1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
|
\documentclass[a4paper]{article}
\usepackage[T1]{fontenc}
\usepackage{amsmath,amsfonts}
\usepackage{halloweenmath}[2017/04/16]
\usepackage{array}
\usepackage[bookmarksnumbered]{hyperref}
\title{User's manual\\for the \halloweenmath\ package}
\author{G. Mezzetti}
\date{April~25, 2017}
\hypersetup{
pdftitle = {User's manual for the halloweenmath package},
pdfauthor = {G. Mezzetti},
pdfsubject = {The halloweenmath LaTeX package},
pdfkeywords = {TeX,LaTeX,Halloween,math,math symbold},
pdfcreationdate = {D:20170425120000},
pdfmoddate = {D:20170425120000}
}
\DeclareTextFontCommand{\packlass}{\normalfont\sffamily}
\DeclareTextFontCommand{\opt} {\normalfont\ttfamily}
\newcommand*{\meta}[1]{{\normalfont \(\langle\textit{#1}\rangle\)}}
\newcommand*{\halloweenmath}{\packlass{halloweenmath}}
\newcommand*{\amsmath} {\packlass{amsmath}}
\newcommand*{\sumxn}{x_{1}+\dots+x_{n}}
\makeatletter
\newcolumntype{H}[3]{>{\hb@xt@ #3\bgroup#1}c<{#2\egroup}}
\newcolumntype{U}[2]{H{\hss$#1}{$\hss}{#2}@{\hspace{.5em}}}
\newcolumntype{V}[1]{H{\ttfamily}{\hss}{#1}}
\newcolumntype{W}[1]{H{}{\hss}{#1}}
\newcolumntype{O}{U{}{15\p@}}
\newcolumntype{D}{U{\displaystyle}{30\p@}}
\newcolumntype{L}{OD}
\newcolumntype{A}{U{}{40\p@}}
\newenvironment*{@symtable}[2]{\par
\centering
\addtolength\leftskip {-80\p@}%
\addtolength\rightskip{-80\p@}%
\setlength\arraycolsep{.5em}%
\tabular{@{}*{#2}{#1}@{}}%
}{%
\endtabular
\par
}
\newenvironment{symtable}[1][\thr@@]{%
\@symtable{OV{90\p@}}{#1}%
}{%
\end@symtable
}
\newenvironment{opsymtable}[1][\tw@]{%
\def\arraystretch{\tw@}%
\@symtable{LV{120\p@}}{#1}%
}{%
\end@symtable
}
\newenvironment{xasymtable}[1][\tw@]{%
\def\arraystretch{\tw@}%
\@symtable{AW{200\p@}}{#1}%
}{%
\end@symtable
}
\newcommand*\Sym[1] {#1&\string#1}
\newcommand*\OpSym[1]{#1&\string#1}
\makeatother
\begin{document}
\maketitle
\tableofcontents
\listoftables
\clearpage
\section{Package loading}
\label{S:Loading}
Load the \halloweenmath\ package as any other \LaTeXe\ package, that is, via the
usual \verb|\usepackage| declaration:
\begin{verbatim}
\usepackage{halloweenmath}
\end{verbatim}
Note that the \halloweenmath\ package requires the \amsmath\ package, and loads
it (without specifying any option) if it is not already loaded. If you want to
pass options to \amsmath, load it before \halloweenmath.
The \halloweenmath\ package defines no options by itself; nevertheless, it does
honor the [\opt{no}]\opt{sumlimits} options from the \amsmath\ package.
\section{Package usage}
\label{S:Usage}
The \halloweenmath\ package defines a handful of commands, all of which are
intended for use \emph{in mathematical mode}, where they yield some kind of
symbol that draws from the classic Halloween-related iconography (pumpkins,
witches, ghosts, bats, and so on). Below, these symbols are grouped according
to their mathematical ``r\^{o}le'' (ordinary symbols, binary operators,
arrows\ldots).
\subsection{Ordinary symbols}
\label{sS:Ordinary}
Table~\ref{tab:ordinary} lists the ordinary symbols provided by the
\halloweenmath\ package.
\begin{table}[t!p]
\centering
\begin{symtable}\relax
\Sym{\mathleftghost} & \Sym{\mathghost} & \Sym{\mathrightghost} \\
\Sym{\mathleftbat} & \Sym{\mathbat} & \Sym{\mathrightbat} \\
\end{symtable}
\caption{Ordinary symbols}
\label{tab:ordinary}
\end{table}
\subsection{Binary operators}
\label{sS:Binary}
Table~\ref{tab:binary} lists the binary operators available. Note that each
binary operator has an associated ``large'' operator (see
subsection~\ref{sS:Large}).
\begin{table}[t!p]
\centering
\begin{symtable}[2]
\Sym{\pumpkin} & \Sym{\skull} \\
\end{symtable}
\caption{Binary operators}
\label{tab:binary}
\end{table}
\subsection{\textquotedblleft Large\textquotedblright\ operators}
\label{sS:Large}
Table~\ref{tab:large} lists the ``large'' operators. Each of them is depicted
in two variants: the variant used for in-line math and the variant used for
displayed formulas. In the table, besides the ``large'' operators called
\verb|\bigpumpkin|\footnote{As a homage to Linus van Pelt,
\texttt{\string\greatpumpkin} is defined as synonym of
\texttt{\string\bigpumpkin}.} and \verb|\bigskull|, which are correlated to the
binary operators \verb|\pumpkin| and \verb|\skull|, repectively, we find the
commands \verb|\mathwitch| and \verb|\reversemathwitch|: note how these two last
command have a \mbox{$*$-form} that adds a black cat on the broomstick.
\begin{table}[t!p]
\centering
\begin{opsymtable}\relax
\OpSym{\mathwitch} & \OpSym{\reversemathwitch} \\
\OpSym{\mathwitch*} & \OpSym{\reversemathwitch*} \\
\OpSym{\bigpumpkin}\normalfont\footnotemark[\value{footnote}]
& \OpSym{\bigskull} \\
\end{opsymtable}
\caption{\textquotedblleft Large\textquotedblright\ operators}
\label{tab:large}
\end{table}
All the ``large'' operators listed in table~\ref{tab:large} honor the
[\opt{no}]\opt{sumlimits} options from the \amsmath\ package.
