
print OUT "%% $cmd$_" if $comments_on;
<<process <tt>inputfile</tt> command>>
}
elsif (s/^\s*(linethickness(?=\W))//i)
{
my $cmd = $1;
print OUT "%% $cmd$_" if $comments_on;
<<process <tt>linethickness</tt> command>>
}
elsif (s/^\s*(paper(?=\W))//i)
{
my ($cmd) = $1;
print OUT "%% $cmd$_" if $comments_on;
<<process <tt>paper</tt> command>>
}
elsif (s/^\s*(PointSymbol(?=\W))//i)
{
my $cmd = $1;
print OUT "%% $cmd$_" if $comments_on;
<<process <tt>PointSymbol</tt> command>>
}
elsif (s/^\s*point(?=\W)//i)
{
my ($Point_Line);
chomp($Point_Line=$_);
<<process <tt>point/point*</tt> commands>>
}
elsif (/^\s*setPointNumber(?=\W)/i)
{
PrintWarningMessage("Command setPointNumber is ignored",$lc);
next LINE;
}
elsif (s/^\s*(showAngle(?=\W))//i)
{
<<process <tt>showAngle</tt> command>>
}
elsif (s/^\s*(showArea(?=\W))//i)
{
<<process <tt>showArea</tt> command>>
}
elsif (s/^\s*(showLength(?=\W))//i)
{
<<process <tt>showLength</tt> command>>
}
elsif (/^\s*showPoints(?=\W)/i)
{
print OUT "%%-------------------------------------------------\n";
print OUT "%% L I S T O F P O I N T S \n";
print OUT "%%-------------------------------------------------\n";
foreach my $p (keys(%PointTable)) {
my ($x, $y, $pSV, $pS) = unpack("d3A*",$PointTable{$p});
printf OUT "%%%%\t%s\t= ( %.5f, %.5f ), LF-radius = %.5f, symbol = %s\n",
$p, $x, $y, $pSV, $pS;
}
print OUT "%%-------------------------------------------------\n";
print OUT "%% E N D O F L I S T O F P O I N T S \n";
print OUT "%%-------------------------------------------------\n";
next LINE;
}
elsif (/^\s*showVariables(?=\W)/i)
{
print OUT "%%-------------------------------------------------\n";
print OUT "%% L I S T O F V A R I A B L E S \n";
print OUT "%%-------------------------------------------------\n";
foreach my $var (keys(%VarTable)) {
print OUT "%%\t", $var, "\t=\t", $VarTable{$var}, "\n";
}
print OUT "%%-------------------------------------------------\n";
print OUT "%% E N D O F L I S T O F V A R I A B L E S \n";
print OUT "%%-------------------------------------------------\n";
next LINE;
}
elsif (s/^\s*(system(?=\W))//i)
{
print OUT "%% $1$_" if $comments_on;
<<process <tt>system</tt> command>>
}
elsif (s/^\s*(text(?=\W))//i)
{
print OUT "%% $1$_" if $comments_on;
<<process <tt>text</tt> command>>
}
elsif (s/^\s*(var(?=\W))//i)
{
print OUT "%% $1$_" if $comments_on;
<<process <tt>var</tt> command>>
}
elsif (/^\s*\\(.+)/)
{
my $line = $1;
if ($line =~ /^\s+(.+)/)
{
print OUT " $line\n";
}
else
{
print OUT "\\$line\n";
}
next LINE;
}
elsif (0==length) #empty line
{
next LINE;
}
else {
PrintErrorMessage("command not recognized",$lc);
next LINE;
}
@ Command [[dasharray]] takes an arbitrary number of arguments that are used to
specify a dash pattern. Its general syntax follows:
<center>
<tt> "dasharray" "(" d<sub>1</sub> "," g<sub>1</sub> "," d<sub>2</sub> ","
g<sub>2</sub> "," ... ")"</tt>
</center>
where <tt>d<sub>i</sub></tt> denotes the length of a dash and <tt>g<sub>i</sub></tt>
denotes the length of gap between two consecutive dashes. Each <tt>d<sub>i</sub></tt>
and <tt>g<sub>i</sub></tt> is a length (i.e., a number accompanied by a length of unit).
Since we do not a priori know the number of arguments, we push them onto a stack and
then we produce a command of the form
<center>
<tt> \setdashpattern < d<sub>1</sub>, g<sub>1</sub>, d<sub>2</sub>,
g<sub>2</sub>, ...></tt>
</center>
<<process <tt>dasharray</tt> command>>=
chk_lparen($cmd,$lc);
my @DashArray = ();
my $dash = "";
my $dashpattern = "";
PATTERN: while (1) {
$dash = sprintf("%.5f", expr($lc));
if (s/^\s*($units)//i) {
push (@DashArray, "$dash$1");
}
else {
PrintErrorMessage("Did not found unit after expression", $lc);
}
s/\s*//;
if (/^[^,]/) {
last PATTERN;
}
else {
s/^,\s*//;
}
}
print OUT "\\setdashpattern <";
while (@DashArray) {
$dashpattern .= shift @DashArray;
$dashpattern .= ",";
}
$dashpattern =~ s/,$//;
print OUT $dashpattern, ">\n";
chk_rparen("arguments of $cmd",$lc);
chk_comment($lc);
@ The command [[drawAngleArc]] draws an arc in the specified angle, a
distance <i>radius</i> from the angle. The angle is either <i>internal</i>
(<= 180 degrees) or <i>external</i> (>180 degrees). The direction of the
arc is either <i>clockwise</i> or <i>anticlockwise</i>. The command
[[drawAngleArrow]] draws an arrow just like the command [[drawAngleArc]]
draws an arc. The syntax of these commands is as follows:
<pre>
cmds ::= ( "drawAngleArc" | "drawAngleArrow" ) args
args ::= "{" angle comma radius comma internal comma clockwise "}"
angle ::= "angle" "(" three-points ")"
radius ::= "radius" "(" distance ")"
distance ::= expression
internal ::= "internal" | "external"
clockwise ::= "clockwise" | "anticlockwise"
comma ::= "," | empty
</pre>
We first collect all relevant information by parsing the [[args]] and then
call the either the subroutine [[drawAngleArc]] or the subroutine
[[drawAngleArrow]] to produce the actual code
which is then printed into the output file. In order to be able to distinguish
which command we are dealing with we simply use the variable [[$cmd]].
We now start parsing the input line. We first check whether there is a
left curly bracket. Next, we parse the [[angle]], the [[distance]], the
[[internal]] and the [[clockwise]] parts of the command. Finally, we check
for right curly bracket and a trailing comment. Depending on
the value of
the variable [[$cmd]] we call either the subroutine [[drawAngleArc]] or the
subroutine [[drawAngleArrow]]. These subroutines return the code that will be
finally output to the output file.
<<process <tt>drawAngleArcOrArrow</tt> command>>=
chk_lcb($cmd,$lc);
<<process <tt>angle</tt> part of command>>
s/^,\s*// or s/\s*//; #parse optional comma
<<process <tt>radius</tt> part of command>>
s/^,\s*// or s/\s*//; #parse optional comma
my $inout = "";
if (s/^(internal(?=\W))//i or s/^(external(?=\W))//i) {
$inout = $1;
}
else {
PrintErrorMessage("Did not find expected 'internal' specifier", $lc);
next LINE;
}
s/^,\s*// or s/\s*//; #parse optional comma
my $direction = "";
if (s/^(clockwise(?=\W))//i or s/^(anticlockwise(?=\W))//i) {
$direction = $1;
}
else {
PrintErrorMessage("Did not find expected 'direction' specifier", $lc);
next LINE;
}
chk_rcb("arguments of $cmd",$lc);
chk_comment($lc);
my $code;
if (lc($cmd) eq "drawanglearc") {
$code = drawAngleArc($P1, $P2, $P3, $radius, $inout, $direction);
}
else {
$code = drawAngleArrow($P1, $P2, $P3, $radius, $inout, $direction);
}
print OUT $code if $code ne "";
@ We first check whether the first token is the word [[angle]]. In case it
isn't, this yields an unrecoverable error. In case the expected word is
there, we check for a left parenthesis. Next, we parse the three points that
must follow. For this purpose we use the user-defined subroutine
[[get_point]]. Now we check that the angle has a reasonable value, i.e., if
it is less than -400 or equal to zero, the value yields an unrecoverable error.
We finish by checking whether there is a right parenthesis.
<<process <tt>angle</tt> part of command>>=
my ($P1, $P2, $P3);
if (s/^angle(?=\W)//i) {
chk_lparen("token angle of command $cmd",$lc);
$P1 = get_point($lc);
next LINE if $P1 eq "_undef_";
$P2 = get_point($lc);
next LINE if $P2 eq "_undef_";
$P3 = get_point($lc);
next LINE if $P3 eq "_undef_";
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$P1});
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$P2});
my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$P3});
my $Angle = Angle($x1, $y1, $x2, $y2, $x3, $y3);
if ($Angle <= 0) {
if ($Angle == 0) {
PrintErrorMessage("Angle is equal to zero",$lc);
next LINE;
}
elsif ($Angle < -400) {
PrintErrorMessage("Something is wrong with the points",$lc);
next LINE;
}
}
chk_rparen("angle part of command $cmd",$lc);
}
else {
PrintErrorMessage("Did not find expected angle part",$lc);
next LINE;
}
@ In this section we parse the [[radius]] part of the [[drawAngleArc]] or the
[[drawAngleArrow]] command. We first check whether the next token is the word
[[radius]]. If it is not, then we continue with the next line.
<<process <tt>radius</tt> part of command>>=
my $radius;
if (s/^radius(?=\W)//i) {
chk_lparen("token radius of command $cmd",$lc);
$radius = expr($lc);
chk_rparen("radius part of command $cmd",$lc);
}
else {
PrintErrorMessage("Did not found expected angle part",$lc);
next LINE;
}
@ Command [[drawcircle]] accepts two arguments--a point name that is
used to specify the center of the circle and the radius of the circle.
The radius is simply an expression, whose value must be greater than zero.
Otherwise, we print an error message and continue with the next input line.
The general syntax of the command is as follows:
<pre>
"drawcircle" "(" point-name "," rad ")"
</pre>
The code we emit for a point with coordinates [[x]] and [[y]] and for radius
equal to [[R]] is:
<pre>
\circulararc 360 degrees from X y center at x y
</pre>
where [[X = x+R]].<p>
Initially, we check whether there is an opening left parenthesis. Next,
we get the point name by using the subroutine [[get_point]] which
issues an error message if the point hasn't been defined. In this
case we stop processing the command, as there is absolutely no reason to
do otherwise. Next, we parse the comma and then the radius by using
the subroutine [[ComputeDist]]. If there is no problem, we emit the code
and finally we check for a closing right parenthesis and for
possible garbage that may follow the command.
