summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/einfuehrung2/09-07-7.ltx
blob: da9e84b1216836aa92e19a751ef475cedaadcbb1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
%% 
%%  Ein Beispiel der DANTE-Edition
%%  
%%  2. Auflage
%% 
%%  Beispiel 09-07-7 auf Seite 419.
%% 
%%  Copyright (C) 2016 Herbert Voss
%% 
%%  It may be distributed and/or modified under the conditions
%%  of the LaTeX Project Public License, either version 1.3
%%  of this license or (at your option) any later version.
%% 
%%  See http://www.latex-project.org/lppl.txt for details.
%% 
%% 
%% ==== 
% Show page(s) 1
%% 
%% 
\documentclass[leqno]{exaarticle}
\pagestyle{empty}
\setlength\textwidth{352.81416pt}
\AtBeginDocument{\setlength\parindent{0pt}
\setcounter{section}{9}}
%StartShownPreambleCommands
\usepackage{amsmath} \usepackage[amsmath,thmmarks]{ntheorem}
\theoremsymbol{\ensuremath{\triangle}}
\theoremprework{\bigskip\hrule}  \theorempostwork{\hrule\bigskip}
\newtheorem{Beispiel}{Beispiel}[section]
%StopShownPreambleCommands
\begin{document}
Normaler Text vor der neuen Umgebung.
\begin{Beispiel} Anwendung des Transformationstheorems:
\begin{align*}
 [z^n]C(z) &= [z^n]\biggl[\frac{e^{3/4}}{\sqrt{1-z}}+e^{-3/4}(1-z)^{1/2}+
              \frac{e^{-3/4}}{4}(1-z)^{3/2}+O\Bigl((1-z)^{5/2}\Bigr)\biggr]\\[5pt]
           &= \frac{e^{-3/4}}{\sqrt{\pi n}}-\frac{5e^{-3/4}}{8\sqrt{\pi n^3}}+
      \frac{e^{-3/4}}{128\sqrt{\pi n^5}}+O\biggl(\frac{1}{\sqrt{\pi n^7}}\biggr)
\end{align*}
\end{Beispiel}
\end{document}