\subsection{\textquotedblleft Fraction-like\textquotedblright\ symbols}
\label{sS:Inner}
There are also two commands, listed on table~\ref{tab:inner}, that yield symbols
that are somewhat similar to fractions, in that they grow in size when they are
typeset in display style.\footnote{Another \TeX nical aspect of these commands
is that they yield an atom of type Inner.} They are intended to denote
an unspecified subformula that appears as a part of a larger one.
\begin{table}[t!p]
\centering
\begin{opsymtable}\relax
\OpSym{\mathcloud} & \OpSym{\reversemathcloud} \\
\end{opsymtable}
\caption{\textquotedblleft Fraction-like\textquotedblright\ symbols}
\label{tab:inner}
\end{table}
\subsection{\textquotedblleft Arrow-like\textquotedblright\ symbols}
\label{sS:Arrow}
As we'll see in subsection~\ref{sS:XArrow}, the \halloweenmath\ package provides
a series of commands whose usage parallels that of ``extensible arrows'' like
\verb|\xrightarrow| or \verb|\xleftarrow|; but the symbols that those commands
yield when used with an empty argument turn out to be too short, and it is for
this reason that the \halloweenmath\ package also offers you the four commands
you can see in table~\ref{tab:arrow}: they produce brooms, or pitchforks, having
fixed length, which is approximately the same size of a
\verb|\longrightarrow|~($\longrightarrow$). All of these symbols are treated as
relations.
\begin{table}[t!p]
\centering
\begin{symtable}[2]
\Sym{\leftbroom} & \Sym{\rightbroom} \\
\Sym{\hmleftpitchfork} & \Sym{\hmrightpitchfork} \\
\end{symtable}
\caption{\textquotedblleft Arrow-like\textquotedblright\ symbols}
\label{tab:arrow}
\end{table}
\subsection{Extensible \textquotedblleft arrow-like\textquotedblright\ symbols}
\label{sS:XArrow}
You are probably already familiar with the ``extensible arrows'' like
$\xrightarrow{abc}$ and~$\xleftarrow{abc}$; for example, you probably know that
the input
\begin{verbatim}
\[
\bigoplus_{i=1}^{n} A_{i} \xrightarrow{f_{1}+\dots+f_{n}} B
\]
\end{verbatim}
produces this result:
\[
\bigoplus_{i=1}^{n} A_{i} \xrightarrow{f_{1}+\dots+f_{n}} B
\]
The \halloweenmath\ package features a whole assortment of extensible symbols of
this kind, which are listed in table~\ref{tab:xarrow}. For example, you could
say
\begin{verbatim}
\[
G \xrightswishingghost{h_{1}+\dots+h_{n}}
\bigpumpkin_{t=1}^{n} S_{t}
\]
\end{verbatim}
to get the following in print:
\[
G \xrightswishingghost{h_{1}+\dots+h_{n}}
\bigpumpkin_{t=1}^{n} S_{t}
\]
\begin{table}[t!p]
\centering
\begin{xasymtable}\relax
\xleftwitchonbroom{abc\dots z}
& \verb|\xleftwitchonbroom{abc\dots z}| &
\xrightwitchonbroom{abc\dots z}
& \verb|\xrightwitchonbroom{abc\dots z}| \\
\xleftwitchonbroom*{abc\dots z}
& \verb|\xleftwitchonbroom*{abc\dots z}| &
\xrightwitchonbroom*{abc\dots z}
& \verb|\xrightwitchonbroom*{abc\dots z}| \\
\xleftwitchonpitchfork{abc\dots z}
& \verb|\xleftwitchonpitchfork{abc\dots z}| &
\xrightwitchonpitchfork{abc\dots z}
& \verb|\xrightwitchonpitchfork{abc\dots z}| \\
\xleftwitchonpitchfork*{abc\dots z}
& \verb|\xleftwitchonpitchfork*{abc\dots z}| &
\xrightwitchonpitchfork*{abc\dots z}
& \verb|\xrightwitchonpitchfork*{abc\dots z}| \\
\xleftbroom{abc\dots z}
& \verb|\xleftbroom{abc\dots z}| &
\xrightbroom{abc\dots z}
& \verb|\xrightbroom{abc\dots z}| \\
\xleftpitchfork{abc\dots z}
& \verb|\xleftpitchfork{abc\dots z}| &
\xrightpitchfork{abc\dots z}
& \verb|\xrightpitchfork{abc\dots z}| \\
\xleftswishingghost{abc\dots z}
& \verb|\xleftswishingghost{abc\dots z}| &
\xrightswishingghost{abc\dots z}
& \verb|\xrightswishingghost{abc\dots z}| \\
\xleftflutteringbat{abc\dots z}
& \verb|\xleftflutteringbat{abc\dots z}| &
\xrightflutteringbat{abc\dots z}
& \verb|\xrightflutteringbat{abc\dots z}| \\
\end{xasymtable}
\caption{Extensible \textquotedblleft arrow-like\textquotedblright\ symbols}
\label{tab:xarrow}
\end{table}
More generally, exactly as the commands \verb|\xleftarrow| and
\verb|\xrightarrow|, on which they are modeled, all the commands listed in
table~\ref{tab:xarrow} take one optional argument, in which you can specify a
subscript, and one mandatory argument, where a---possibly empty---superscript
must be indicated. For example,
\begin{verbatim}
\[
A \xrightwitchonbroom*[abc\dots z]{f_{1}+\dots+f_{n}} B
\xrightwitchonbroom*{f_{1}+\dots+f_{n}} C
\xrightwitchonbroom*[abc\dots z]{} D
\]
\end{verbatim}
results in
\[
A \xrightwitchonbroom*[abc\dots z]{f_{1}+\dots+f_{n}} B
\xrightwitchonbroom*{f_{1}+\dots+f_{n}} C
\xrightwitchonbroom*[abc\dots z]{} D
\]
Note that, also in this family of symbols, the commands that involve a witch all
provide a \mbox{$*$-form} that adds a cat on the broom (or pitchfork).
The commands listed above should not be confused with those presented in
subsection~\ref{sS:OUArrow}.
