summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/first-latex-doc/latex-second-e.tex
blob: 2c4032610788ce6f36f05c2de2aaab74ff46351c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
\documentclass{article}
\usepackage{geometry}
\usepackage{fancyhdr}
\usepackage{amsmath,amsthm,amssymb}
\usepackage{graphicx}
\usepackage{hyperref}
\usepackage{lipsum}

\title{Test document}
\author{Your name \\ \url{you@example.com}}
\date{2009-Oct-12}
\begin{document}
\maketitle
\tableofcontents
\newpage

This is some preamble text that you enter 
yourself.\footnote{First footnote.}\footnote{Second footnote.}

\section{Text for the first section}
\lipsum[1]

\subsection{Text for a subsection of the first section}
\lipsum[2-3]
\label{labelone}

\subsection{Another subsection of the first section}
\lipsum[4-5]
\label{labeltwo}

\section{The second section}
\lipsum[6]

Refer again to \ref{labelone}.\cite{ConcreteMath}
Note also the discussion on page \pageref{labeltwo}

\subsection{Title of the first subsection of the second section}
\lipsum[7]

There are $\binom{2n+1}{n}$ sequences with $n$ occurrences of 
$-1$ and $n+1$ occurrences of $+1$, and Raney's lemma
tells us that exactly $1/(2n+1)$ of these sequences have all
partial sums positive.

Elementary calculus suffices to evaluate $C$ if we are clever enough
to look at the double integral
\begin{equation*}
  C^2
  =\int_{-\infty}^{+\infty} e^{-x^2} \mathrm{d}x
   \int_{-\infty}^{+\infty} e^{-y^2} \mathrm{d}y\;.
\end{equation*}

Solve the following recurrence for $n,k\geq 0$:
\begin{align*}
  Q_{n,0} &= 1
  \quad Q_{0,k} = [k=0];  \\
  Q_{n,k} &= Q_{n-1,k}+Q_{n-1,k-1}+\binom{n}{k}, \quad\text{for $n,k>0$.}
\end{align*}

Therefore
\begin{equation*}
a\equiv b\pmod{m}
\qquad\Longleftrightarrow\qquad
a\equiv b \pmod{p^{m_p}}\quad\text{for all $p$}  
\end{equation*}
if the prime factorization of $m$ is $\prod_p p^{m_p}$.

\begin{thebibliography}{9}
\bibitem{ConcreteMath}
Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, 
\textit{Concrete mathematics}, 
Addison-Wesley, Reading, MA, 1995.
\end{thebibliography}
\end{document}