summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/circuitikz/circuitikzmanual.tex
blob: ffd294534d1a0dbec95f5fdb430ad788d05d818e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
\documentclass[a4paper]{article}

\usepackage[siunitx]{circuitikz}
\usepackage{showexpl}
\usepackage{framed}
\usepackage{hyperref}
\hypersetup{
    bookmarks=false,         % show bookmarks bar?
    pdftitle={CircuitTikZ v. 0.2.2 - manual},    % title
    pdfauthor={Massimo Redaelli},     % author
    pdfsubject={CircuitTikZ manual},   % subject of the document
    pdfkeywords={}, % list of keywords
    colorlinks=true,       % false: boxed links; true: colored links
    linkcolor=black,          % color of internal links
    citecolor=black,        % color of links to bibliography
    filecolor=black,      % color of file links
    urlcolor=black           % color of external links
}

\def\circuititem#1#2#3{\item #2 (\texttt{#1}) \par \begin{center}\begin{circuitikz} \draw (0,0) node[#1] {}; \end{circuitikz} \end{center}
\par}

\newcommand{\circuititembip}[3]{\item #2 (\texttt{#1}%
\ifthenelse{\equal{#3}{}}{%
}{%
, or \texttt{#3}%
}%
)\par \begin{center}\begin{circuitikz} \draw (0,0) to[#1] (2,0); \end{circuitikz} \end{center}\par}

\begin{document}
\def\TikZ{Ti\emph{k}Z}
\lstset{frameround=fttt}
\lstloadlanguages{TeX}

\title{Circui\TikZ \\{\large version 0.2.2}}
\author{Massimo A. Redaelli}
\date{\today}

\maketitle

\tableofcontents

\section{Introduction}
After two years of little exposure only on my personal website\footnote{\url{http://home.dei.polimi.it/mredaelli}.}, I did a major rehauling of the code of Circui\TikZ, fixing several problems and converting everything to \TikZ\ version $2.0$.

I'm not too sure about the result, because my (La)\TeX\ skills are much to be improved, but it seems it's time for more user feedback. So, here it is\ldots

\medskip

I know the documentation is somewhat scant. Hope to have time to improve it a bit.

\subsection{About}
This package provides a set of macros for naturally typesetting electrical and (somewhat less naturally, perhaps) electronical networks.

It was born mainly for writing my own exercise book and exams sheets for the Elettrotecnica courses at Politecnico di Milano, Italy. I wanted a tool that was easy to use, with a lean syntax, native to \LaTeX, and supporting directly PDF output format.

So I based everything with the very impressive (if somewhat verbose at times) \TikZ\ package.

\subsection{Loading the package}
\verb!\usepackage{circuitikz}!

\TikZ\ will be automatically loaded.

\subsection{License}
Copyright \copyright\ 2007--2009 Massimo Redaelli. This package is author-maintained.
Permission is granted to copy, distribute and/or modify this software under the
terms of the \LaTeX Project Public License, version 1.3.1, or the GNU Public License. This software is provided ‘as is’, without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose.

\subsection{Feedback}
Much appreciated: \href{mailto:mredaelli@elet.polimi.it}{\texttt{mredaelli@elet.polimi.it}}. Although I don't guarantee quick answers.

\subsection{Requirements}
\begin{itemize}
 \item \texttt{tikz}, version $\ge 2$;
 \item \texttt{xstring};
 \item \texttt{siunitx}, if using \texttt{siunitx} option.
\end{itemize}

\subsection{Incompatible packages}

None, as far as I know.