\subsection{Extensible \textquotedblleft over-\protect\slash
under-arrow-like\textquotedblright\ symbols}
\label{sS:OUArrow}
The commands dealt with in subsection~\ref{sS:XArrow} typeset an extensible
``arrow-like'' symbol having some math above or below it. But the \amsmath\
package also provides commands that act the other way around, that is, they put
an arrow over, or under, some math, as in the case of
\begin{verbatim}
\overrightarrow{x_{1}+\dots+x_{n}}
\end{verbatim}
that yields \( \overrightarrow{x_{1}+\dots+x_{n}} \). The \halloweenmath\
package provides a whole bunch of commands like this, which are listed in
table~\ref{tab:ouarrow}, and which all share the same syntax as the
\verb|\overrightarrow| command.
\begin{table}[t!p]
\centering
\begin{xasymtable}\relax
\overleftwitchonbroom{abc\dots z}
& \verb|\overleftwitchonbroom{abc\dots z}| &
\overrightwitchonbroom{abc\dots z}
& \verb|\overrightwitchonbroom{abc\dots z}| \\
\overleftwitchonbroom*{abc\dots z}
& \verb|\overleftwitchonbroom*{abc\dots z}| &
\overrightwitchonbroom*{abc\dots z}
& \verb|\overrightwitchonbroom*{abc\dots z}| \\
\overleftwitchonpitchfork{abc\dots z}
& \verb|\overleftwitchonpitchfork{abc\dots z}| &
\overrightwitchonpitchfork{abc\dots z}
& \verb|\overrightwitchonpitchfork{abc\dots z}| \\
\overleftwitchonpitchfork*{abc\dots z}
& \verb|\overleftwitchonpitchfork*{abc\dots z}| &
\overrightwitchonpitchfork*{abc\dots z}
& \verb|\overrightwitchonpitchfork*{abc\dots z}| \\
\overleftbroom{abc\dots z}
& \verb|\overleftbroom{abc\dots z}| &
\overrightbroom{abc\dots z}
& \verb|\overrightbroom{abc\dots z}| \\
\overscriptleftbroom{abc\dots z}
& \verb|\overscriptleftbroom{abc\dots z}| &
\overscriptrightbroom{abc\dots z}
& \verb|\overscriptrightbroom{abc\dots z}| \\
\overleftpitchfork{abc\dots z}
& \verb|\overleftpitchfork{abc\dots z}| &
\overrightpitchfork{abc\dots z}
& \verb|\overrightpitchfork{abc\dots z}| \\
\overscriptleftpitchfork{abc\dots z}
& \verb|\overscriptleftpitchfork{abc\dots z}| &
\overscriptrightpitchfork{abc\dots z}
& \verb|\overscriptrightpitchfork{abc\dots z}| \\
\overleftswishingghost{abc\dots z}
& \verb|\overleftswishingghost{abc\dots z}| &
\overrightswishingghost{abc\dots z}
& \verb|\overrightswishingghost{abc\dots z}| \\
\overleftflutteringbat{abc\dots z}
& \verb|\overleftflutteringbat{abc\dots z}| &
\overrightflutteringbat{abc\dots z}
& \verb|\overrightflutteringbat{abc\dots z}| \\
\underleftwitchonbroom{abc\dots z}
& \verb|\underleftwitchonbroom{abc\dots z}| &
\underrightwitchonbroom{abc\dots z}
& \verb|\underrightwitchonbroom{abc\dots z}| \\
\underleftwitchonbroom*{abc\dots z}
& \verb|\underleftwitchonbroom*{abc\dots z}| &
\underrightwitchonbroom*{abc\dots z}
& \verb|\underrightwitchonbroom*{abc\dots z}| \\
\underleftwitchonpitchfork{abc\dots z}
& \verb|\underleftwitchonpitchfork{abc\dots z}| &
\underrightwitchonpitchfork{abc\dots z}
& \verb|\underrightwitchonpitchfork{abc\dots z}| \\
\underleftwitchonpitchfork*{abc\dots z}
& \verb|\underleftwitchonpitchfork*{abc\dots z}| &
\underrightwitchonpitchfork*{abc\dots z}
& \verb|\underrightwitchonpitchfork*{abc\dots z}| \\
\underleftbroom{abc\dots z}
& \verb|\underleftbroom{abc\dots z}| &
\underrightbroom{abc\dots z}
& \verb|\underrightbroom{abc\dots z}| \\
\underscriptleftbroom{abc\dots z}
& \verb|\underscriptleftbroom{abc\dots z}| &
\underscriptrightbroom{abc\dots z}
& \verb|\underscriptrightbroom{abc\dots z}| \\
\underleftpitchfork{abc\dots z}
& \verb|\underleftpitchfork{abc\dots z}| &
\underrightpitchfork{abc\dots z}
& \verb|\underrightpitchfork{abc\dots z}| \\
\underscriptleftpitchfork{abc\dots z}
& \verb|\underscriptleftpitchfork{abc\dots z}| &
\underscriptrightpitchfork{abc\dots z}
& \verb|\underscriptrightpitchfork{abc\dots z}| \\
\underleftswishingghost{abc\dots z}
& \verb|\underleftswishingghost{abc\dots z}| &
\underrightswishingghost{abc\dots z}
& \verb|\underrightswishingghost{abc\dots z}| \\
\underleftflutteringbat{abc\dots z}
& \verb|\underleftflutteringbat{abc\dots z}| &
\underrightflutteringbat{abc\dots z}
& \verb|\underrightflutteringbat{abc\dots z}| \\
\end{xasymtable}
\caption{Extensible \textquotedblleft over-\protect\slash
under-arrow-like\textquotedblright\ symbols}
\label{tab:ouarrow}
\end{table}
Although they are not extensible, and are thus more similar to math accents, we
have chosen to include in this subsection also the commands listed in
table~\ref{tab:oubat}. They typeset a subformula either surmounted by the bat
produced by \verb|\mathbat|, or with that symbol underneath. Their normal
(\emph{i.e.}, unstarred) form pretends that the bat has zero width (but some
height), whereas the starred variant takes the actual width of the bat be into
account; for example, given the input
\begin{verbatim}
\begin{align*}
&x+y+z && x+y+z \\
&x+\overbat{y}+z && x+\overbat*{y}+z
\end{align*}
\end{verbatim}
compare the spacing you get in the two columns of the output:
\begin{align*}
&x+y+z && x+y+z \\
&x+\overbat{y}+z && x+\overbat*{y}+z
\end{align*}
\begin{table}[t!p]
\centering
\begin{xasymtable}\relax
\overbat{xyz} & \verb|\overbat{xyz}| &
\underbat{xyz} & \verb|\underbat{xyz}| \\
\end{xasymtable}
\caption{Over\protect\slash under bats}
\label{tab:oubat}
\end{table}
\subsection{Script-style versions of
\texorpdfstring{\amsmath}{amsmath}\textquoteright s
over\protect\slash under arrows}
\label{sS:ScriptArrow}
The commands listed in table~\ref{tab:scriptarrow} all produce an output similar
to that of the corresponding \amsmath's command having the same name, but
stripped of the \texttt{script} substring, with the only difference that the
size of the arrow is smaller. More precisely, they use for the arrow the
relative script size of the current size (that is, of the size in which their
argument is typeset). For example, whilst \verb|\overrightarrow{x+y+z}| yields
$\overrightarrow{x+y+z}$, \verb|\overscriptrightarrow{x+y+z}| results in
$\overscriptrightarrow{x+y+z}$ (do you see the difference?), which, in the
author's humble opinion, looks \emph{much} better.
