blob: 654e10a256aa3ecb83bea675893998ae4b137912 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
%%
%% An UIT Edition example
%%
%% Example 10-06-3 on page 209.
%%
%% Copyright (C) 2010 Herbert Voss
%%
%% It may be distributed and/or modified under the conditions
%% of the LaTeX Project Public License, either version 1.3
%% of this license or (at your option) any later version.
%%
%% See http://www.latex-project.org/lppl.txt for details.
%%
%%
%% ====
% Show page(s) 1
%%
\documentclass[]{exaarticle}
\pagestyle{empty}
\setlength\textwidth{375.57637pt}
\AtBeginDocument{\setlength\parindent{0pt}}
\StartShownPreambleCommands
\usepackage{amsmath}
\let\dst\displaystyle
\StopShownPreambleCommands
\begin{document}
\[ \binom{n}{k} = \dfrac{\dst\prod_{i=1}^n i}
{\dst\prod_{i=1}^k i\dst\prod_{i=1}^{n-k} i} \]
The Euclidean algorithm: if $a>b$ are integers then $\gcd(a,b)=\gcd(a\bmod b,b)$.
If $\prod_{i=1}^n p^{e_i}_i$ is the prime factorization of $x$ then
\[ S(x)=\sum_{d\vert x}d=\prod_{i=1}^n{p^{e_i+1}_i-1\over p_i-1}. \]
\end{document}
|