blob: ccefe8c19e1901ded661dd54b5a0b29a8bd4c6ca (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
|
\documentclass{report}
\usepackage[plainpages=false,colorlinks]{hyperref}
\usepackage[style=altlist,toc,counter=section]{glossaries}
\makeglossaries
\newglossaryentry{ident}{name=identity matrix,
description=diagonal matrix with 1s along the leading diagonal,
plural=identity matrices}
\newglossaryentry{diag}{name=diagonal matrix,
description=matrix whose only non-zero entries are along
the leading diagonal,
plural=diagonal matrices}
\newglossaryentry{sing}{name=singular matrix,
description=matrix with zero determinant,
plural=singular matrices}
\begin{document}
\pagenumbering{roman}
\tableofcontents
\printglossaries
\chapter{Introduction}
\pagenumbering{arabic}
This is a sample document illustrating the use of the
\textsf{glossaries} package.
\chapter{Diagonal matrices}
A \gls[format=hyperit]{diag} is a matrix where all elements not on the
leading diagonal are zero. This is the
primary definition, so an italic font is used for the page number.
\newpage
\section{Identity matrix}
The \gls[format=hyperit]{ident} is a \gls{diag} whose leading
diagonal elements are all equal to 1.
Here is another entry for a \gls{diag}. And this is the
plural: \glspl{ident}.
This adds an entry into the glossary with a bold number, but
it doesn't create a hyperlink: \gls*[format=hyperbf]{ident}.
\chapter{Singular Matrices}
A \gls{sing} is a matrix with zero determinant.
\Glspl{sing} are non-invertible. Possessive:
a \gls{sing}['s] dimensions are not necessarily equal.
Another \gls{ident} entry.
\end{document}
|