\begin{table}[t!p]
\centering
\begin{xasymtable}\relax
\overscriptleftarrow{abc\dots z}
& \verb|\overscriptleftarrow{abc\dots z}| &
\underscriptleftarrow{abc\dots z}
& \verb|\underscriptleftarrow{abc\dots z}| \\
\overscriptrightarrow{abc\dots z}
& \verb|\overscriptrightarrow{abc\dots z}| &
\underscriptrightarrow{abc\dots z}
& \verb|\underscriptrightarrow{abc\dots z}| \\
\overscriptleftrightarrow{abc\dots z}
& \verb|\overscriptleftrightarrow{abc\dots z}| &
\underscriptleftrightarrow{abc\dots z}
& \verb|\underscriptleftrightarrow{abc\dots z}| \\
\end{xasymtable}
\caption{Extensible over\protect\slash under arrows with reduced size}
\label{tab:scriptarrow}
\end{table}
\clearpage
\section{Examples of use}
\label{S:Example}
This section illustrates the use of the commands provided by the \halloweenmath\
package: by reading the source code for this document, you can see how the
output presented below can be obtained.
\subsection{Applying black magic}
The $\mathwitch$~symbol was invented with the intent to provide a notation for
the operation of applying black magic to a formula. Its applications range from
simple reductions sometimes made by certain undergraduate freshmen, as in
\[
\mathwitch 2\sin\frac{x}{2} = \sin x
\]
to key steps that permit to simplify greatly the proof of an otherwise totally
impenetrable theorem, for example
\[
\mathwitch\Bigl(
\sup\,\{\,p\in\mathbb{N}\mid \text{$p$ and $p+2$ are both prime}\,\}
\Bigr) = \infty
\]
Another way of denoting the same operation is to place the broom and the witch
\emph{over} the relevant subformula:
\[
\overrightwitchonbroom{
\sup\,\{\,p\in\mathbb{N}\mid \text{$p$ and $p+2$ are both prime}\,\}
} = \infty
\]
Different types of magic, that you might want to apply to a given formula, can
be distinguished by adding a black cat on the broom: for example, a student
could claim that
\begin{align*}
\mathwitch 2x\sin x &= 2\sin x^{2}\\
\intertext{whereas, for another student,}
\mathwitch*2x\sin x &= \sin 3x
\end{align*}
\subsection{Monoids}
Let $X$ be a non-empty set, and suppose there exists a map
\begin{equation}
X\times X\longrightarrow X,\qquad
(x,y)\longmapsto P(x,y)=x\pumpkin y
\label{eq:Pdef}
\end{equation}
Suppose furthermore that this map satisfies the \textbf{associative property}
\begin{equation}
\forall x\in X,\;\forall y\in X,\;\forall z\in X\qquad
x\pumpkin(y\pumpkin z) = (x\pumpkin y)\pumpkin z
\label{eq:Passoc}
\end{equation}
Then, the pair $(X,\pumpkin)$ is called a \textbf{semigroup}, and $\pumpkin$
denotes its \textbf{operation}. If, in addition, there exists in~$X$ an
element~$\mathghost$ with the property that
\begin{equation}
\forall x\in X\qquad
\mathghost\pumpkin x = x = x\pumpkin\mathghost
\label{eq:Punit}
\end{equation}
the triple $(X,\pumpkin,\mathghost)$ is called a \textbf{monoid}, and the
element~$\mathghost$ is called its \textbf{unit}. It is immediate to prove that
the unit of a monoid is unique: indeed, if $\mathghost'$ is another element
of~$X$ having the property~\eqref{eq:Punit}, then
\[
\mathghost' = \mathghost'\pumpkin\mathghost = \mathghost
\]
(the first equality holds because \( \mathghost'\in X \) and
$\mathghost$~satisfies~\eqref{eq:Punit}, and the second because \( \mathghost\in
X \) and $\mathghost'$~satisfies~\eqref{eq:Punit}).
Let $(X,\pumpkin,\mathghost)$ be a monoid. Since its operation~$\pumpkin$ is
associative, we may set, for \( x,y,z\in X \),
\[
x\pumpkin y\pumpkin z =_{\mathrm{def}}
(x\pumpkin y)\pumpkin z = x\pumpkin (y\pumpkin z)
\]
More generally, since the order in which the operations are performed doesn't
matter, given $n$~elements \( x_{1},\dots,x_{n} \in X \), with \( n \in
\mathbb{N} \), the result of
\[
\bigpumpkin_{i=1}^{n} x_{i} = x_{1}\pumpkin\dots\pumpkin x_{n}
\]
is unambiguously defined (it being~$\mathghost$ if \( n=0 \)).
A monoid $(X,\pumpkin,\mathghost)$ is said to be \textbf{commutative} if
\begin{equation}
\forall x\in X,\;\forall y\in X\qquad
x\pumpkin y = y\pumpkin x
\label{eq:Pcomm}
\end{equation}
In this case, even the order of the \emph{operands} becomes irrelevant, so that,
for any finite (possibly empty) set~$F$, the notation \( \bigpumpkin_{i\in F}
x_{i} \) also acquires a meaning.
