blob: 7e80aedaaa17aed26bc2a3742fd156c38892f315 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
|
%%
%% Ein Beispiel der DANTE-Edition
%%
%% Beispiel 13-02-11 auf Seite 652.
%%
%% Copyright (C) 2012 Vo\ss
%%
%% It may be distributed and/or modified under the conditions
%% of the LaTeX Project Public License, either version 1.3
%% of this license or (at your option) any later version.
%%
%% See http://www.latex-project.org/lppl.txt for details.
%%
% Show page(s) 3,6
%% ====
\PassOptionsToClass{}{beamer}
\documentclass{exabeamer}
\usetheme{Malmoe}
\begin{document}
\begin{frame}{Overlay-Umgebung}
\begin{theorem}<1->[Pythagoras] \[ c^2 = a^2 + b^2 \] \end{theorem}
\begin{proof}<2> \[ 25=16+9 \]\end{proof}
\begin{example}<3>[Derivation]
\begin{align} f(x) &= \tan x\\f^\prime &= 1+\tan^2 x \end{align}
\end{example}
\end{frame}
\begin{frame}{Overlay-Umgebung}
\begin{theorem}<1->[Pythagoras] \[ c^2 = b^2 + a^2 \] \end{theorem}
\begin{onlyenv}<2>
\begin{proof} \[ 25=16+9 \] \end{proof}
\end{onlyenv}
\empty
\begin{example}<3>[Derivation]
\begin{align} f(x) &= \tan x\\f^\prime &= 1+\tan^2 x \end{align}
\end{example}
\end{frame}
\end{document}
|