<<process <tt>drawcircle</tt> command>>=
chk_lparen("drawcircle",$lc);
my $Point = get_point($lc);
next LINE if $Point eq "_undef_";
chk_comma($lc);
my $R = expr($lc);
if ($R <= 0) {
PrintErrorMessage("Radius must be greater than zero",$lc);
next LINE;
}
my ($x,$y,$pSV,$pS)=unpack("d3A*",$PointTable{lc($Point)});
printf OUT "\\circulararc 360 degrees from %.5f %.5f center at %.5f %.5f\n",
$x+$R, $y, $x, $y;
chk_rparen("arguments of $cmd",$lc);
chk_comment($lc);
@ Command [[drawcircumcircle]] is used to draw the circumcircle of triangle
specified by three points which are the arguments of the command. We start
by parsing the opening left parenthesis. Next, we get the three points
that define the triangle. We are now able to compute the center and
the radius of the circumcircle by calling the subroutine [[circumCircleCenter]].
If the triangle area is equal to zero, then this subroutine will return
the array [[(0,0,0)]] to indicate this fact.
We now have all necessary information to draw the circumcircle. We use the
following code to do the job:
<pre>
\circulararc 360 degrees from X y center x y
</pre>
where [[x]] and [[y]] are the coordinates of the center, [[R]] its
radius and [[X=x+R]]. What is left is to check whether there is a
closing right parenthesis and any trailing garbage.
<<process <tt>drawcircumcircle</tt> command>>=
chk_lparen("drawcircumcircle",$lc);
my $point1 = get_point($lc);
next LINE if $point1 eq "_undef_";
my $point2 = get_point($lc);
next LINE if $point2 eq "_undef_";
my $point3 = get_point($lc);
next LINE if $point3 eq "_undef_";
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point1});
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point2});
my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point3});
my ($xc, $yc,$r) = circumCircleCenter($x1,$y1,$x2,$y2,$x3,$y3,$lc);
next LINE if $xc == 0 and $yc == 0 and $r == 0;
print OUT "%% circumcircle center = ($xc,$yc), radius = $r\n" if $comments_on;
printf OUT "\\circulararc 360 degrees from %.5f %.5f center at %.5f %.5f\n",
$xc+$r, $yc, $xc, $yc;
chk_rparen("arguments of $cmd",$lc);
chk_comment($lc);
@ The syntax of the [[drawexcircle]] command is as follows:
<pre>
drawexcircle ::= "drawexcircle" "(" ThreePoints "," TwoPoints ")"
[ modifier ]
modifier ::= "[" expr "]"
</pre>
The [[modifier]] is an expression that is used to modify the radius of the
excicle. We start by checking whether there is a left parenthesis. Then we
get names of the three points. In case any of the points is not defined
we issue an error message and continue with the next input line. Next, we
check whether there is a comma that separates the three points defining the
triangle from the two points defining a side of the triangle (variables
[[$point1]], [[$point2]], and [[$point3]]). Moreover, we must ensure that
the area of the area defined by these points is not equal to
zero. If it is we issue an error message and we continue with the next
input line. Now, we are ready to get the two
point names that define the side of the triangle (variables [[$point3]] and
[[$point5]]). At this point we must make sure that these points are different
points and that they are members of the list of points that define the triangle.
We make this check by calling the subroutine [[memberOf]]. Next, we check
whether there is a closing right parenthesis. We now compute the center
and the radius of the excircle by calling the subroutine [[excircle]]. The
coordinates of the center are stored in the variables [[$xc]] and [[$yc]],
while the radius is stored in the variable [[$r]]. If the next
non-blank input character is a left square bracket, then we know the user has
specified the optional part. We use the subroutine [[expr]] to get the value of
the optional part. The value of the optional part is stored in the variable [[$R]].
At this point we check whether the sum of the radius
plus the optional part is equal to zero and if it is we continue with the
next input line. Next, we check for a closing right square bracket. We are
now ready to emit the source code. The first thing we must check is that
the radius is not too big for PiCTeX, i.e., not greater than 500/2.845.
Then we print some informative text to the output file and of course the
actual code. We use the following code to do the job:
<pre>
\circulararc 360 degrees from (xc+R) yc center xc yc
</pre>
The last thing we check is whether there is some trailing garbage.
<<process <tt>drawexcircle</tt> command>>=
chk_lparen("drawexcircle",$lc);
my $point1 = get_point($lc);
next LINE if $point1 eq "_undef_";
my $point2 = get_point($lc);
next LINE if $point2 eq "_undef_";
my $point3 = get_point($lc);
next LINE if $point3 eq "_undef_";
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point1});
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point2});
my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point3});
if (triangleArea($x1, $y1, $x2, $y2, $x3, $y3) < 0.0001) {
PrintErrorMessage("Area of triangle is zero!",$lc);
next LINE;
}
chk_comma($lc);
my $point4 = get_point($lc);
if (!memberOf($point4, $point1, $point2, $point3)) {
PrintErrorMessage("Current point isn't a side point",$lc);
next LINE;
}
next LINE if $point4 eq "_undef_";
my $point5 = get_point($lc);
next LINE if $point5 eq "_undef_";
if (!memberOf($point5, $point1, $point2, $point3)) {
PrintErrorMessage("Current point isn't a side point",$lc);
next LINE;
}
if ($point4 eq $point5) {
PrintErrorMessage("Side points are identical",$lc);
next LINE;
}
chk_rparen("arguments of $cmd",$lc);
my ($xc, $yc, $r) = excircle($point1, $point2, $point3,
$point4, $point5);
my $R=$r;
if (s/^\s*\[\s*//) {
$R += expr($lc);
if ($R < 0.0001) {
PrintErrorMessage("Radius has become equal to zero!",$lc);
next LINE;
}
chk_rsb($lc);
}
if ($R > (500 / 2.845)) {
PrintErrorMessage("Radius is greater than 175mm!",$lc);
next LINE;
}
print OUT "%% excircle center = ($xc,$yc) radius = $R\n" if $comments_on;
printf OUT "\\circulararc 360 degrees from %.5f %.5f center at %.5f %.5f\n",
$xc+$R, $yc, $xc, $yc;
chk_comment($lc);
@ The syntax of the [[drawincircle]] command is as follows:
<pre>
drawincircle ::= "drawincircle" "(" ThreePoints ")" [ modifier]
modifier ::= "[" expr "]"
</pre>
where [[ThreePoints]] correspond to the points defining the triangle and
[[modifier]] is an optional modification factor.
The first thing we do is to check whether
there is an opening left parenthesis. Then we get the names of the three
points that define the triangle (variables [[$point1]], [[$point2]],
and [[$point3]]). Next, we make sure that the area of the
triangle defined by these three points is not equal to zero. If it is, then
we issue an error message and continue with the next input line. Now, we
compute the center and the radius of the incircle (variables [[$xc]], [[$yc]],
and [[$r]]). If the next non-blank input character is a left square bracket,
then we now the user has specified the optional part. We use subroutine
[[expr]] to get the value of the optional part. The value of
the optional part
is stored in the variable [[$R]]. At this point we check whether the sum of the
radius plus the optional part is equal to zero and if it is we continue with
the next input line. Next, we check for a closing right square bracket.
We are now ready to emit the source code. The first thing we must check is
that the radius is not too big for PiCTeX, i.e., not greater than 500/2.845.
Then we print some informative text to the output file and of course the
actual code. We use the following code to do the job:
<pre>
\circulararc 360 degrees from (xc+R) yc center xc yc
</pre>
The last thing we check is whether there is some trailing garbage.
<<process <tt>drawincircle</tt> command>>=
chk_lparen("drawincircle",$lc);
my $point1 = get_point($lc);
next LINE if $point1 eq "_undef_";
my $point2 = get_point($lc);
next LINE if $point2 eq "_undef_";
my $point3 = get_point($lc);
next LINE if $point3 eq "_undef_";
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point1});
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point2});
my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point3});
if (triangleArea($x1, $y1, $x2, $y2, $x3, $y3) < 0.0001) {
PrintErrorMessage("Area of triangle is zero!",$lc);
next LINE;
}
my ($xc, $yc, $r) = IncircleCenter($x1,$y1,$x2,$y2,$x3,$y3);
my $R=$r;
if (s/^\s*\[\s*//) {
$R += expr($lc);
if ($R < 0.0001) {
PrintErrorMessage("Radius has become equal to zero!",$lc);
next LINE;
}
chk_rsb($lc);
}
if ($R > (500 / 2.845)) {
PrintErrorMessage("Radius is greater than 175mm!",$lc);
next LINE;
}
print OUT "%% incircle center = ($xc,$yc) radius = $R\n" if $comments_on;
printf OUT "\\circulararc 360 degrees from %.5f %.5f center at %.5f %.5f\n",
$xc+$R, $yc, $xc, $yc;
chk_rparen("arguments of $cmd",$lc);
chk_comment($lc);
@ The command [[drawPerpendicular]] command draws a line from point A to line
BC, such that it is perpendicular to line BC. The general syntax of the
command is as follows:
<pre>
drawPenpedicular ::= "drawPenpedicular" "(" Point "," TwoPoints ")"
</pre>
The first thing we do is to parse the left parenthesis. Then we parse
the name of the first point, namely [[$A$]]. If this point is undefined
we print an error message and continue with the next line. Next, we parse
the expected leading comma and the names of the other two points. Certainly,
in case either of these two points has not been defined, we simply print an
error message and continue with the next input line. Finally, we check for
a closing right parenthesis and a possible trailing comment. Now we are
ready to compute the coordinates of the foot of the
perpendicular line. We do so my calling subroutine
[[perpendicular]]. Certainly, before we do this we have to get the
coordinates of the points that we have parsed. Finally, we output the
PiCTeX code:
<pre>
\plot x1 y1 xF xY /
</pre>
where [[x1]] and [[y1]] are coordinates of the point A and [[xF]] and [[yF]]
the coordinates of the foot.