\subsection{Applications induced on power sets}
If $X$ is a set, we'll denote by~$\wp(X)$ the set of all subsets of~$X$, that is
\[
\wp(X) = \{\,S:S\subseteq X\,\}
\]
Let \( f\colon A\longrightarrow B \) a function. Starting from~$f$, we can
define two other functions \( f^{\mathrightbat} \colon \wp(A) \longrightarrow
\wp(B) \) and \( f^{\mathleftbat} \colon \wp(B) \longrightarrow \wp(A) \) in the
following way:
\begin{alignat}{2}
&\text{for $X\subseteq A$,}\quad
&f^{\mathrightbat}(X) &= \{\,f(x):x\in X\,\} \\
&\text{for $Y\subseteq B$,}\quad
&f^{\mathleftbat}(Y) &= \{\,x\in A:f(x)\in Y\,\}
\end{alignat}
In the case of functions with long names, or with long descriptions, we'll also
use a notation like \( \overrightflutteringbat{f_{1}+\dots+f_{n}} \) to mean the
same thing as \( (f_{1}+\dots+f_{n})^{\mathrightbat} \).
For example,
\begin{align*}
\mathop{\overrightflutteringbat{\sin}}(\mathbb{R}) &= [-1,1] \\
\mathop{\overrightflutteringbat{\sin}}\bigl([0,\pi]\bigr) &= [0,1] \\
\mathop{\overleftflutteringbat{\arcsin}}
\Bigl(\bigl[0,\tfrac{\pi}{2}\bigr]\Bigr) &= [0,1] \\
\mathop{\overrightflutteringbat{\sin+\cos}}(\mathbb{R})
&= \bigl[-\sqrt{2},\sqrt{2}\,\bigr] \\
\mathop{\overleftflutteringbat{\log}}\bigl(\mathopen]-\infty,0]\bigr)
&= \mathopen]0,1]
\end{align*}
\subsection{A comprehensive test}
A comparison between the ``standard'' and the ``script'' extensible over\slash
under arrows:
\begin{align*}
\overrightarrow{f_{1}+\dots+f_{n}}
&\neq\overscriptrightarrow{f_{1}+\dots+f_{n}} \\
\overleftarrow{f_{1}+\dots+f_{n}}
&\neq\overscriptleftarrow{f_{1}+\dots+f_{n}} \\
\overleftrightarrow{f_{1}+\dots+f_{n}}
&\neq\overscriptleftrightarrow{f_{1}+\dots+f_{n}} \\
\underrightarrow{f_{1}+\dots+f_{n}}
&\neq\underscriptrightarrow{f_{1}+\dots+f_{n}} \\
\underleftarrow{f_{1}+\dots+f_{n}}
&\neq\underscriptleftarrow{f_{1}+\dots+f_{n}} \\
\underleftrightarrow{f_{1}+\dots+f_{n}}
&\neq\underscriptleftrightarrow{f_{1}+\dots+f_{n}}
\end{align*}
\bigbreak
A reduction my students are likely to make:
\[\mathwitch \frac{\sin x}{s} = x\,\mathrm{in}\]
The same reduction as an in-line formula:
\(\mathwitch \frac{\sin x}{s} = x\,\mathrm{in}\).
Now with limits:
\[
\mathwitch_{i=1}^{n} \frac
{\text{$i$-th magic term}}
{\text{$2^{i}$-th wizardry}}
\]
And repeated in-line: \( \mathwitch_{i=1}^{n} x_{i}y_{i} \).
The \texttt{bold} math version is honored:\mathversion{bold}
\[
\mathwitch*
\genfrac{<}{>}{0pt}{}
{\textbf{something terribly}}{\textbf{complicated}}
= 0
\]
Compare it with \texttt{normal} math\mathversion{normal}:
\[
\mathwitch*
\genfrac{<}{>}{0pt}{}
{\text{something terribly}}{\text{complicated}}
= 0
\]
In-line math comparison:
{\boldmath $\mathwitch* f(x)$} versus $\mathwitch* f(x)$.
There is also a left-facing witch:
\[\reversemathwitch \frac{\sin x}{s} = x\,\mathrm{in}\]
And here is the in-line version:
\(\reversemathwitch \frac{\sin x}{s} = x\,\mathrm{in}\).
Test for \verb|\dots|:
\[
\mathwitch_{i_{1}=1}^{n_{1}} \dots \mathwitch_{i_{p}=1}^{n_{p}}
\frac
{\text{$i_{1}$-th magic factor}}
{\text{$2^{i_{1}}$-th wizardry}}
\pumpkin\dots\pumpkin
\frac
{\text{$i_{p}$-th magic factor}}
{\text{$2^{i_{p}}$-th wizardry}}
\]
And repeated in-line: \( \mathwitch\dots\mathwitch_{i=1}^{n} x_{i}y_{i} \).
\bigbreak
Now the pumpkins. First the \texttt{bold} math version:\mathversion{bold}:
\[ \bigoplus_{h=1}^{m}\bigpumpkin_{k=1}^{n} P_{h,k} \]
Then the \texttt{normal} one\mathversion{normal}:
\[ \bigoplus_{h=1}^{m}\bigpumpkin_{k=1}^{n} P_{h,k} \]
In-line math comparison:
{\boldmath \( \bigpumpkin_{i=1}^{n} P_{i} \neq \bigoplus_{i=1}^{n} P_{i} \)}
versus \( \bigpumpkin_{i=1}^{n} P_{i} \neq \bigoplus_{i=1}^{n} P_{i} \).
Close test: {\boldmath $\bigoplus$}$\bigoplus$.
And against the pumpkins:
{\boldmath $\bigpumpkin$}$\bigpumpkin\bigoplus${\boldmath $\bigoplus$}.
In-line, but with \verb|\limits|:
\( \bigoplus\limits_{h=1}^{m}\bigpumpkin\limits_{k=1}^{n} P_{h,k} \).
Binary: \( x\pumpkin y \neq x\oplus y \). And in display:
\[ a\pumpkin\frac{x\pumpkin y}{x\oplus y}\otimes b \]
Close test: {\boldmath $\oplus$}$\oplus$.
And with the pumpkins too:
{\boldmath $\pumpkin$}$\pumpkin\oplus${\boldmath $\oplus$}.
