1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
|
% To ensure that the page numbers are up-to-date:
%
% latex sampleEqPg
% makeglossaries sampleEqPg
% latex sampleEqPg
% makeglossaries sampleEqPg
% latex sampleEqPg
%
% The extra makeglossaries run is required because adding the
% glossary in the second LaTeX run shifts the page numbers on
% which means that the glossary needs to be updated again.
% (Note that this problem is avoided if the page numbering is
% reset after the glossary. For example, if the glossary has
% roman numbering and the subsequent pages have arabic numbering)
\documentclass[a4paper,12pt]{report}
\usepackage{amsmath}
\usepackage[colorlinks]{hyperref}
\usepackage[style=long3colheader,toc,
counter=equation]{glossaries}
\newcommand{\erf}{\operatorname{erf}}
\newcommand{\erfc}{\operatorname{erfc}}
% redefine the way hyperref creates the target for equations
% so that the glossary links to equation numbers work
\renewcommand*\theHequation{\thechapter.\arabic{equation}}
\renewcommand{\glossaryname}{Index of Special Functions and Notations}
\renewcommand{\glossarypreamble}{Numbers in italic indicate the equation number,
numbers in bold indicate page numbers where the main definition occurs.\par}
% set the glossary number style to italic
% hyperit is used instead of textit because
% the hyperref package is being used.
\renewcommand{\glsnumberformat}[1]{\hyperit{#1}}
% 1st column heading
\renewcommand{\entryname}{Notation}
% 2nd column heading
\renewcommand{\descriptionname}{Function Name}
% 3rd column heading
\renewcommand{\pagelistname}{}
% Redefine header row so that it
% adds a blank row after the title row
\renewcommand{\glossaryheader}{\bfseries\entryname &
\bfseries\descriptionname&\bfseries\pagelistname\\
& & \\\endhead}
% Define glossary entries
\newglossaryentry{Gamma}{name=\ensuremath{\Gamma(z)},
description=Gamma function,sort=Gamma}
\newglossaryentry{gamma}{name=\ensuremath{\gamma(\alpha,x)},
description=Incomplete gamma function,sort=gamma}
\newglossaryentry{iGamma}{name=\ensuremath{\Gamma(\alpha,x)},
description=Incomplete gamma function,sort=Gamma}
\newglossaryentry{psi}{name=\ensuremath{\psi(x)},
description=Psi function,sort=psi}
\newglossaryentry{erf}{name=\ensuremath{\erf(x)},
description=Error function,sort=erf}
\newglossaryentry{erfc}{name=\ensuremath{\erfc(x)},
description=Complementary error function,sort=erfc}
\newglossaryentry{beta}{name=\ensuremath{B(x,y)},
description=Beta function,sort=B}
\newglossaryentry{Bx}{name=\ensuremath{B_x(p,q)},
description=Incomplete beta function,sort=Bx}
\newglossaryentry{Tn}{name=\ensuremath{T_n(x)},
description=Chebyshev's polynomials of the first kind,
sort=Tn}
\newglossaryentry{Un}{name=\ensuremath{U_n(x)},
description=Chebyshev's polynomials of the second kind,
sort=Un}
\newglossaryentry{Hn}{name=\ensuremath{H_n(x)},
description=Hermite polynomials,sort=Hn}
\newglossaryentry{Lna}{name=\ensuremath{L_n^\alpha(x)},
description=Laguerre polynomials,sort=Lna}
\newglossaryentry{Znu}{name=\ensuremath{Z_\nu(z)},
description=Bessel functions,sort=Z}
\newglossaryentry{Pagz}{name=\ensuremath{\Phi(\alpha,\gamma;z)},
description=confluent hypergeometric function,sort=Pagz}
\newglossaryentry{kv}{name=\ensuremath{k_\nu(x)},
description=Bateman's function,sort=kv}
\newglossaryentry{Dp}{name=\ensuremath{D_p(z)},
description=Parabolic cylinder functions,sort=Dp}
\newglossaryentry{Fpk}{name=\ensuremath{F(\phi,k)},
description=Elliptical integral of the first kind,sort=Fpk}
\newglossaryentry{C}{name=\ensuremath{C},
description=Euler's constant,sort=C}
\newglossaryentry{G}{name=\ensuremath{G},
description=Catalan's constant,sort=G}
\makeglossaries
\pagestyle{headings}
\begin{document}
\title{Sample Document Using Interchangable Numbering}
\author{Nicola Talbot}
\maketitle
\begin{abstract}
This is a sample document illustrating the use of the \textsf{glossaries}
package. The functions here have been taken from ``Tables of
Integrals, Series, and Products'' by I.S.~Gradshteyn and I.M~Ryzhik.
The glossary lists both page numbers and equation numbers.
Since the majority of the entries use the equation number,
\texttt{counter=equation} was used as a package option.
Note that this example will only work where the
page number and equation number compositor is the same. So
it won't work if, say, the page numbers are of the form
2-4 and the equation numbers are of the form 4.6.