<<process <tt>drawPerpendicular</tt> command>>=
chk_lparen($cmd,$lc);
my $A = get_point($lc);
next LINE if $A eq "_undef_";
chk_comma($lc);
my $B = get_point($lc);
next LINE if $A eq "_undef_";
s/\s*//; #ignore white space
my $C = get_point($lc);
next LINE if $A eq "_undef_";
chk_rparen("arguments of $cmd",$lc);
chk_comment($lc);
#
#start actual computation
#
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$A});
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$B});
my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$C});
my ($xF, $yF) = perpendicular($x1, $y1, $x2, $y2, $x3, $y3);
printf OUT "\\plot %.5f %.5f %.5f %.5f /\n",
$x1, $y1, $xF, $yF;
@ The [[drawpoint]] command has a number of points as arguments and produces
PiCTeX code that draws a plot symbol at the coordinates of each point. The
syntax of the command is as follows:
<pre>
drawpoint ::= "drawpoint" "(" Point { separator Point } ")"
</pre>
The [[while]] loop is used to consume all points that are
between an opening left parenthesis and a closing right parenthesis. All
points are pushed on the local array [[PP]]. When we have parsed the lists
of points, we call the subroutine [[drawpoints]] to emit the actual PiCTeX code.
Finally, we check whether there is a closing parenthesis
parenthesis, and whether
there is some trailing text that makes no sense. In case there are no points
between the parentheses, then we issue an appropriate error message and
we continue with the next input line.
<<process <tt>drawpoint</tt> command>>=
my ($stacklen);
chk_lparen("$cmd",$lc);
if (/^\)/) {
PrintErrorMessage("There are no point to draw",$lc);
next LINE;
}
my(@PP);
DRAWPOINTS:while(1) {
if (s/^([^\W\d_]\d{0,3})//i) { #point name
$P = $1;
if (!exists($PointTable{lc($P)})) {
PrintErrorMessage("Undefined point $P",$lc);
next DRAWPOINTS;
}
else {
push (@PP,$P);
s/\s*//;
}
}
else {
last DRAWPOINTS;
}
}
drawpoints(@PP);
chk_rparen("arguments of $cmd",$lc);
chk_comment($lc);
@ The syntax of the [[drawRightAngle]] command is as follows:
<pre>
drawRightAngle "(" ThreePoints "," dist ")"
dist ::= expr | TwoPoints
</pre>
Before we proceed with the actual computation we parse the left parenthesis,
the three points, the comma, the [[dist]], and the right parenthesis. In case
we have neither three points nor a [[dist]] we print an error message and
continue with the next input line, i.e., these errors are irrecoverable.
The names of the three points are stored in variables [[$point1]],
[[$point2]], and [[$point3]]. The value of the distance is stored
in the variable [[$dist]].
Let's now explain the semantics of this command.<p>
Our aim is to draw lines S<sub>1</sub>-S, S<sub>2</sub>-S (S<sub>1</sub>
and S<sub>2</sub> are at distance d from B). All the relevant points are
depicted in the following figure:
<center>
<img src="fig1.jpg">
</center>
Some notes are in order:
<ol>
<li> BS bisects angle ABC, and meets AC in Q, so start by determining point
Q, then determine S, and then S<sub>1</sub> and S<sub>2</sub>, and then
draw S<sub>1</sub>-S and S<sub>2</sub>-S.</li>
<li> Distance AQ is given by AC/(1+tan(BCA))</li>
<li> The coordinates of Q are computed using the subroutine [[pointOnLine]].</li>
<li> Now we compute the coordinates of S on line BQ.</li>
<li> We compute the coordinates of S<sub>1</sub> and S<sub>2</sub> by using
The subroutine [[pointOnLine]].</li>
</ol>
In order to implement the above steps we first compute the length of the line
AB. Note that A is [[$point1]], etc. Next we compute the angle BAC. Now
we compute the distance AQ (variable [[$line1]]). The coordinates of point
Q are stored in variables [[$xQ]] and [[$yQ]]. The coordinates of point
S are stored in variables [[$xS]] and [[$yS]]. Now we have to determine the
coordinates of points S<sub>1</sub> and S<sub>2</sub>. These coordinates
are stored in variables [[$xS1]], [[$yS1]] and [[$xS2]], [[$yS2]],
respectively. Finally, we emit the PiCTeX target code.
<<process <tt>drawRightAngle</tt> command>>=
chk_lparen("drawRightAngle",lc);
my $point1 = get_point($lc);
next LINE if $point1 eq "_undef_";
my $point2 = get_point($lc);
next LINE if $point2 eq "_undef_";
my $point3 = get_point($lc);
next LINE if $point3 eq "_undef_";
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point1});
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point2});
my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point3});
chk_comma($lc);
my $dist = expr($lc);
chk_rparen("arguments of $cmd",$lc);
chk_comment($lc);
#
#actual computation
#
my $lengthAC = Length($x1, $y1, $x3, $y3);
my $angleBAC = Angle($x2, $y2, $x1, $y1, $x3, $y3);
my $line1 = $lengthAC / (1 + tand($angleBAC));
#
# determine coordinates of point Q
#
my ($xQ, $yQ) = pointOnLine($x1, $y1, $x3, $y3, $line1);
#
# determine coordinates of point S
#
my $deltax = $xQ - $x2;
my $deltay = $yQ - $y2;
my $lengthBQ = sqrt($deltax * $deltax + $deltay * $deltay);
my $xS = $x2 + ($dist * sqrt(2) * $deltax / $lengthBQ);
my $yS = $y2 + ($dist * sqrt(2) * $deltay / $lengthBQ);
#
# determine coordinates of points S1 and S2
#
my ($xS1, $yS1) = pointOnLine($x2, $y2, $x3, $y3, $dist);
($xS2, $yS2) = ($xS, $yS);
#
# emit PiCTeX code
#
printf OUT "\\plot %.5f %.5f %.5f %.5f /\n",
$xS1, $yS1, $xS2, $yS2;
($xS1, $yS1) = pointOnLine($x2, $y2, $x1, $y1, $dist);
printf OUT "\\plot %.5f %.5f %.5f %.5f /\n",
$xS1, $yS1, $xS2, $yS2;
@ The command [[drawsquare]] has two arguments: a point, which specifies the
coordinates of the point where the square will be placed, and a number, which
specifies the length of the side of the square. The syntax of the command is as follows:
<center>
<tt> "drawSquare" "(" Point "," expression ")" </tt>
</center>
Note that RWDN has suggested to alter the value of the [[$side]] variable (see the
line with [[RWDN]] comment).
<<process <tt>drawsquare</tt> command>>=
chk_lparen("drawSquare",$lc);
my $p = get_point($lc);
chk_comma($lc);
my $side = expr($lc);
$side = $side - (1.1 * $LineThickness/$xunits); #Suggested by RWDN
my ($x,$y,$pSV,$pS) = unpack("d3A*",$PointTable{$p});
printf OUT "\\put {%s} at %.5f %.5f %%drawsquare\n", drawsquare($side), $x, $y;
chk_rparen("arguments of $cmd",$lc);
chk_comment($lc);
@ The argument of the [[inputfile*]] command is a file name that is always
enclosed in parentheses:
<pre>
starred-input-file ::= "inputfile*" "(" file-name ")"
file-name ::= (alpha | period) { alpha | period }
alpha ::= letter | digit | "_" | "-"
</pre>
Note, that the input file is assumed to contain TeX code.
We first check to see if there is a left parenthesis. Then we consume
the file name. We check if the file exists and then we copy verbatim the
input file to the output file. Next, we check for the closing parenthesis.
Now, if there is a trailing comment we copy it to the output file depending
on the value of the variable [[$comments_on]], else if there is some other
text we simply ignore it and issue a warning message.
<<process <tt>inputfile*</tt> command>>=
chk_lparen("inputfile*",$lc);
my $row_in = "";
if (s/^((\w|-|\.)+)//) {
$row_in = $1;
}
else {
PrintErrorMessage("No input file name found",$lc);
next LINE;
}
if (!(-e $row_in)) {
PrintErrorMessage("File $row_in does not exist",$lc);
next LINE;
}
open(ROW, "$row_in")|| die "Can't open file $row_in\n";
while (defined($in_line=<ROW>)) { print OUT $in_line; }
print OUT "%% ... end of input file <$row_in>\n";
close ROW;
chk_rparen("input file name",$lc);
chk_comment($lc);
@ The [[inputfile]] command has at most two arguments, second being
optional: a file name enclosed in curly brackets and the number of
times this file should be included in square brackets:
<pre>
inputfile ::= "inputfile" "(" file-name ")" [ Times ]
Times ::= "[" expr "]"
</pre>
Note that the input file is assumed to contain mathspic commands. In addition, if
the expression is equal to a decimal number, it is truncated.
As in the case of the [[inputfile*]] command we parse the left parenthesis,
the file name, the right parenthesis and the optional argument if it exists.
In order to process the commands contained in the input file, we call
The subroutine [[process_input]].
<<process <tt>inputfile</tt> command>>=
chk_lparen("inputfile",$lc);
my $comm_in = "";
if (s/^((\w|-|\.)+)//) {
$comm_in = $1;
}
else {
PrintErrorMessage("No input file name found",$lc);
next LINE;
}
if (!(-e $comm_in)) {
PrintErrorMessage("File $comm_in does not exist",$lc);
next LINE;
}
chk_rparen("input file name",$lc);
my $input_times = 1; #default value
if (s/^\[//) {
$input_times = expr($lc);
chk_rsb("optional argument",$lc);
}
print OUT "%% ... start of file <$comm_in> loop [$input_times]\n";
for (my $i=0; $i<int($input_times); $i++) {
open(COMM,"$comm_in") or die "Can't open file $comm_in\n";
print OUT "%%% Iteration number: ",$i+1,"\n";
my $old_file_name = $curr_in_file;
process_input(COMM,"File $comm_in, ");
$curr_in_file = $old_file_name;
close COMM;
}
print OUT "%% ... end of file <$comm_in> loop [$input_times]\n";
chk_comment($lc);
@ The [[linethickness]] command should be used to set the thickness of lines.
The command has one argument, which is a length or the word [[default]].
The default line thickness is 0.4 pt.
