1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
|
% Sample file: sampart.tex
% The sample article for the amsart document class
% with BiBTeX
\documentclass{amsart}
\usepackage{amssymb,latexsym}
\theoremstyle{plain}
\newtheorem{theorem}{Theorem}
\newtheorem{corollary}{Corollary}
\newtheorem*{main}{Main~Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{proposition}{Proposition}
\theoremstyle{definition}
\newtheorem{definition}{Definition}
\theoremstyle{remark}
\newtheorem*{notation}{Notation}
\numberwithin{equation}{section}
\begin{document}
\title[Complete-simple distributive lattices]
{A construction of complete-simple\\
distributive lattices}
\author{George~A. Menuhin}
\address{Computer Science Department\\
University of Winnebago\\
Winnebago, MN 53714}
\email{menuhin@ccw.uwinnebago.edu}
\urladdr{http://math.uwinnebago.edu/homepages/menuhin/}
\thanks{Research supported by the NSF under grant number
23466.}
\keywords{Complete lattice, distributive lattice,
complete congruence, congruence lattice}
\subjclass[2000]{Primary: 06B10; Secondary: 06D05}
\date{March 15, 2006}
\begin{abstract}
In this note we prove that there exist \emph{complete-simple distributive
lattices,} that is, complete distributive lattices in which there are
only two complete congruences.
\end{abstract}
\maketitle
\section{Introduction}\label{S:intro}
In this note we prove the following result:
\begin{main}
There exists an infinite complete distributive lattice~$K$ with only
the two trivial complete congruence relations.
\end{main}
\section{The $D^{\langle 2 \rangle}$ construction}\label{S:Ds}
For the basic notation in lattice theory and universal algebra, see Ferenc~R.
Richardson~\cite{fR82} and George~A. Menuhin~\cite{gM68}. We start with some
definitions:
\begin{definition}\label{D:prime}
Let $V$ be a complete lattice, and let $\mathfrak{p} = [u, v]$ be
an interval of $V$. Then $\mathfrak{p}$ is called
\emph{complete-prime} if the following three conditions are satisfied:
\begin{enumerate}
\item $u$ is meet-irreducible but $u$ is \emph{not}
completely meet-irreducible;\label{m-i}
\item $v$ is join-irreducible but $v$ is \emph{not}
completely join-irreducible;\label{j-i}
\item $[u, v]$ is a complete-simple lattice.\label{c-s}
\end{enumerate}
\end{definition}
Now we prove the following result:
\begin{lemma}\label{L:ds}
Let $D$ be a complete distributive lattice satisfying
conditions \eqref{m-i} and~\eqref{j-i}. Then
$D^{\langle 2 \rangle}$ is a sublattice of $D^{2}$;
hence $D^{\langle 2 \rangle}$ is a lattice, and
$D^{\langle 2 \rangle}$ is a complete distributive
lattice satisfying conditions \eqref{m-i} and~\eqref{j-i}.
\end{lemma}
\begin{proof}
By conditions~\eqref{m-i} and \eqref{j-i},
$D^{\langle 2 \rangle}$ is a sublattice
of $D^{2}$. Hence, $D^{\langle 2 \rangle}$ is a lattice.
Since $D^{\langle 2 \rangle}$ is a sublattice of a distributive
lattice, $D^{\langle 2 \rangle}$ is a distributive lattice. Using
the characterization of standard ideals in Ernest~T. Moynahan~\cite{eM57},
$D^{\langle 2 \rangle}$ has a zero and a unit element,
namely, $\langle 0, 0 \rangle$ and $\langle 1, 1 \rangle$.
To show that $D^{\langle 2 \rangle}$ is complete, let
$\varnothing \ne A \subseteq D^{\langle 2 \rangle}$, and let
$a = \bigvee A$ in $D^{2}$. If
$a \in D^{\langle 2 \rangle}$, then
$a = \bigvee A$ in $D^{\langle 2 \rangle}$; otherwise, $a$
is of the form $\langle b, 1 \rangle$ for some
$b \in D$ with $b < 1$. Now $\bigvee A = \langle 1, 1\rangle$
in $D^{2}$ and the dual argument shows that $\bigwedge A$ also
exists in $D^{2}$. Hence $D$ is complete. Conditions \eqref{m-i}
and~\eqref{j-i} are obvious for $D^{\langle 2 \rangle}$.
\end{proof}
\begin{corollary}\label{C:prime}
If $D$ is complete-prime, then so is $D^{\langle 2 \rangle}$.
\end{corollary}
The motivation for the following result comes from Soo-Key Foo~\cite{sF90}.
\begin{lemma}\label{L:ccr}
Let $\Theta$ be a complete congruence relation of
$D^{\langle 2 \rangle}$ such that
\begin{equation}\label{E:rigid}
\langle 1, d \rangle \equiv \langle 1, 1 \rangle \pmod{\Theta},
\end{equation}
for some $d \in D$ with $d < 1$. Then $\Theta = \iota$.
\end{lemma}
\begin{proof}
Let $\Theta$ be a complete congruence relation of
$D^{\langle 2 \rangle}$ satisfying \eqref{E:rigid}. Then $\Theta =
\iota$.