As most of the glossary entries should have an italic
format, it is easiest to set the default format to
italic.
\end{abstract}
\tableofcontents
\printglossary[toctitle={Special Functions}]
\chapter{Gamma Functions}
The \glslink[format=hyperbf,counter=page]{Gamma}{gamma function} is
defined as
\begin{equation}
\gls{Gamma} = \int_{0}^{\infty}e^{-t}t^{z-1}\,dt
\end{equation}
\begin{equation}
\glslink{Gamma}{\ensuremath{\Gamma(x+1)}} = x\Gamma(x)
\end{equation}
\begin{equation}
\gls{gamma} = \int_0^x e^{-t}t^{\alpha-1}\,dt
\end{equation}
\begin{equation}
\gls{iGamma} = \int_x^\infty e^{-t}t^{\alpha-1}\,dt
\end{equation}
\newpage
\begin{equation}
\glslink{Gamma}{\ensuremath{\Gamma(\alpha)}} =
\Gamma(\alpha, x) + \gamma(\alpha, x)
\end{equation}
\begin{equation}
\gls{psi} = \frac{d}{dx}\ln\Gamma(x)
\end{equation}
\chapter{Error Functions}
The \glslink[format=hyperbf,counter=page]{erf}{error function} is defined as:
\begin{equation}
\gls{erf} = \frac{2}{\surd\pi}\int_0^x e^{-t^2}\,dt
\end{equation}
\begin{equation}
\gls{erfc} = 1 - \erf(x)
\end{equation}
\chapter{Beta Function}
\begin{equation}
\gls{beta} = 2\int_0^1 t^{x-1}(1-t^2)^{y-1}\,dt
\end{equation}
Alternatively:
\begin{equation}
\gls{beta} = 2\int_0^{\frac\pi2}\sin^{2x-1}\phi\cos^{2y-1}\phi\,d\phi
\end{equation}
\begin{equation}
\gls{beta} = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} = B(y,x)
\end{equation}
\begin{equation}
\gls{Bx} = \int_0^x t^{p-1}(1-t)^{q-1}\,dt
\end{equation}
\chapter{Chebyshev's polynomials}
\begin{equation}
\gls{Tn} = \cos(n\arccos x)
\end{equation}
\begin{equation}
\gls{Un} = \frac{\sin[(n+1)\arccos x]}{\sin[\arccos x]}
\end{equation}
\chapter{Hermite polynomials}
\begin{equation}
\gls{Hn} = (-1)^n e^{x^2} \frac{d^n}{dx^n}(e^{-x^2})
\end{equation}
\chapter{Laguerre polynomials}
\begin{equation}
\gls{Lna} = \frac{1}{n!}e^x x^{-\alpha}
\frac{d^n}{dx^n}(e^{-x}x^{n+\alpha})
\end{equation}
\chapter{Bessel Functions}
Bessel functions $Z_\nu(z)$ are solutions of
\begin{equation}
\frac{d^2\glslink{Znu}{Z_\nu}}{dz^2} + \frac{1}{z}\,\frac{dZ_\nu}{dz} +
\left(
1-\frac{\nu^2}{z^2}Z_\nu = 0
\right)
\end{equation}
\chapter{Confluent hypergeometric function}
\begin{equation}
\gls{Pagz} = 1 + \frac{\alpha}{\gamma}\,\frac{z}{1!}
+ \frac{\alpha(\alpha+1)}{\gamma(\gamma+1)}\,\frac{z^2}{2!}
+\frac{\alpha(\alpha+1)(\alpha+2)}
{\gamma(\gamma+1)(\gamma+2)}
\,\frac{z^3}{3!}
+ \cdots
\end{equation}
\begin{equation}
\gls{kv} = \frac{2}{\pi}\int_0^{\pi/2}
\cos(x \tan\theta - \nu\theta)\,d\theta
\end{equation}
\chapter{Parabolic cylinder functions}
\begin{equation}
\gls{Dp} = 2^{\frac{p}{2}}e^{-\frac{z^2}{4}}
\left\{
\frac{\surd\pi}{\Gamma\left(\frac{1-p}{2}\right)}
\Phi\left(-\frac{p}{2},\frac{1}{2};\frac{z^2}{2}\right)
-\frac{\sqrt{2\pi}z}{\Gamma\left(-\frac{p}{2}\right)}
\Phi\left(\frac{1-p}{2},\frac{3}{2};\frac{z^2}{2}\right)
\right\}
\end{equation}
\chapter{Elliptical Integral of the First Kind}
\begin{equation}
\gls{Fpk} = \int_0^\phi
\frac{d\alpha}{\sqrt{1-k^2\sin^2\alpha}}
\end{equation}
\chapter{Constants}
\begin{equation}
\gls{C} = 0.577\,215\,664\,901\ldots
\end{equation}
\begin{equation}
\gls{G} = 0.915\,965\,594\ldots
\end{equation}
\end{document}
|