<<process <tt>linethickness</tt> command>>=
chk_lparen("linethickness", $lc);
if (s/^default//i) {
print OUT "\\linethickness=0.4pt\\Linethickness{0.4pt}%%\n";
print OUT "\\setplotsymbol ({\\usefont{OT1}{cmr}{m}{n}\\tiny .})%\n";
$LineThickness = setLineThickness($xunits,"0.4pt");
}
else {
my $length = expr($lc);
if (s/^\s*($units)//i) {
my $units = $1;
printf OUT "\\linethickness=%.5f%s\\Linethickness{%.5f%s}%%\n",
$length, $units, $length, $units;
$LineThickness = setLineThickness($xunits,"$length$units");
my $mag;
if ($units eq "pc") {
$mag = $length * 12;
}
elsif ($units eq "in") {
$mag = $length * 72.27;
}
elsif ($units eq "bp") {
$mag = $length * 1.00375;
}
elsif ($units eq "cm") {
$mag = $length * 28.45275;
}
elsif ($units eq "mm") {
$mag = $length * 2.845275;
}
elsif ($units eq "dd") {
$mag = $length * 1.07001;
}
elsif ($units eq "cc") {
$mag = $length * 0.08917;
}
elsif ($units eq "sp") {
$mag = $length * 0.000015259;
}
elsif ($units eq "pt") {
$mag = $length;
}
$mag = 10 * $mag / 1.00278219;
printf OUT "\\font\\CM=cmr10 at %.5fpt%%\n", $mag;
print OUT "\\setplotsymbol ({\\CM .})%\n";
}
else {
PrintErrorMessage("Did not found expect units part",$lc);
}
}
chk_rparen("linethickness", $lc);
chk_comment($lc);
@ We first output the input line as a comment into the output file. Now,
after the [[paper]] token we look for an opening brace. Then we process
the [[units]] part of the command, if the token [[units]] is present. Note
that the [[units]] part is optional. Next we process the [[xrange]] and the
[[yrange]] part of the command, which are also optional parts of the command.
We are now ready to process the [[axis]] part. Note, that the user is allowed
to alternatively specify this part with the word [[axes]].
The variable [[$axis]]
is supposed to hold the various data relate to the [[axis]] part. The last
thing we check is the [[ticks]] part. In case the user has not specified
this part we assume that both ticks are equal to zero. If everything is
according to the language syntax, we expect a closing right curly bracket.
Now, that we have all relevant information we can output the rest of the code,
as some parts of it have already been output during parsing. The last thing we
do is to check whether there is any trailing comment.
<<process <tt>paper</tt> command>>=
chk_lcb("paper", $lc);
if (s/^units(?=\W)//i)
{
<<process <tt>unit</tt> part>>
$nounits = 0;
}
else
{
$nounits = 1;
}
s/^,\s*// or s/\s*//;
if (s/^xrange//i)
{
<<process <tt>xrange</tt> part>>
$noxrange = 0;
}
else
{
$noxrange = 1;
}
s/^,\s*// or s/\s*//;
if (s/^yrange//i)
{
<<process <tt>yrange</tt> part>>
$noyrange = 0;
}
else
{
$noyrange = 1;
}
<<generate plot area related commands>>
s/^,\s*// or s/\s*//;
$axis = "";
if (s/^ax[ei]s(?=\W)//i)
{
<<process <tt>axis</tt> part>>
}
$axis = uc($axis);
s/^,\s*// or s/\s*//;
if (s/^ticks(?=\W)//i)
{
<<process <tt>ticks</tt> part>>
}
else
{
$xticks = $yticks = 0;
}
chk_rcb("paper", $lc);
<<generate the rest of the code for the <tt>paper</tt> command>>
chk_comment($lc);
@ We first check whether there is a left parenthesis. Next, we check
whether there is decimal number or a variable name. In case there isn't one we assume it
is the number 1. Now, we get the units. If there is no valid unit, we issue
an error and the x-unit is set to its default value. In case, there is
a trailing comma, we assume the user wants also to specify the y-unit and
we process this part just like we did with the x-unit part. Finally, we
output the corresponding PiCTeX command. In case there is no y-unit
we assume it is equal to the x-unit.
<<process <tt>unit</tt> part>>=
chk_lparen("units",$lc);
if(s/^\)//)
{
PrintWarningMessage("Missing value in \"units\"--default is 1pt",
$lc);
$xunits = "1pt";
}
else {
$xunits = expr($lc);
s/\s*//;
if (s/^($units)//i) {
$xunits .= "$1";
$LineThickness = setLineThickness($xunits,"0.4pt");
}
elsif(s/^(\w)+//i) {
PrintErrorMessage("$1 is not a valid mathspic unit",$lc);
$xunits = "1pt";
}
else {
PrintErrorMessage("No x-units found",$lc);
$xunits = "1pt";
}
s/\s*//; #ignore white space
if (s/^,//) { # there is a comma so expect an y-units
s/\s*//; #ignore white space
$yunits = expr($lc);
s/\s*//; #ignore white space
if (s/^($units)//i) {
$yunits .= "$1";
}
elsif(s/^(\w)+//i) {
PrintErrorMessage("$1 is not a valid mathspic unit",$lc);
$yunits = "1pt";
}
else {
PrintErrorMessage("No y-units found",$lc);
$yunits = $xunits;
}
}
else {
$yunits = $xunits;
}
chk_rparen("units",$lc);
}
@ The [[xrange]] token must be followed by a left parenthesis, so we
check whether the next token is a left parenthesis. We store in the variables
[[$xlow]] and [[$xhigh]] the values of the range. The range is specified
as pair of decimal numbers/variable/pair of points, separated by a
comma. We use the subroutine [[ComputeDist]] to get the value of the lower
end and the upper end of the range. The last thing we check is whether
the lower end is less than the upper end. If this isn't the case we
issue an error message and we skip into the next input line.
<<process <tt>xrange</tt> part>>=
chk_lparen("xrange",$lc);
my $ec;
($xlow,$ec) = ComputeDist($lc);
next LINE if $ec == 0;
chk_comma($lc);
($xhigh,$ec) = ComputeDist($lc);
next LINE if $ec == 0;
if ($xlow >= $xhigh)
{
PrintErrorMessage("xlow >= xhigh in xrange",$lc);
next LINE;
}
chk_rparen("$xhigh",$lc);
@ The [[yrange]] token must be followed by a left parenthesis, so we
check whether the next token is a left parenthesis. We store in the variables
[[$ylow]] and [[$yhigh]] the values of the range. The range is specified
as pair of decimal numbers/variable/pair of points, separated by a
comma. We use the subroutine [[ComputeDist]] to get the value of the lower
end and the upper end of the range. The last thing we check is whether
the lower end is less than the upper end. If this isn't the case we
issue an error message and we skip into the next input line.
<<process <tt>yrange</tt> part>>=
chk_lparen("yrange",$lc);
my $ec;
($ylow,$ec) = ComputeDist($lc);
next LINE if $ec == 0;
chk_comma($lc);
($yhigh,$ec) = ComputeDist($lc);
next LINE if $ec == 0;
if ($ylow >= $yhigh)
{
PrintErrorMessage("ylow >= yhigh in yrange",$lc);
next LINE;
}
chk_rparen("$yhigh",$lc);
@ The [[showAngle]] command has three arguments that correspond to three distinct
points and emits a comment of the form:
<center>
<tt>%% angle(ABC) = 45</tt>
</center>
Note that the computed angle is expressed in degrees.
<<process <tt>showAngle</tt> command>>=
chk_lparen("showangle",$lc);
my $point_1 = get_point($lc);
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_1});
my $point_2 = get_point($lc);
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point_2});
my $point_3 = get_point($lc);
my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point_3});
my $angle = Angle($x1, $y1, $x2, $y2, $x3, $y3);
$angle = 0 if $angle == -500;
printf OUT "%%%% angle(%s%s%s) = %.5f deg ( %.5f rad)\n", $point_1,
$point_2, $point_3, $angle, $angle*D2R;
chk_rparen("Missing right parenthesis", $lc);
@ The [[showArea]] command has three arguments that correspond to three distinct
points and emits a comment of the form:
<center>
<tt>%% area(ABC) = 45</tt>
</center>
Note that the computed angle is expressed in degrees.
<<process <tt>showArea</tt> command>>=
chk_lparen("showarea",$lc);
my $point_1 = get_point($lc);
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_1});
my $point_2 = get_point($lc);
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point_2});
my $point_3 = get_point($lc);
my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point_3});
print OUT "%% area($point_1$point_2$point_3) = ",
triangleArea($x1, $y1, $x2, $y2, $x3, $y3), "\n";
chk_rparen("Missing right parenthesis", $lc);
@ The [[showLength]] command has two arguments that correspond to two distinct
points and emits a comment of the form:
<center>
<tt>%% length(AB) = 45</tt>
</center>
Note that the computed angle is expressed in degrees.
<<process <tt>showLength</tt> command>>=
chk_lparen("showlength",$lc);
my $point_1 = get_point($lc);
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$point_1});
my $point_2 = get_point($lc);
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point_2});
print OUT "%% length($point_1$point_2) = ",
Length($x1, $y1, $x2, $y2), "\n";
chk_rparen("Missing right parenthesis", $lc);
@ If the user hasn't specified units then we use the previous values to
set the coordinate system. If the user hasn't specified either the
[[xunits]] part or the [[yunits]], then we don't emit code. In case he/she
has specified both parts we generate the command that sets the plot area.
<<generate plot area related commands>>=
if (!$nounits)
{
printf OUT "\\setcoordinatesystem units <%s,%s>\n",
$xunits,$yunits;
}
if(!$noxrange && !$noyrange)
{
printf OUT "\\setplotarea x from %.5f to %.5f, y from %.5f to %.5f\n",
$xlow, $xhigh, $ylow, $yhigh;
}
@ We first check to see whether there is an opening left parenthesis. Next
we get the various options the user may have entered. The valid options
are the letters L, R, T, B, X, and Y. These letters may be followed by
an optional star [[*]] with space characters between the letter and the star.
We use a loop, that stops when a right parenthesis is found, to
go through all
possible arguments and append each argument in the string [[$axis]]. Note
one can have blank space between different arguments. The last thing we do is
to check for the closing right parenthesis.
<<process <tt>axis</tt> part>>=
chk_lparen("axis",$lc);
while(/^[^\)]/)
{
if (s/^([lrtbxy]{1}\*?)//i)
{
$axis .= $1;
}
elsif (s/^([^lrtbxy])//i)
{
PrintErrorMessage("Non-valid character \"$1\" in axis()",$lc);
}
s/\s*//;
}
chk_rparen("axis(arguments",$lc);
@ As usual we start by skipping white space. Next we check whether there is
an opening left parenthesis. Now, we expect two numbers/variables/pair of
point representing the [[ticks]] increment value. These [[ticks]] increment
values must be separated by a comma (and possibly some white space around
them). We use the subroutine [[ComputeDist]] to get the value of the [[ticks]]
increment value and we assign to the variables [[$xticks]] and [[$yticks]]
the value of x-ticks and y-ticks increment value. In case there is a
problem we issue an error message and continue with the next line. The last
thing we check is whether there is a closing right parenthesis.
