blob: 56b238f25b8923184bc14fc0150d35f5070c7405 (
plain)
1
2
3
4
5
6
7
8
9
10
|
\documentclass{article}
\begin{document}
The reduced cubic equation $y^3 + 3py +2q = 0$ has one real and two complex
solutions when $D = q^2 + p^3 > 0$. These are given by Cardan's formula as
\[ y_1 = u + v,\quad y_2 = -\frac{u+v}{2} + \frac{i}{2}\sqrt{3}(u - v),\quad
y_3 = -\frac{u+v}{2} - \frac{i}{2}\sqrt{3}(u-v) \]
where
\[ u = \sqrt[3]{-q + \sqrt{q^2+p^3}},\qquad v = \sqrt[3]{-q - \sqrt{q^2+p^3}} \]
\end{document}
|