In general,
\[ \bigpumpkin_{i=1}^{n} P_{i} = P_{1}\pumpkin\dots\pumpkin P_{n} \]
\begingroup
\bfseries\boldmath
The same in bold:
\[ \bigpumpkin_{i=1}^{n} P_{i} = P_{1}\pumpkin\dots\pumpkin P_{n} \]
\endgroup
Other styles: \( \frac{x\pumpkin y}{2} \), exponent~$Z^{\pumpkin}$,
subscript~$W_{\!x\pumpkin y}$, double script \( 2^{t_{x\pumpkin y}} \).
\bigbreak
Clouds. A hypothetical identity:
\( \frac{\sin^{2}x + \cos^{2}x}{\cos^{2}x} = \mathcloud \).
Now the same identity set in display:
\[ \frac{\sin^{2}x + \cos^{2}x}{\cos^{2}x} = \mathcloud \]
Now in smaller size: \( \frac{\sin x+\cos x}{\mathcloud} = 1 \).
Specular clouds, \texttt{bold}\ldots\mathversion{bold}
\[ \reversemathcloud \longleftrightarrow \mathcloud \]
\ldots and in \texttt{normal} math.\mathversion{normal}
\[ \reversemathcloud \longleftrightarrow \mathcloud \]
In-line math comparison:
{\boldmath \( \reversemathcloud \leftrightarrow \mathcloud \)}
versus \( \reversemathcloud \leftrightarrow \mathcloud \).
Abutting: {\boldmath $\mathcloud$}$\mathcloud$.
\bigbreak
Ghosts: \( \mathleftghost \mathghost \mathrightghost \mathghost \mathleftghost
\mathghost \mathrightghost \). Now with letters: \( H \mathghost H \mathghost h
\mathghost ab \mathghost f \mathghost wxy \mathghost \), and also \(
2\mathghost^{3} + 5\mathleftghost^{\!2}-3\mathrightghost_{i} =
12\mathrightghost_{j}^{4} \). Then, what about~$x^{2\mathghost}$ and \(
z_{\!\mathrightghost+1} = z_{\!\mathrightghost}^{2} + z_{\mathghost} \)?
In subscripts:
\begin{align*}
F_{\mathghost+2} &= F_{\mathghost+1} + F_{\mathghost} \\
F_{\!\mathrightghost+2} &= F_{\!\mathrightghost+1} + F_{\!\mathrightghost}
\end{align*}
Another test: \( \mathghost | \mathrightghost | \mathghost | \mathleftghost |
\mathghost | \mathrightghost | \mathghost | \mathleftghost | \mathghost \). We
should also try this: \( \mathrightghost \mathleftghost \mathrightghost
\mathleftghost \).
Let us now compare ghosts set in normal math
\( \mathrightghost \mathleftghost \mathghost \mathrightghost \mathleftghost \)
with (a few words to push the bold ghosts to the right)
{\bfseries\boldmath ghosts like these
\( \mathrightghost \mathleftghost \mathghost \mathrightghost \mathleftghost \),
which are set in bold math.}
\bigbreak
Extensible arrows:
\begin{gather*}
A \xrightwitchonbroom[a]{\sumxn} B \xrightwitchonbroom{x+z}
C \xrightwitchonbroom{} D \\
A \xrightwitchonbroom*[a]{\sumxn} B \xrightwitchonbroom*{x+z}
C \xrightwitchonbroom*{} D \\
A \xleftwitchonbroom*[a]{\sumxn} B \xleftwitchonbroom*{x+z}
C \xleftwitchonbroom*{} D \\
A \xleftwitchonbroom[a]{\sumxn} B \xleftwitchonbroom{x+z}
C \xleftwitchonbroom{} D
\end{gather*}
And \( \overrightwitchonbroom*{\sumxn}=0 \) versus \(
\overrightwitchonbroom{\sumxn}=0 \); or \( \overleftwitchonbroom*{\sumxn}=0 \)
versus \( \overleftwitchonbroom{\sumxn}=0 \).
\begingroup
\bfseries \mathversion{bold}
Now repeat in bold:
\begin{gather*}
A \xrightwitchonbroom[a]{\sumxn} B \xrightwitchonbroom{x+z}
C \xrightwitchonbroom{} D \\
A \xrightwitchonbroom*[a]{\sumxn} B \xrightwitchonbroom*{x+z}
C \xrightwitchonbroom*{} D \\
A \xleftwitchonbroom*[a]{\sumxn} B \xleftwitchonbroom*{x+z}
C \xleftwitchonbroom*{} D \\
A \xleftwitchonbroom[a]{\sumxn} B \xleftwitchonbroom{x+z}
C \xleftwitchonbroom{} D
\end{gather*}
And \( \overrightwitchonbroom*{\sumxn}=0 \) versus \(
\overrightwitchonbroom{\sumxn}=0 \); or \( \overleftwitchonbroom*{\sumxn}=0 \)
versus \( \overleftwitchonbroom{\sumxn}=0 \).
\endgroup
Hovering ghosts: \( \overrightswishingghost{\sumxn}=0 \). I~wonder whether
there is enough space left for the swishing ghost; let's try again:
\( \overrightswishingghost{(\sumxn)y}=0 \)! Yes, it looks like there is enough
room, although, of course, we cannot help the line spacing going awry. Also try
\( \overrightswishingghost{\mathstrut} \).
\begin{gather*}
A \xrightswishingghost[a]{\sumxn} B \xrightswishingghost{x+z} C
\xrightswishingghost{} D \\
A \xleftswishingghost[a]{\sumxn} B \xleftswishingghost{x+z} C
\xleftswishingghost{} D
\end{gather*}
Another hovering ghost: \( \overleftswishingghost{\sumxn}=0 \).
Lorem ipsum dolor sit amet consectetur adipisci elit. Ulla rutrum, vel sivi sit
anismus oret, rubi sitiunt silvae. Let's see how it looks like when the ghost
hovers on a taller formula, as in \(
\overrightswishingghost{H_{1}\oplus\dots\oplus H_{k}} \). Mmm, it's suboptimal,
to say the least.\footnote{We'd better try \(
\underleftswishingghost{y_{1}+\dots+y_{n}} \), too; well, this one looks good!}
Under ``arrow-like'' symbols: \( \underleftswishingghost{\sumxn}=0 \) and \(
\underrightswishingghost{x+y+z} \). There are \(
\underleftwitchonbroom*{\sumxn}=0 \) and \( \underrightwitchonbroom*{x+y+z} \)
as well.
