summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/math-into-latex-4/intrarti.tex
blob: 3add8c997b48571f63338c654a4fdfd7922833bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
% Introductory sample article with index entries: intrarti.tex

\documentclass{amsart}
\usepackage{amssymb,latexsym}
\usepackage{graphicx}
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{definition}{Definition}
\newtheorem{notation}{Notation}

\makeindex

\begin{document}
\title{A construction of complete-simple\\  
       distributive lattices}
\author{George~A. Menuhin}
\address{Computer Science Department\\
         University of Winnebago\\
         Winnebago, MN 53714} 
\date{March 15, 2006}
 
\begin{abstract}
   In this note, we prove that there exist 
   \emph{complete-simple distributive lattices,} 
   that is, complete distributive lattices
  with only two complete congruences. 
\end{abstract}

\maketitle

\section{Introduction}\label{S:intro}
In this note we prove the following result:

\begin{theorem}\index{Main Theorem} 
There exists an infinite complete distributive 
lattice~$K$ with only the two trivial complete 
congruence relations.
\end{theorem}

\section{The $\Pi^{*}$ construction}\label{S:P*} 
\index{pistar@$\Pi^{*}$ construction}%
\index{Main Theorem!exposition|(}%
The following construction is crucial in the proof
of our Theorem (see Figure~\ref{Fi:products}):

\begin{definition}\label{D:P*} 
Let $D_{i}$, for $i \in I$, be complete distributive 
lattices satisfying condition~\textup{(J)}.  Their 
$\Pi^{*}$ product is defined as follows:
\[
   \Pi^{*} ( D_{i} \mid i \in I ) = 
   \Pi ( D_{i}^{-} \mid i \in I ) + 1;
\]
that is, $\Pi^{*} ( D_{i} \mid i \in I )$ is 
$\Pi ( D_{i}^{-} \mid i \in I )$ with a new 
unit element. 
\end{definition}

\begin{notation}  
If $i \in I$ and $d \in D_{i}^{-}$, then
\[
  \langle \dots, 0, \dots, d, \dots, 0, \dots \rangle
\]
is the element of $\Pi^{*} ( D_{i} \mid i \in I )$ whose 
$i$-th component is $d$ and all the other components 
are $0$.
\end{notation}

See also Ernest~T. 
\index{Moynahan, Ernest~T.}%
Moynahan~\cite{eM57a}.

Next we verify the following result:
\index{lattice|textbf}%
\index{lattice!distributive}%
\index{lattice!distributive!complete}%
\begin{theorem}\label{T:P*} 
Let $D_{i}$, $i \in I$, be complete distributive 
lattices satisfying condition~\textup{(J)}.  
Let $\Theta$ be a complete congruence relation on 
$\Pi^{*} ( D_{i} \mid i \in I )$. 
If there exist $i \in I$ and $d \in D_{i}$ with 
$d < 1_{i}$ such that, for all $d \leq c < 1_{i}$, 
\begin{equation}\label{E:cong1} 
   \langle \dots, d, \dots, 0, \dots \rangle \equiv 
   \langle \dots, c, \dots, 0, \dots \rangle 
   \pod{\Theta}, 
\end{equation}
then $\Theta = \iota$.
\end{theorem}

\begin{figure}[hbt]
\centering\includegraphics{products}
\caption{}\label{Fi:products}
\end{figure}

\begin{proof}
Since 
\begin{equation}\label{E:cong2}
\langle \dots, d, \dots, 0, \dots \rangle \equiv 
\langle \dots, c, \dots, 0, \dots \rangle 
\pod{\Theta}, 
\end{equation}
and $\Theta$ is a complete congruence relation, 
it follows from condition~(J) that
\begin{equation}\label{E:cong}
 \langle \dots, d, \dots, 0, \dots \rangle \equiv
 \bigvee ( \langle \dots, c, \dots, 0, \dots \rangle 
 \mid d \leq c < 1 ) \pod{\Theta}. 
\end{equation}

Let $j \in I$, $j \neq i$, and let $a \in D_{j}^{-}$. 
Meeting both sides of the congruence \eqref{E:cong2} 
with $\langle \dots, a, \dots, 0, \dots \rangle$, 
we obtain that
\begin{equation}\label{E:comp}
   0 = \langle \dots, a, \dots, 0, \dots \rangle 
     \pod{\Theta}, 
\end{equation}
Using the completeness of $\Theta$ and \eqref{E:comp}, 
we get:
\[
   0 \equiv \bigvee ( \langle \dots, a, \dots, 0, 
     \dots \rangle \mid a \in D_{j}^{-} ) = 1 
     \pod{\Theta}, 
\]
hence $\Theta = \iota$.
\index{Main Theorem!exposition|)}
\end{proof}

\begin{thebibliography}{9}
   \bibitem{sF90}\index{Foo, Soo-Key}%
      Soo-Key Foo, 
      \emph{Lattice Constructions}, 
      Ph.D. thesis, 
      University of Winnebago, Winnebago, MN, December, 1990.
      
   \bibitem{gM68}\index{Menuhin, George~A.}%
      George~A. Menuhin, 
      \emph{Universal Algebra}.
      D.~Van Nostrand, Princeton, 1968.
      
   \bibitem{eM57}\index{Moynahan, Ernest~T.}%
      Ernest~T. Moynahan, 
      \emph{On a problem of M. Stone},
      Acta Math. Acad. Sci. Hungar. \textbf{8} (1957), 455--460.
      
   \bibitem{eM57a}\index{Moynahan, Ernest~T.}%
      Ernest~T. Moynahan, 
      \emph{Ideals and congruence relations in lattices.} II,
      Magyar Tud. Akad. Mat. Fiz. Oszt. K\"{o}zl. \textbf{9} 
      (1957), 417--434.
\end{thebibliography}

\printindex
\end{document}