<<process <tt>ticks</tt> part>>=
chk_lparen("ticks",$lc);
my $ec;
($xticks,$ec) = ComputeDist($lc);
next LINE if $ec == 0;
chk_comma($lc);
($yticks,$ec) = ComputeDist($lc);
next LINE if $ec == 0;
chk_rparen("ticks(arguments",$lc);
@ We actually emit code if the user has specified either the [[X]] or
[[Y]] option in the [[axis]] part. If the user has specified the
[[Y*]] or the [[X*]] option in the axis part, we just emit the commands
[[\axis left shiftedto x=0]] or [[\axis bottom shiftedto y=0]] respectively
and exit. If the use has specified ticks, then, depending on the options
he had supplied with the [[axis]] part, we emit code that
implements the user's wishes.
**** HERE WE MUST EXPLAIN THE MEANING OF THE CODE EMITTED!!! *****
<<generate the rest of the code for the <tt>paper</tt> command>>=
YBRANCH: {
if (index($axis, "Y")>-1)
{
if (index($axis, "Y*")>-1)
{
print OUT "\\axis left shiftedto x=0 / \n";
last YBRANCH;
}
if ($yticks > 0)
{
if (index($axis, "T")>-1 && index($axis, "B")==-1)
{
print OUT "\\axis left shiftedto x=0 ticks numbered from ";
print OUT "$ylow to -$yticks by $yticks\n from $yticks to ";
print OUT $yhigh-$yticks," by $yticks /\n";
}
elsif (index($axis, "T")==-1 && index($axis, "B")>-1)
{
print OUT "\\axis left shiftedto x=0 ticks numbered from ";
print OUT $ylow+$yticks," to -$yticks by $yticks\n from ";
print OUT "$yticks to $yhigh by $yticks /\n";
}
elsif (index($axis, "T")>-1 && index($axis, "B")>-1)
{
print OUT "\\axis left shiftedto x=0 ticks numbered from ";
print OUT $ylow+$yticks," to -$yticks by $yticks\n from ";
print OUT "$yticks to ",$yhigh-$yticks," by $yticks /\n";
}
else
{
print OUT "\\axis left shiftedto x=0 ticks numbered from ";
print OUT "$ylow to -$yticks by $yticks\n from ";
print OUT "$yticks to $yhigh by $yticks /\n";
}
}
else
{
print OUT "\\axis left shiftedto x=0 /\n";
}
}
}
XBRANCH: { if (index($axis, "X")>-1)
{
if (index($axis, "X*")>-1)
{
print OUT "\\axis bottom shiftedto y=0 /\n";
last XBRANCH;
}
if ($xticks > 0)
{
if (index($axis, "L")>-1 && index($axis, "R")==1)
{
print OUT "\\axis bottom shiftedto y=0 ticks numbered from ";
print OUT $xlow + $xticks," to -$xticks by $xticks\n from";
print OUT " $xticks to $xhigh by $xticks /\n";
}
elsif (index($axis, "L")==-1 && index($axis, "R")>-1)
{
print OUT "\\axis bottom shiftedto y=0 ticks numbered from ";
print OUT "$xlow to -$xticks by $xticks\n from ";
print OUT "$xticks to ",$xhigh-$xticks," by $xticks /\n";
}
elsif (index($axis, "L")>-1 && index($axis, "R")>-1)
{
print OUT "\\axis bottom shiftedto y=0 ticks numbered from ";
print OUT $xlow + $xticks," to -$xticks by $xticks\n from ";
print OUT "$xticks to ",$xhigh - $xticks," by $xticks /\n";
}
else
{
print OUT "\\axis bottom shiftedto y=0 ticks numbered from ";
print OUT "$xlow to -$xticks by $xticks\n from ";
print OUT "$xticks to $xhigh by $xticks /\n";
}
}
else
{
print OUT "\\axis bottom shiftedto y=0 /\n";
}
} }
LBRANCH: {if (index($axis, "L")>-1)
{
if (index($axis, "L")>-1)
{
if (index($axis, "L*")>-1)
{
print OUT "\\axis left /\n";
last LBRANCH;
}
if ($yticks > 0)
{
print OUT "\\axis left ticks numbered from ";
print OUT "$ylow to $yhigh by $yticks /\n";
}
else
{
print OUT "\\axis left /\n";
}
}
} }
RBRANCH: { if (index($axis, "R")>-1)
{
if (index($axis, "R*")>-1)
{
print OUT "\\axis right /\n";
last RBRANCH;
}
if ($yticks > 0)
{
print OUT "\\axis right ticks numbered from $ylow to $yhigh by ";
print OUT "$yticks /\n";
}
else
{
print OUT "\\axis right /\n";
}
} }
TBRANCH: { if (index($axis, "T")>-1)
{
if (index($axis, "T*")>-1)
{
print OUT "\\axis top /\n";
last TBRANCH;
}
if ($xticks > 0)
{
print OUT "\\axis top ticks numbered from $xlow to $xhigh by ";
print OUT "$xticks /\n";
}
else
{
print OUT "\\axis top /\n";
}
} }
BBRANCH: { if (index($axis, "B")>-1)
{
if (index($axis, "B*")>-1)
{
print OUT "\\axis bottom /\n";
last BBRANCH;
}
if ($xticks > 0)
{
print OUT "\\axis bottom ticks numbered from $xlow to $xhigh by ";
print OUT "$xticks /\n";
}
else
{
print OUT "\\axis bottom /\n";
}
} }
@ The syntax of the [[point]] commands follows:
<pre>
point[*](PointName){Coordinates}[PointSymbol]
</pre>
where [[PointName]] is valid point name, [[Coordinates]] is either a
pair of numbers denoting the coordinates of the point or an expression
by means of which the system computes the coordinates of the point, and
the [[PointSymbol]] is a valid T<sub><font size=+1>E</font></sub>X
command denoting a point symbol. A valid point name consists of a
letter and at most two trailing digits. That is, the names [[a11]],
[[b2]] and [[c]] are valid names while [[qw]] and [[s123]] are not.
The first thing we do is to set the point shape to the default symbol
(this has been initialized in the main program). Next, we check whether
we have a [[point]]command or a [[point*]] simply by inspecting the very
next token. Note that there must be no blank spaces between the token
[[point]] and the star symbol. Next, we get the point name: remember that
the point name is surrounded by parentheses. In case we don't find a valid
point name we issue an error message and continue with the next line of
input. Suppose the point name was a valid one. If we have a [[point*]]
command we must ensure that the this particular point name has been defined.
If we have a [[point]] command we must ensure that this particular point
name has not been defined. Point names are stored in the hash [[%PointTable]].
We are now ready to process the coordinates part and the optional
plot symbol part.
<<process <tt>point/point*</tt> commands>>=
my ($pointStar, $PointName, $origPN);
$pointStar = 0; # default value: he have a point command
$pointStar = 1 if s/^\*//;
chk_lparen("point" . (($pointStar)?"*":""),$lc);
if (s/^([^\W\d_](?![^\W\d_])\d{0,3})//i) {
#
# Note: the regular expression (foo)(?!bar) means that we are
# looking a foo not followed by a bar. Moreover, the regular
# expression [^\W\d_] means that we are looking for letter.
#
$origPN = $1;
$PointName = lc($1);
}
else {
PrintErrorMessage("Invalid point name",$lc);
next LINE;
}
#if ($pointStar and !exists($PointTable{$PointName})) {
# PrintWarningMessage("Point $origPN has not been defined",$lc);
#}
if (!$pointStar and exists($PointTable{$PointName})) {
PrintWarningMessage("Point $origPN has been used already",$lc);
}
chk_rparen("point" . (($pointStar)?"*":""). "($origPN",$lc);
chk_lcb("point" . (($pointStar)?"*":""). "($origPN)",$lc);
my ($Px, $Py);
<<process coordinates>>
chk_rcb("coordinates part",$lc);
my $sv = $defaultsymbol;
my $sh = $defaultLFradius;
my $side_or_radius = undef;
if (s/^\[\s*//) { # the user has opted to specify the optional part
<<process optional point shape part>>
chk_rsb("optional part",$lc);
}
# to avoid truncation problems introduced by the pack function, we
# round each number up to five decimal digits
$Px = sprintf("%.5f", $Px);
$Py = sprintf("%.5f", $Py);
print OUT "%% point$Point_Line \t$origPN = ($Px, $Py)\n" if $comments_on;
chk_comment($lc);
$PointTable{$PointName} = pack("d3A*",$Px,$Py,$sh,$sv);
if (defined($side_or_radius)) {
$DimOfPoint{$PointName} = $side_or_radius;
}
@ In this section we parse the [[Coordinates]] part of the [[point]] command.
The complete syntax of the [[Coordinates]] part follows:
<pre>
Coordinates ::= Variable |
Distance "," Distance |
"midpoint" "(" Point-Name Point-Name ")" |
"pointOnLine" "(" Two-Points "," Distance ")" |
"intersection" "(" Two-Points "," Two-Points ")" |
"perpendicular" "(" Point-Name "," Two-Points ")" |
"circumCircleCenter" "(" Three-Points ") |
"incircleCenter" "(" Three-Points ")" |
"excircleCenter" "(" Three-Points "," Two-Points ")" |
Point-Name [ "," Modifier ]
Modifier ::= "shift" "(" Distance "," Distance ")" |
"polar" "(" Distance, Distance [ "deg" | "rad" ] ")" |
"rotate" "(" Point-Name, Distance [ "deg" | "rad" ] ")" |
"vector" "(" Two-Points ")"
Distance ::= expression
Two-Points ::= Point-Name Point-Name
Three-Points ::= Point-Name Two-Points
</pre>
We now briefly explain the functionality of each option:
<ul>
<li>midpoint(AB): the midpoint between points A and B</li>
<li>pointOnLine(AB,d): point at distance d from A towards B</li>
<li>intersection(AB,CD): intersection of lines defined by AB and CD</li>
<li>perpendicular(A,BC): point of the foot of the perpendicular from A to line BC</li>
<li>circumCircleCenter(ABC): center of circumcircle of triangle ABC</li>
<li>incircleCenter(ABC):center of incircle of triangle ABC</li>
<li>excircleCenter(ABC,BC): center of excircle of triangle ABC, touching
side BC</li>
<li>A, shift(x,y): Point displaced from A by x and y along the X and Y
axes</li>
<li>A, polar(r,d): Point displaced from A by distance r in direction d</li>
<li>A, rotate(B,d): Rotate A about B by d</li>
</ul>
We now explain how the following piece of code operates. In case the first
token is a number, we assume that the coordinates are specified by a
number and another number, a variable or a pair of points. So, we check
whether there is a comma and use the subroutine [[ComputeDist]] to get the
second coordinate. In case the next token is one of the words
[[perpendicular]], [[intersection]], [[midpoint]], [[pointonline]],
[[circumcircleCenter]], [[IncircleCenter]], or [[ExcircleCenter]]
we consume the corresponding token and process the corresponding case.