Compare \( A\xrightswishingghost{\sumxn} B \) with (add a few words to push it
to the next line) {\bfseries\boldmath its bold version \(
A\xrightswishingghost{\sumxn} B \).}
\bigbreak
Bats: $\mathbat${\boldmath $\mathbat$}. We are interested in seeing whether a
bat affixed to a letter as an exponent causes the lines of a paragraph to be
further apart than usual. Therefore, we now try~$f^{\mathbat}$, also
{\bfseries\boldmath in bold~$f^{\mathbat}$,} then we type a few more words (just
enough to obtain another typeset line or two) in order to see what happens. We
need to look at the transcript file, to check the outcome of the following
tracing commands.
% \begingroup
% \showboxbreadth = 1000
% \showboxdepth = 0 % show just the lines, not their contents
% \showlists
% \endgroup
Asymmetric bats: $\mathleftbat${\boldmath $\mathleftbat$}, and also
$\mathrightbat${\boldmath $\mathrightbat$}. Exponents: this is \texttt{normal}
math \( x^{\mathleftbat} \pumpkin y^{\mathrightbat} \), while
{\bfseries\boldmath this is \texttt{bold} math \( x^{\mathleftbat} \pumpkin
y^{\mathrightbat} \).} Do you note the difference? Let's try subscripts, too:
\( f_{\mathleftbat} \pumpkin g_{\mathrightbat} \) versus {\bfseries\boldmath
bold \( f_{\mathleftbat} \pumpkin g_{\mathrightbat} \).}
Now, keep on repeating some silly text, just in order to fill up the paragraph
with a sufficient number of lines. Now, keep on repeating some silly text, just
in order to fill up the paragraph with a sufficient number of lines. Now, keep
on repeating some silly text, just in order to fill up the paragraph with a
sufficient number of lines. That's enough!
Hovering bats: \( \overrightflutteringbat{\sumxn}=0 \). I~wonder whether there
is enough space left for the swishing bat; let's try again:
\( \overrightflutteringbat{(\sumxn)y}=0 \)! Yes, it looks like there is enough
room (with the usual remark abut line spacing). Also try
\( \overrightflutteringbat{\mathstrut} \).
\begin{gather*}
A \xrightflutteringbat[a]{\sumxn} B \xrightflutteringbat{x+z}
C \xrightflutteringbat{} D \\
A \xleftflutteringbat[a]{\sumxn} B \xleftflutteringbat{x+z} C
\xleftflutteringbat{} D
\end{gather*}
Another hovering bat: \( \overleftflutteringbat{\sumxn}=0 \).
Under ``arrow-like'' bats: \( \underleftflutteringbat{\sumxn}=0 \) and \(
\underrightflutteringbat{x+y+z} \).
Compare \( A\xrightflutteringbat{\sumxn} B \) with (add a few words to push it
to the next line) {\bfseries\boldmath its bold version \(
A\xrightflutteringbat{\sumxn} B \).}
Test for checking the placement of the formulas that go over or under the
fluttering bat:
\begin{gather*}
A \xrightflutteringbat[\text{a long subscript}]{\text{a long superscript}} B
\xrightflutteringbat[\text{a long subscript}]{|} C
\xrightflutteringbat{|} D \xrightflutteringbat{} E \\
A \xleftflutteringbat[\text{a long subscript}]{\text{a long superscript}} B
\xleftflutteringbat[\text{a long subscript}]{|} C
\xleftflutteringbat{|} D \xleftflutteringbat{} E
\end{gather*}
I'd say it's now OK\@\ldots
\bigbreak
Extensible arrows with pitchfork:
\begin{gather*}
A \xrightwitchonpitchfork[a]{\sumxn} B \xrightwitchonpitchfork{x+z} C
\xrightwitchonpitchfork{} D \\
A \xrightwitchonpitchfork*[a]{\sumxn} B \xrightwitchonpitchfork*{x+z} C
\xrightwitchonpitchfork*{} D \\
A \xleftwitchonpitchfork*[a]{\sumxn} B \xleftwitchonpitchfork*{x+z} C
\xleftwitchonpitchfork*{} D \\
A \xleftwitchonpitchfork[a]{\sumxn} B \xleftwitchonpitchfork{x+z} C
\xleftwitchonpitchfork{} D
\end{gather*}
And \( \overrightwitchonpitchfork*{\sumxn}=0 \) versus \(
\overrightwitchonpitchfork{\sumxn}=0 \); or \(
\overleftwitchonpitchfork*{\sumxn}=0 \) versus \(
\overleftwitchonpitchfork{\sumxn}=0 \). There are \(
\underleftwitchonpitchfork*{\sumxn}=0 \) and \(
\underrightwitchonpitchfork*{x+y+z} \) as well.
\begingroup
\bfseries \mathversion{bold}
Now again, but all in boldface:
\begin{gather*}
A \xrightwitchonpitchfork[a]{\sumxn} B \xrightwitchonpitchfork{x+z} C
\xrightwitchonpitchfork{} D \\
A \xrightwitchonpitchfork*[a]{\sumxn} B \xrightwitchonpitchfork*{x+z} C
\xrightwitchonpitchfork*{} D \\
A \xleftwitchonpitchfork*[a]{\sumxn} B \xleftwitchonpitchfork*{x+z} C
\xleftwitchonpitchfork*{} D \\
A \xleftwitchonpitchfork[a]{\sumxn} B \xleftwitchonpitchfork{x+z} C
\xleftwitchonpitchfork{} D
\end{gather*}
And \( \overrightwitchonpitchfork*{\sumxn}=0 \) versus \(
\overrightwitchonpitchfork{\sumxn}=0 \); or \(
\overleftwitchonpitchfork*{\sumxn}=0 \) versus \(
\overleftwitchonpitchfork{\sumxn}=0 \). There are \(
\underleftwitchonpitchfork*{\sumxn}=0 \) and \(
\underrightwitchonpitchfork*{x+y+z} \) as well.