\end{proof}
\section{The $\Pi^{*}$ construction}\label{S:P*}
The following construction is crucial to our proof of the Main Theorem:
\begin{definition}\label{D:P*}
Let $D_{i}$, for $i \in I$, be complete distributive lattices
satisfying condition~\eqref{j-i}. Their $\Pi^{*}$ product is defined
as follows:
\[
\Pi^{*} ( D_{i} \mid i \in I ) = \Pi ( D_{i}^{-} \mid i \in I ) + 1;
\]
that is, $\Pi^{*} ( D_{i} \mid i \in I )$ is $\Pi ( D_{i}^{-} \mid
i \in I )$ with a new unit element.
\end{definition}
\begin{notation}
If $i \in I$ and $d \in D_{i}^{-}$, then
\[
\langle \dots, 0, \dots, \overset{i}{d}, \dots, 0, \dots \rangle
\]
is the element of $\Pi^{*} ( D_{i} \mid i \in I )$ whose $i$-th
component is $d$ and all the other components are $0$.
\end{notation}
See also Ernest~T. Moynahan \cite{eM57a}. Next we verify:
\begin{theorem}\label{T:P*}
Let $D_{i}$, for $i \in I$, be complete distributive lattices
satisfying condition~\eqref{j-i}. Let $\Theta$ be a complete
congruence
relation on $\Pi^{*} ( D_{i} \mid i \in I )$. If there exist
$i \in I$ and $d \in D_{i}$ with $d < 1_{i}$ such that for
all $d \leq c < 1_{i}$,
\begin{equation}\label{E:cong1}
\langle \dots, 0, \dots,\overset{i}{d},
\dots, 0, \dots \rangle \equiv \langle \dots, 0, \dots,
\overset{i}{c}, \dots, 0, \dots \rangle \pmod{\Theta},
\end{equation}
then $\Theta = \iota$.
\end{theorem}
\begin{proof}
Since
\begin{equation}\label{E:cong2}
\langle \dots, 0, \dots, \overset{i}{d}, \dots, 0,
\dots \rangle \equiv \langle \dots, 0, \dots,
\overset{i}{c}, \dots, 0, \dots \rangle \pmod{\Theta},
\end{equation}
and $\Theta$ is a complete congruence relation, it follows from
condition~\eqref{c-s} that
\begin{equation}\label{E:cong}
\begin{split}
&\langle \dots, \overset{i}{d}, \dots, 0,
\dots \rangle\\
&\equiv \bigvee ( \langle \dots, 0, \dots,
\overset{i}{c}, \dots, 0, \dots \rangle \mid d \leq c < 1 )
\equiv 1 \pmod{\Theta}.
\end{split}
\end{equation}
Let $j \in I$ for $j \neq i$, and let $a \in D_{j}^{-}$.
Meeting both sides of the congruence \eqref{E:cong2} with
$\langle \dots, 0, \dots, \overset{j}{a}, \dots, 0, \dots \rangle$,
we obtain
\begin{equation}\label{E:comp}
\begin{split}
0 &= \langle \dots, 0, \dots, \overset{i}{d}, \dots, 0, \dots
\rangle \wedge \langle \dots, 0, \dots, \overset{j}{a}, \dots, 0,
\dots \rangle\\
&\equiv \langle \dots, 0, \dots, \overset{j}{a}, \dots, 0, \dots
\rangle \pmod{\Theta}.
\end{split}
\end{equation}
Using the completeness of $\Theta$ and \eqref{E:comp}, we get:
\[
0 \equiv \bigvee ( \langle \dots, 0, \dots, \overset{j}{a},
\dots, 0, \dots \rangle \mid a \in D_{j}^{-} ) = 1 \pmod{\Theta},
\]
hence $\Theta = \iota$.
\end{proof}
\begin{theorem}\label{T:P*a}
Let $D_{i}$ for $i \in I$ be complete distributive lattices
satisfying conditions \eqref{j-i} and~\eqref{c-s}. Then
$\Pi^{*} ( D_{i} \mid i \in I )$ also satisfies
conditions~\eqref{j-i} and \eqref{c-s}.
\end{theorem}
\begin{proof}
Let $\Theta$ be a complete congruence on
$\Pi^{*} ( D_{i} \mid i \in I )$. Let $i \in I$. Define
\[
\widehat{D}_{i} = \{ \langle \dots, 0, \dots, \overset{i}{d},
\dots, 0, \dots \rangle \mid d \in D_{i}^{-} \} \cup \{ 1 \}.
\]
Then $\widehat{D}_{i}$ is a complete sublattice of
$\Pi^{*} ( D_{i} \mid i \in I )$, and $\widehat{D}_{i}$ is
isomorphic to $D_{i}$. Let $\Theta_{i}$ be the restriction of
$\Theta$ to $\widehat{D}_{i}$.
Since $D_{i}\) is complete-simple, so is $\widehat{D}_{i}$, and
hence $\Theta_{i}$ is $\omega$ or $\iota$. If
$\Theta_{i} = \rho$ for all $i \in I$, then
$\Theta = \omega$. If there is an $i \in I$, such that
$\Theta_{i} = \iota$, then $0 \equiv 1 \pmod{\Theta}$, hence
$\Theta = \iota$.
\end{proof}
The Main Theorem follows easily from Theorems \ref{T:P*} and~\ref{T:P*a}.
\bibliographystyle{amsplain}
\bibliography{sampartb}
\end{document}
|