In case the first two tokens are two identifiers, then we assume that we
have a pair of numbers. We compute their distance, check whether there is
a leading comma and compute the y-coordinate by calling subroutine
[[ComputeDist]]. In case the next token is a single identifier, we store
its name in the variable [[$PointA]]. If this identifier is a defined point name,
we check whether the next token is a comma. In case it is, we check whether
he token after the comma is either the token [[shift]], [[polar]], or
[[rotate]] and process each case accordingly. If it is
none of these tokens we issue an error message and continue with the next
input line. Now, if the token after the identifier isn't a comma, we assume
that the coordinates of the point will be identical to those of the point
whose name has been stored in the variable [[$PointA]]. If the identifier is a
variable name, we assume that the x-coordinate is the value of this variable.
We check whether the next token is a comma, and compute the y-coordinate by
calling the subroutine [[ComputeDist]]. The x-coordinate is stored in the variable
[[$Px]] and the y-coordinate in the variable [[$Py]].
<<process coordinates>>=
if (s/^perpendicular(?=\W)//i) {
<<process <tt>perpendicular</tt> case>>
}
elsif (s/^intersection(?=\W)//i) {
<<process <tt>intersection</tt> case>>
}
elsif (s/^midpoint(?=\W)//i) {
<<process <tt>midpoint</tt> case>>
}
elsif (s/^pointonline(?=\W)//i) {
<<process <tt>pointonline</tt> case>>
}
elsif (s/^circumcircleCenter(?=\W)//i) {
<<process <tt>circumcircleCenter</tt> case>>
}
elsif (s/^IncircleCenter(?=\W)//i) {
<<process <tt>IncircleCenter</tt> case>>
}
elsif (s/^ExcircleCenter(?=\W)//i) {
<<process <tt>ExcircleCenter</tt> case>>
}
elsif (/^[^\W\d_]\d{0,3}\s*[^,\w]/) {
m/^([^\W\d_]\d{0,3})\s*/i;
if (exists($PointTable{lc($1)})) {
my $Tcoord = get_point($lc);
my ($x,$y,$pSV,$pS)=unpack("d3A*",$PointTable{$Tcoord});
$Px = $x;
$Py = $y;
}
else {
$Px = expr();
chk_comma($lc);
$Py = expr();
}
}
elsif (/[^\W\d_]\d{0,3}\s*,\s*shift|polar|rotate|vector/i) { #a point?
s/^([^\W\d_]\d{0,3})//i;
my $PointA = $1;
if (exists($PointTable{lc($PointA)})) {
s/\s*//;
if (s/^,//) {
s/\s*//;
if (s/^shift(?=\W)//i) {
<<process <tt>shift</tt> case>>
}
elsif (s/^polar(?=\W)//i) {
<<process <tt>polar</tt> case>>
}
elsif (s/^rotate(?=\W)//i) {
<<process <tt>rotate</tt> case>>
}
elsif (s/^vector(?=\W)//i) {
<<process <tt>vector</tt> case>>
}
else {
PrintErrorMessage("unexpected token",$lc);
next LINE;
}
}
else {
my ($xA,$yA,$pSVA,$pSA)=unpack("d3A*",$PointTable{lc($PointA)});
$Px = $xA;
$Py = $yA;
}
}
else {
PrintErrorMessage("Undefined point $PointA",$lc);
next LINE;
}
}
else {
$Px = expr();
chk_comma($lc);
$Py = expr();
}
@ In the following piece of code we process the [[perpendicular]]
case of the [[point]] specification. We first check whether there is an
opening left parenthesis. Next, we get the first point name. In case
there is no point name, we simply abandon the processing of this
line and continue with the next one. Then we see whether there is
a trailing comma. Omitting this token yields a non-fatal error.
Then we get two more points. As before, if we can't find any of these
points this yields a fatal-error. Note, that each time we check that the
point names correspond to existing point names. Then, we call subroutine
[[perpendicular]] to calculate the coordinates of the point.
<<process <tt>perpendicular</tt> case>>=
chk_lparen("perpendicular",$lc);
my $FirstPoint = &get_point($lc);
next LINE if $FirstPoint eq "_undef_";
chk_comma($lc);
my $SecondPoint = &get_point($lc);
next LINE if $SecondPoint eq "_undef_";
my $ThirdPoint = &get_point($lc);
next LINE if $ThirdPoint eq "_undef_";
chk_rparen("No closing parenthesis found",$lc);
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$FirstPoint});
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$SecondPoint});
my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$ThirdPoint});
($Px, $Py) = perpendicular($x1,$y1,$x2,$y2,$x3,$y3);
@ In the following piece of code we process the [[intersection]] case of the
[[point]] specification. We get the four point names and if there is
no error we compute the intersection point by calling subroutine
[[intersection]].
<<process <tt>intersection</tt> case>>=
chk_lparen("intersection",$lc);
my $FirstPoint = get_point($lc);
next LINE if $FirstPoint eq "_undef_";
my $SecondPoint = get_point($lc);
next LINE if $SecondPoint eq "_undef_";
chk_comma($lc);
my $ThirdPoint = get_point($lc);
next LINE if $ThirdPoint eq "_undef_";
my $ForthPoint = get_point($lc);
next LINE if $ForthPoint eq "_undef_";
chk_rparen("No closing parenthesis found",$lc);
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$FirstPoint});
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$SecondPoint});
my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$ThirdPoint});
my ($x4,$y4,$pSV4,$pS4)=unpack("d3A*",$PointTable{$ForthPoint});
($Px, $Py) = intersection4points($x1,$y1,$x2,$y2,$x3,$y3,$x4,$y4);
@ Given two points A and B, the midpoint option computes the coordinates
of a third point that lies on the middle of the line segment defined by
these two points. We get the the two points, and then we compute the
coordinates of the midpoint by means of the simple formula:
<center>
m<sub>x</sub>=x<sub>1</sub>+(y<sub>2</sub> - y<sub>1</sub>)/2 <br>
m<sub>y</sub>=y<sub>1</sub>+(x<sub>2</sub> - x<sub>1</sub>)/2
</center>
<<process <tt>midpoint</tt> case>>=
chk_lparen("midpoint",$lc);
my $FirstPoint = &get_point($lc);
next LINE if $FirstPoint eq "_undef_";
my $SecondPoint = &get_point($lc);
next LINE if $SecondPoint eq "_undef_";
chk_rparen("No closing parenthesis found",$lc);
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$FirstPoint});
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$SecondPoint});
$Px = $x1 + ($x2 - $x1)/2;
$Py = $y1 + ($y2 - $y1)/2;
@ Given two points A and B and length d, the [[PointOnLine]] option
computes the coordinates of a point that lies d units in the direction from
A towards B. We first get the coordinates of the two points that define
the line and then we get the distance, which can be a number, a variable,
or a pair of points.
<<process <tt>pointonline</tt> case>>=
chk_lparen("pointonline",$lc);
my $FirstPoint = &get_point($lc);
next LINE if $FirstPoint eq "_undef_";
my $SecondPoint = &get_point($lc);
next LINE if $SecondPoint eq "_undef_";
chk_comma($lc);
# now get the distance
my $distance = expr($lc);
chk_rparen("No closing parenthesis found",$lc);
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$FirstPoint});
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$SecondPoint});
($Px, $Py) = pointOnLine($x1,$y1,$x2,$y2,$distance);
@ The [[circumcircleCenter]] is used when one wants to compute the coordinates
of the center of circle that passes through the three points
of a triangle defined
by the three arguments of the option. All we do is get the coordinates
of the three points and then we call the subroutine [[circumCircleCenter]]
to compute the center.
<<process <tt>circumcircleCenter</tt> case>>=
chk_lparen("circumCircleCenter",$lc);
my $FirstPoint = &get_point($lc);
next LINE if $FirstPoint eq "_undef_";
my $SecondPoint = &get_point($lc);
next LINE if $SecondPoint eq "_undef_";
my $ThirdPoint = &get_point($lc);
next LINE if $ThirdPoint eq "_undef_";
chk_rparen("No closing parenthesis found",$lc);
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$FirstPoint});
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$SecondPoint});
my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$ThirdPoint});
($Px, $Py,$r) = &circumCircleCenter($x1,$y1,$x2,$y2,$x3,$y3,$lc);
next LINE if $Px == 0 and $Py == 0 and $r == 0;
@ The [[IncircleCenter]] option is to determine the coordinates of a point
that is the center of circle that internally touches the sides
of a triangle defined by three given points.
The coordinates are computed by the subroutine [[IncircleCenter]].
<<process <tt>IncircleCenter</tt> case>>=
chk_lparen("IncircleCenter",$lc);
my $FirstPoint = &get_point($lc);
next LINE if $FirstPoint eq "_undef_";
my $SecondPoint = &get_point($lc);
next LINE if $SecondPoint eq "_undef_";
my $ThirdPoint = &get_point($lc);
next LINE if $ThirdPoint eq "_undef_";
chk_rparen("No closing parenthesis found",$lc);
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{$FirstPoint});
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$SecondPoint});
my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$ThirdPoint});
($Px, $Py, $r) = IncircleCenter($x1,$y1,$x2,$y2,$x3,$y3);
@ The [[ExcircleCenter]] option is used to define the coordinates of point
that is the center of an excircle of a triangle. We first check
whether there is an opening left parenthesis. Next, we get the names of the
three points that define the triangle. Then, we
check whether there is a comma. Now we get the names of the two points that
define one side of the triangle. We check whether the two points we
get are of the set of the triangle points. If not we issue
an error message and continue with the next input line. Then we make sure
that these two points are not identical. We compute the actual
coordinates by calling the subroutine [[excircle]]. Finally, we
make sure there is a closing right parenthesis.