\endgroup
The big table of the rest:
\begin{align*}
A &\xrightbroom{\sumxn} B &
\overrightbroom {\sumxn} = 0 &&
\underrightbroom{\sumxn} = 0 \\
&&
\overscriptrightbroom {\sumxn} = 0 &&
\underscriptrightbroom{\sumxn} = 0 \\
A &\xleftbroom{\sumxn} B &
\overleftbroom {\sumxn} = 0 &&
\underleftbroom{\sumxn} = 0 \\
&&
\overscriptleftbroom {\sumxn} = 0 &&
\underscriptleftbroom{\sumxn} = 0 \\
A &\xrightpitchfork{\sumxn} B &
\overrightpitchfork {\sumxn} = 0 &&
\underrightpitchfork{\sumxn} = 0 \\
&&
\overscriptrightpitchfork {\sumxn} = 0 &&
\underscriptrightpitchfork{\sumxn} = 0 \\
A &\xleftpitchfork{\sumxn} B &
\overleftpitchfork {\sumxn} = 0 &&
\underleftpitchfork{\sumxn} = 0 \\
&&
\overscriptleftpitchfork {\sumxn} = 0 &&
\underscriptleftpitchfork{\sumxn} = 0 \\
\end{align*}
Now in bold\ldots\space No, please, seriously, just the examples for the minimal
size: in \texttt{normal} math we show \( A \xrightbroom{} B \) and \( C
\xleftpitchfork{} D \) and \( \overscriptrightbroom{} \) and \(
\overscriptleftpitchfork{} \), which we now repeat {\bfseries\boldmath in
\texttt{bold} math \( A \xrightbroom{} B \) and \( C \xleftpitchfork{} D \) and
\( \overscriptrightbroom{} \) and \( \overscriptleftpitchfork{} \).} Mmmh, the
minimal size seems way too narrow: is it the same for the standard arrows?
Let's see:
\begin{align*}
A &\xrightarrow{} B & \overrightarrow{} && \overscriptrightarrow{} \\
A &\xleftarrow {} B & \overleftarrow {} && \overscriptleftarrow {} \\
A &\xrightbroom{} B & \overrightbroom{} && \overscriptrightbroom{} \\
A &\xleftbroom {} B & \overleftbroom {} && \overscriptleftbroom {}
\end{align*}
Well, almost so, but the arrow tip is much more ``discrete''\ldots
To cope with this problem, \verb|\rightbroom| and siblings have been introduced:
for example, \( X\rightbroom Y \).
A comparative table follows:
\begin{align*}
A &\rightbroom B & C &\hmrightpitchfork D \\
A &\leftbroom B & C &\hmleftpitchfork D \\
A &\longrightarrow B & C &\Longrightarrow D \\
A &\longleftarrow B & C &\Longleftarrow D \\
A &\xrightwitchonbroom{} B & C &\xrightwitchonpitchfork{} D \\
A &\xleftwitchonbroom{} B & C &\xleftwitchonpitchfork{} D \\
\end{align*}
Finally, \( \overbat{y} + \underbat{x} + z = 0 \) versus \( \overbat*{y} +
\underbat*{x} + z = 0 \), and also note that \( {\overbat{x}}_{2} \ne
{\overbat*{x}}_{2} \). Oh, wait, we have to check {\bfseries\boldmath the bold
version \( {\overbat{x}}_{2} \ne {\overbat*{x}}_{2} \)} too!
\bigbreak
We've now gotten to skulls.
\[ A \xrightswishingghost{\mspace{100mu}} B \skull C \]
Skulls are similar to pumpkins, and thus to \verb|\oplus|:
\begin{gather*}
H_{1} \skull \dots \skull H_{n} \\
H_{1} \oplus \dots \oplus H_{n} \\
H_{1} \pumpkin \dots \pumpkin H_{n}
\end{gather*}
As you can see, though, the dimensions differ slightly:
\( {\skull}{\oplus}{\pumpkin} \).
Subscript: \( A_{x\skull y} \).
Now the ``large'' operator version:
\begin{align*}
\bigskull _{i=1}^{n} H_{i} &= H_{1} \skull \dots \skull H_{n} \\
\bigoplus _{i=1}^{n} H_{i} &= H_{1} \oplus \dots \oplus H_{n} \\
\bigpumpkin_{i=1}^{n} H_{i} &= H_{1} \pumpkin \dots \pumpkin H_{n}
\end{align*}
In-line: \( \bigskull_{i=1}^{n} H_{i} = H_{1}\skull\dots\skull H_{n} \).
Example of close comparison: \( \bigoplus\bigskull\bigpumpkin X \).
{\bfseries\boldmath Now repeat in bold: \( \bigskull_{i=1}^{n} H_{i} =
H_{1}\skull\dots\skull H_{n} \).}
Skulls look much gloomier than pumpkins: compare \( P\pumpkin U\pumpkin M = P \)
with \( S\skull K\skull U = L\odot L \). Why did~I ever outline such a grim and
dreary picture? The ``large operator'' variant, then, is truly dreadful! How
could anybody write a formula like \( \bigskull_{i}\bigskull_{j} A_{i}\otimes
B_{j} \)? How much cheerer is \( \bigpumpkin_{i}\bigpumpkin_{j} A_{i}\otimes
B_{j} \)? And look at the displayed version:
\[
\bigskull_{i=1}^{m}\bigskull_{j=1}^{n} A_{i}\otimes B_{j} \neq
\bigpumpkin_{i=1}^{m}\bigpumpkin_{j=1}^{n} A_{i}\otimes B_{j}
\]
Comparison between math versions: $x\skull y$ is normal math,
{\bfseries\boldmath whereas $x\skull y$ is bold.} Similarly, \(
\bigskull_{i-1}^{n} K_{i} = L \) is normal, {\bfseries\boldmath but \(
\bigskull_{i-1}^{n} K_{i} = L \) is bold.} And now the displays: normal
\[
\bigskull_{i=1}^{m}\bigskull_{j=1}^{n} A_{i}\otimes B_{j} \neq
\bigpumpkin_{i=1}^{m}\bigpumpkin_{j=1}^{n} A_{i}\otimes B_{j}
\]
versus {\bfseries\boldmath bold
\[
\bigskull_{i=1}^{m}\bigskull_{j=1}^{n} A_{i}\otimes B_{j} \neq
\bigpumpkin_{i=1}^{m}\bigpumpkin_{j=1}^{n} A_{i}\otimes B_{j}
\]
math.} Back to the normal font.
\end{document}
|