<<process <tt>ExcircleCenter</tt> case>>=
chk_lparen("ExcircleCenter",$lc);
my $PointA = get_point($lc);
next LINE if $PointA eq "_undef_";
my $PointB = get_point($lc);
next LINE if $PointB eq "_undef_";
my $PointC = get_point($lc);
next LINE if $PointC eq "_undef_";
chk_comma($lc);
my $PointD = &get_point($lc);
next LINE if $PointD eq "_undef_";
if (!memberOf($PointD, $PointA, $PointB, $PointC)) {
PrintErrorMessage("Current point isn't a side point",$lc);
next LINE;
}
my $PointE = get_point($lc);
next LINE if $PointE eq "_undef_";
if (!memberOf($PointE, $PointA, $PointB, $PointC)) {
PrintErrorMessage("Current point isn't a side point",$lc);
next LINE;
}
if ($PointD eq $PointE) {
PrintErrorMessage("Side points are identical",$lc);
next LINE;
}
($Px, $Py, $r) = excircle($PointA, $PointB, $PointC,
$PointD, $PointE);
chk_rparen("after coordinates part",$lc);
@ The [[shift]] option allows us to define a point's coordinates relative
to the coordinates of an existing point by using two shift parameters. Each
parameter can be either a float, a variable name, or a pair of points.
<<process <tt>shift</tt> case>>=
chk_lparen("shift",$lc);
my $dist1 = expr($lc);
chk_comma($lc);
my $dist2 = expr($lc);
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{lc($PointA)});
$Px = $x1 + $dist1;
$Py = $y1 + $dist2;
chk_rparen("shift part",$lc);
@ The [[polar]] option allows us to define a point's coordinates relative
to the coordinates of an existing point using the polar coordinates of some
other point. We first check whether there is a left parenthesis,
Then we parse the various parts of the [[polar]] option.
In case the user has specified the angle in degrees, we have
to transform it into radians, as all trigonometric function expect their
arguments to be radians. Next, we compute the coordinates of the point.
We conclude by checking whether there is a closing parenthesis.
<<process <tt>polar</tt> case>>=
chk_lparen("polar",$lc);
my ($R1, $Theta1);
$R1 = expr($lc);
chk_comma($lc);
$Theta1 = expr($lc);
my ($x1,$y1,$pSV1,$pS1)=unpack("d3A*",$PointTable{lc($PointA)});
s/\s*//;
if (s/^rad(?=\W)//i) {
# do nothing!
}
elsif (s/^deg(?=\W)//i) {
$Theta1 = $Theta1 * PI / 180;
}
else {
#$Theta1 = $Theta1 * PI / 180;
}
$Px = $x1 + $R1 * cos($Theta1);
$Py = $y1 + $R1 * sin($Theta1);
chk_rparen("after polar part",$lc);
@ The [[rotate]] option allows us to define a point's coordinates by
rotating an existing point, Q, about a third point, P, by a
specified angle.
The method to achieve this is to first get the coordinates of points
P and Q and then
<ol>
<li> translate origin to P</li>
<li> rotate about P</li>
<li> translate from P back to origin, etc</li>
</ol>
As in the case of the [[polar]] option, we check for an opening parenthesis.
Next, we parse the point name and the angle. At this point we are able to
compute the coordinates of the rotated point. We conclude by checking
whether there is a closing parenthesis.
<<process <tt>rotate</tt> case>>=
chk_lparen("rotate",$lc);
my $Q = lc($PointA);
my $P = get_point($lc);
next LINE if $P eq "_undef_";
chk_comma($lc);
my $Theta1 = expr($lc);
my ($xP,$yP,$pSV1,$pS1)=unpack("d3A*",$PointTable{$P});
my ($xQ,$yQ,$pSV2,$pS2)=unpack("d3A*",$PointTable{$Q});
s/\s*//;
if (s/^rad(?=\W)//i)
{
# do nothing!
}
elsif (s/^deg(?=\W)//i)
{
$Theta1 = $Theta1 * PI / 180;
}
else
{
$Theta1 = $Theta1 * PI / 180;
}
# shift origin to P
$xQ -= $xP;
$yQ -= $yP;
# do the rotation
$Px = $xQ * cos($Theta1) - $yQ * sin($Theta1);
$Py = $xQ * sin($Theta1) + $yQ * cos($Theta1);
# return origin back to original origin
$Px += $xP;
$Py += $yP;
chk_rparen("after rotate part",$lc);
@ [[vector(PQ)]] is actually is a shorthand of [[shift(xQ-xP,yQ-yP)]]. Thus, it
is implemented by borrowing code from the [[shift]] modifier.
<<process <tt>vector</tt> case>>=
chk_lparen("vector",$lc);
my ($x0,$y0,$pSV0,$pS0) = unpack("d3A*",$PointTable{lc($PointA)});
my $P = get_point($lc);
my $Q = get_point($lc);
my ($x1,$y1,$pSV1,$pS1) = unpack("d3A*",$PointTable{$P});
my ($x2,$y2,$pSV2,$pS2) = unpack("d3A*",$PointTable{$Q});
$Px = $x0 + $x2 - $x1;
$Py = $y0 + $y2 - $y1;
chk_rparen("vector part",$lc);
@ When lines are drawn to a point, the line will (unless otherwise
specified) extend to the point location. However, this can be prevented by
allocating an optional circular line-free zone to a point by specifying the
radius (in square brackets) of the optional point shape part. Currently, in this part
we are allowed to describe the point shape and the radius value. If only the
radius is specified, e.g., <tt>[radius=5]</tt>, then the line-free zone will be
applied to the default point character, i.e., <tt>$\bullet$</tt> or whatever it
has been set to. Here is the syntax we employ:
<pre>
Optional_point_shape_part ::= "[" [ symbol_part ] [","] [ radius_part ]"
symbol_part ::= "symbol" "=" symbol
symbol ::= "circle" "(" expression ")" |
"square" "(" expression ")" |
LaTeX_Code
radius_part ::= "radius" "=" expression
</pre>
Note that it is possible to have right square bracket in the <tt>LaTeX_Code</tt> but it
has to be escaped (i.e., <tt>\]</tt>).
<<process optional point shape part>>=
if (/^(symbol|radius|side)\s*/i) {
my @previous_options = ();
my $number_of_options = 1;
my $symbol_set = 0;
while (s/^(symbol|radius)\s*//i and $number_of_options <= 2) {
my $option = lc($1);
if (s/^=\s*//) {
if (memberOf($option,@previous_options)) {
PrintErrorMessage("Option \"$option\" has been already defined", $lc);
my $dummy = expr($lc);
}
elsif ($option eq "radius") {
$sh = expr($lc);
$sv = $defaultsymbol if ! $symbol_set;
}
elsif ($option eq "symbol") {
if (s/^circle\s*//i) {
$sv = "circle";
chk_lparen("after token circle",$lc);
$side_or_radius = expr($lc);
chk_rparen("expression",$lc);
}
elsif (s/^square\s*//i) {
$sv = "square";
chk_lparen("after token square",$lc);
$side_or_radius = expr($lc);
chk_rparen("expression",$lc);
}
elsif (s/^(((\\\]){1}|(\\,){1}|(\\\s){1}|[^\],\s])+)//) {
$sv = $1;
$sv =~ s/\\\]/\]/g;
$sv =~ s/\\,/,/g;
$sv =~ s/\\ / /g;
s/\s*//;
}
$symbol_set = 1;
}
}
else {
PrintErrorMessage("unexpected token", $lc);
next LINE;
}
$number_of_options++;
push (@previous_options, $option);
s/^,\s*//;
}
}
else {
PrintErrorMessage("unexpected token", $lc);
next LINE;
}
@ The [[ArrowShape]] command has either one or three arguments. If the only argument of
the command is the token [[default]], then the parameters associated with the
arrow shape resume their default values. Now, if there are three arguments, these are
used to specify the shape of an arrow. The command actually sets the three global variables
[[$arrowLength]], [[$arrowAngleB]] and [[$arrowAngleC]]. Arguments whose value is equal
to zero, do not affect the value of the corresponding global variables. To reset the
values of the global variables one should use the commane with [[default]] as it
only argument. The syntax of the command is as follows:
<center>
<tt>"ArrowShape" "(" expr [ units ] "," expr "," expr ")"</tt> or<br>
<tt>"ArrowShape" "(" "default" ")" </tt>
</center>>
Here [[units]] is any valid TeX unit (e.g., "mm", "cm", etc.). Note that if
any of the three expressions is equal to zero, the default value is taken
instead. As direct consequence, if the value of the first expression is zero,
the units part is actually ignored.
<<process <tt>ArrowShape</tt> command>>=
chk_lparen("$cmd",$lc);
if (s/^default//i) {
$arrowLength = 2;
$arrowLengthUnits = "mm";
$arrowAngleB = 30;
$arrowAngleC = 40;
}
else {
my ($LocalArrowLength, $LocalArrowAngleB ,$LocalArrowAngleC) = (0,0,0);
$LocalArrowLength = expr($lc);
if (s/^\s*($units)//i) {
$arrowLengthUnits = "$1";
}
else {
$xunits =~ /(\d+(\.\d+)?)\s*($units)/;
$LocalArrowLength *= $1;
$arrowLengthUnits = "$3";
}
chk_comma($lc);
$LocalArrowAngleB = expr($lc);
chk_comma($lc);
$LocalArrowAngleC = expr($lc);
$arrowLength = ($LocalArrowLength == 0 ? 2 : $LocalArrowLength);
$arrowLengthUnits = ($LocalArrowLength == 0 ? "mm" : $arrowLengthUnits);
$arrowAngleB = ($LocalArrowAngleB == 0 ? 30 : $LocalArrowAngleB);
$arrowAngleC = ($LocalArrowAngleC == 0 ? 40 : $LocalArrowAngleC);
}
chk_rparen("after $cmd arguments",$lc);
chk_comment("after $cmd command",$lc);
print OUT "%% arrowLength = $arrowLength$arrowLengthUnits, ",
"arrowAngleB = $arrowAngleB ",
"and arrowAngleC = $arrowAngleC\n" if $comments_on;
@ The [[PointSymbol]] command is used to set the point symbol and possibly its
line-free radius. The point symbol can be either a LaTeX symbol or the word [[default]]
which corresponds to the default point symbol, i.e., <tt>$\bullet$</tt>. The line-free
radius can be an expression. Here is the complete syntax:
<pre>
pointsymbol ::= "pointsymbol" ( symbol [ "," radius])
symbol ::= "default" | circle | square | LaTeX_Code
circle ::= "circle" "(" expression ")"
square ::= "square" "(" expression ")"
radius ::= expression
</pre>
Note that the <tt>LaTeX_Code</tt> can contain the symbols <tt>\,</tt> and
<tt>\)</tt> which are escape sequences for a comma and right parenthesis, respectively.
<<process <tt>PointSymbol</tt> command>>=
chk_lparen("$cmd",$lc);
if (s/^default//i) #default point symbol
{
$defaultsymbol = "\$\\bullet\$";
}
elsif (s/^(circle|square)//i) {
$defaultsymbol = $1;
chk_lparen($defaultsymbol, $lc);
$GlobalDimOfPoints = expr($lc);
chk_rparen("expression", $lc);
}
elsif (s/^(((\\,){1}|(\\\)){1}|(\\\s){1}|[^\),\s])+)//) #arbitrary LaTeX point
{
$defaultsymbol = $1;
$defaultsymbol=~ s/\\\)/\)/g;
$defaultsymbol=~ s/\\,/,/g;
$defaultsymbol=~ s/\\ / /g;
}
else
{
PrintErrorMessage("unrecognized point symbol",$lc);
}
if (s/\s*,\s*//) {
$defaultLFradius = expr($lc);
}
chk_rparen("after $cmd arguments",$lc);
chk_comment("after $cmd command",$lc);
@ The [[system]] command provides a shell escape. However, we use a subroutine
to check whether the argument of the command contains tainted data. If this
is the case, then we simply ignore this command. The syntax of the command
is as follows:
<pre>
system-cmd ::= "system" "(" string ")"
</pre>
where string is just a sequence of characters enclosed in quotation marks.
We start by parsing a left parenthesis and then we get the command by
calling the subroutine [[get_string]]. If there is an error we skip this
command. Otherwise, we assign to the variable [[$_]] what is left. Now we check
if the variable [[$command]] contains any tainted data. If it doesn't, we
execute the command, otherwise we print an error message and skip to the
next input line. Next, we check for closing right parenthesis and a possible
trailing comment.
<<process <tt>system</tt> command>>=
chk_lparen("$cmd",$lc);
my ($error, $command, $rest) = get_string($_);
next LINE if $error == 1;
$_ = $rest;
if (! is_tainted($command)) {
system($command);
}
else {
PrintErrorMessage("String \"$command\" has tainted data", $lc);
next LINE;
}
chk_rparen("after $cmd arguments",$lc);
chk_comment("after $cmd command",$lc);
@ The [[text]] command is used to put a piece of text or a symbol on
a particular point of the resulting graph. The syntax of the command is
as follows:
<pre>
text-comm ::= "text" "(" text ")" "{"coords"} "[" pos-code "]"
text ::= ascii string
coords ::= Coord "," Coord |
Point-Name "," "shift" "(" Coord "," Coord ")" |
Point-Name "," "polar" "(" Coord "," Coord [angle-unit] ")"
Coord ::= decimal number | variable | pair-of-Point-Names
pair-of-Point-Names ::= Point-Name Point-Name
angle-unit ::= "deg" | "rad"
pos-code ::= lr-code [tb-code] | tb-code [lr-code]
lr-code ::= "l" | "r"
tb-code ::= "t" | "b" | "B"
</pre>
Initially, we parse the [[text]]. Since the text may contain parentheses
we assume that the user enters pairs of matching parentheses. Note, that
this is a flaw in the original design of the language, which may be remedied
in future releases of the software. Then, we check the [[coords]] part. Next,
if there is a left square bracket, we assume the user has specified the
[[pos-code]]. We conclude by checking a possible trailing comment.
The next thing we do is to generate the PiCTeX code. The two possible
forms follow:
<center>
<tt>\put {TEXT} [POS] at Px Py</tt><br>
<tt>\put {TEXT} at Px Py</tt><br>
</center>
<<process <tt>text</tt> command>>=
chk_lparen("text",$lc);
my ($level,$text)=(1,"");
TEXTLOOP: while (1)
{
$level++ if /^\(/;
$level-- if /^\)/;
s/^(.)//;
last TEXTLOOP if $level==0;
$text .= $1;
}
chk_lcb("text part",$lc);
my ($Px, $Py,$dummy,$pos);
$pos="";
s/\s*//;
<<process coordinates part of text command>>
chk_rcb("coordinates part of text command",$lc);
if (s/^\[//)
{
s/\s*//;
<<process optional part of text command>>
s/\s*//;
chk_rsb("optional part of text command",$lc);
}
chk_comment($lc);
if ($pos eq "")
{
printf OUT "\\put {%s} at %f %f\n", $text, $Px, $Py;
}
else
{
printf OUT "\\put {%s} [%s] at %f %f\n", $text, $pos, $Px, $Py;
}
@ In this section we define the code that handles the coordinates part
of the [[text]] command. The code just implements the grammar given above.
If the first token is a number, we assume this is the x-coordinate. If
it is a variable, we assume its value is the x-coordinate. However, if
it is a point name, we check whether the next token is another point name.
In this case we compute the distance between the two points. In case we
have a single point followed by a comma, we expect to have either a polar
or a shift part, which we process the same we processed them in the point
command.
<<process coordinates part of text command>>=
if (/^[^\W\d_]\d{0,3}\s*[^,\w]/) {
my $Tcoord = get_point($lc);
my ($x,$y,$pSV,$pS)=unpack("d3A*",$PointTable{$Tcoord});
$Px = $x;
$Py = $y;
}
elsif (/[^\W\d_]\d{0,3}\s*,\s*shift|polar/i) {
s/^([^\W\d_]\d{0,3})//i;
my $PointA = $1;
if (exists($PointTable{lc($PointA)})) {
s/\s*//;
if (s/^,//) {
s/\s*//;
if (s/^shift(?=\W)//i) {
<<process <tt>shift</tt> case>>
}
elsif (s/^polar(?=\W)//i) {
<<process <tt>polar</tt> case>>
}
}
}
else {
PrintErrorMessage("undefined point/var",$lc);
next LINE;
}
}
else {
$Px = expr();
chk_comma($lc);
$Py = expr();
}
@ In this section we process the optional part of the [[text]] command.
The general rule is that we are allowed to have up to two options one
from the characters [[l]] and [[r]] and one from the the characters
[[B]], [[b]], and [[t]]. We first check whether the next character is
letter, if it isn't we issue an error message and continue with the next
input line. If it is a letter we check whether it belongs to one of the
two groups and if it doesn't we issue an error message and continue with the
next input line. If the next character belongs to first group, i.e., it is
either [[l]] or [[r]], we store this character into the variable [[$pos]]. Next,
we check whether there is another letter. If it is a letter, we store it
in the variable [[$np]]. Now we make sure that this character belongs to the
other group, i.e., it is either [[b]], [[B]], or [[t]]. In case it belongs
to the other group, we append the value of [[$np]] to the string stored in
the variable [[$pos]]. Otherwise we issue an error message and continue with the
next input line. We work similarly for the other case. In order to check
whether a character belongs to some group of characters, we use the user
defined function [[memberOf]].
<<process optional part of text command>>=
if (s/^(\w{1})\s*//) {
$pos .= $1;
if (memberOf($pos, "l", "r")) {
if (s/^(\w{1})\s*//) {
my $np = $1;
if (memberOf($np, "t", "b", "B")) {
$pos .= $np;
}
else {
if (memberOf($np, "l", "r")) {
PrintErrorMessage("$np can't follow 'l' or 'r'", $lc);
}
else {
PrintErrorMessage("$np is not a valid positioning option", $lc);
}
next LINE;
}
}
}
elsif (memberOf($pos, "t", "b", "B")) {
if (s/^(\w{1})\s*//) {
my $np = $1;
if (memberOf($np, "l", "r")) {
$pos .= $np;
}
else {
if (memberOf($np, "t", "b", "B")) {
PrintErrorMessage("$np can't follow 't', 'b', or 'B'", $lc);
}
else {
PrintErrorMessage("$np is not a valid positioning option", $lc);
}
next LINE;
}
}
}
else {
PrintErrorMessage("$pos is not a valid positioning option", $lc);
next LINE;
}
}
else {
PrintErrorMessage("illegal token in optional part of text command",$lc);
next LINE;
}
@ The [[const]] command is used to store values into a comma separated
list of named constants. Constant names have the same format as point names,
i.e., they start with a letter and are followed by up to two digits. The
whole operation is performed by a [[do-while]] construct that checks that
there is a valid constant name, a [[=]] sign, and an expression. The
[[do-while]] construct terminates if the next token isn't a comma. Variable
[[$Constname]] is used to store the initial variable name, while we store
in variable [[$varname]] the lowercase version of the variable name. In addition,
we make sure a constant is not redefined (or else it wouldn't be a constant:-).
The last thing we do is to check whether there is a trailing comment.
In case there, we simply ignore itl; otherwise we print a warning message.
<<process <tt>const</tt> command>>=
do{
s/\s*//;
PrintErrorMessage("no identifier found after token const",$lc)
if $_ !~ s/^([^\W\d_]\d{0,3})//i;
my $Constname = $1;
my $constname = lc($Constname);
if (exists $ConstTable{$constname}) {
PrintErrorMessage("Redefinition of constant $constname",$lc);
}
s/\s*//; #remove leading white space
PrintErrorMessage("did not find expected = sign",$lc)
if $_ !~ s/^[=]//i;
my $val = expr($lc);
$VarTable{$constname} = $val;
$ConstTable{$constname} = 1;
print OUT "%% $Constname = $val\n" if $comments_on;
}while (s/^,//);
chk_comment($lc);
s/\s*//;
if (/^[^%]/) {
PrintWarningMessage("Trailing text is ignored",$lc);
}
@ The [[var]] command is used to store values into a comma separated
list of named variables. Variable names have the same format as point names,
i.e., they start with a letter and are followed by up to two digits. The
whole operation is performed by a [[do-while]] construct that checks that
there is a valid variable name, a [[=]] sign, and an expression. The
[[do-while]] construct terminates if the next token isn't a comma. The variable
[[$Varname]] is used to store the initial variable name, while we store
in the variable [[$varname]] the lowercase version of the variable name.
The last thing we do is to check whether there is a trailing comment.
In case there, we simply ignore itl; otherwise we print a warning message.
<<process <tt>var</tt> command>>=
do{
s/\s*//;
PrintErrorMessage("no identifier found after token var",$lc)
if $_ !~ s/^([^\W\d_]\d{0,3})//i;
my $Varname = $1;
my $varname = lc($Varname);
if (exists $ConstTable{$varname}) {
PrintErrorMessage("Redefinition of constant $varname",$lc);
}
s/\s*//; #remove leading white space
PrintErrorMessage("did not find expected = sign",$lc)
if $_ !~ s/^[=]//i;
my $val = expr($lc);
$VarTable{$varname} = $val;
print OUT "%% $Varname = $val\n" if $comments_on;
}while (s/^,//);
chk_comment($lc);
s/\s*//;
if (/^[^%]/) {
PrintWarningMessage("Trailing text is ignored",$lc);
}
|