\section{Options}

\begin{itemize}
	\item \texttt{europeanvoltage}: uses arrows to define voltages, and uses european-style voltage sources;
	\item \texttt{americanvoltage}: uses $-$ and $+$ to define voltages, and uses american-style voltage sources;
	\item \texttt{europeancurrent}: uses european-style current sources;
	\item \texttt{americancurrent}: uses american-style current sources;
	\item \texttt{europeanresistor}: uses rectangular empty shape for resistors, as per european standards;
	\item \texttt{americanresistor}: uses zig-zag shape for resistors, as per american standards;
	\item \texttt{europeaninductor}: uses rectangular filled shape for inductors, as per european standards;
	\item \texttt{americaninductor}: uses coil shape for inductors, as per american standards;
	\item \texttt{european}: equivalent to \texttt{europeancurrent}, \texttt{europeanvoltage}, \texttt{europeanresistor}, \texttt{europeaninductor};
	\item \texttt{american}: equivalent to \texttt{americancurrent}, \texttt{americanvoltage}, \texttt{americanresistor}, \texttt{americaninductor};
	\item \texttt{siunitx}: integrates with \texttt{SIunitx} package. If labels, currents or voltages are of the form \verb!#1<#2>! then what is shown is actually \verb!\SI{#1}{#2}!; 
	\item \texttt{nosiunitx}: labels are not interpreted as above;
	\item \texttt{fulldiode}: the various diodes are drawn \emph{and} filled by default, i.e. when using styles such as \texttt{diode}, \texttt{D}, \texttt{sD}, \ldots Un-filled diode can always be forced with \texttt{Do}, \texttt{sDo}, \ldots
	\item \texttt{emptydiode}: the various diodes are drawn \emph{but not} filled by default, i.e. when using styles such as \texttt{diode}, \texttt{D}, \texttt{sD}, \ldots Filled diode can always be forced with \texttt{D*}, \texttt{sD*}, \ldots
	\item \texttt{arrowmos}: pmos and nmos have arrows analogous to those of pnp and npn transistors;
	\item \texttt{noarrowmos}: pmos and nmos do not have arrows analogous to those of pnp and npn transistors.
\end{itemize}	

Loading the package with no options is equivalent to my own personal liking, that is to the following options:\\
 \texttt{[european current, european voltage, american resistor, american inductor, nosiunitx, noarrowmos]}.
 
\section{The components}

Here follows the list of all the shapes defined by Circui\TikZ. These are all \texttt{pgf} nodes, so they are usable in both \texttt{pgf} and \TikZ.

\medskip

Each bipole is shown using the following command, where \verb!#1! is the name of the component\footnote{If \texttt{\#1} is the name of the bipole/the style, then the actual name of the shape is \texttt{\#1shape}.}:

\begin{verbatim}
\begin{center}\begin{circuitikz} \draw 
   (0,0) to[ #1 ] (2,0)
; \end{circuitikz} \end{center}
\end{verbatim}

The other shapes are shown with:
\begin{verbatim}
\begin{center}\begin{circuitikz} \draw 
   (0,0) node[ #1 ] {}
; \end{circuitikz} \end{center}
\end{verbatim}

\subsection{Monopoles}
\begin{itemize}
	\circuititem{ground}{Ground}{}
\end{itemize}


\subsection{Bipoles}

\paragraph{Instruments}
\begin{itemize}
	\circuititembip{ammeter}{Ammeter}{}
	\circuititembip{voltmeter}{Voltmeter}{}
\end{itemize}	

\paragraph{Basic resistive bipoles}
\begin{itemize}
	\circuititembip{short}{Short circuit}{}
	\circuititembip{open}{Open circuit}{}
	
	\circuititembip{pR}{Potentiometer}{potentiometer}
	\circuititembip{lamp}{Lamp}{}
	\circuititembip{generic}{Generic (symmetric) bipole}{}
	\circuititembip{ageneric}{Generic asymmetric bipole}{}
	\circuititembip{fullgeneric}{Generic asymmetric bipole}{}
\end{itemize}	

\paragraph{The resistor}

If  \texttt{europeanresistor} option is active (or the style \texttt{[european resistor]} is used), the resistor is displayed as follows:
\begin{itemize}
   \ctikzset{european resistor=true}
   \circuititembip{R}{Resistor}{resistor}
\end{itemize}
If instead (default behaviour) \texttt{americanresistor} option is active (or the style \texttt{[american resistor]} is used), the resistor is displayed as follows:
\begin{itemize}
   \ctikzset{european resistor=false}
   \circuititembip{R}{Resistor}{resistor}
\end{itemize}


\paragraph{Stationary sources}
\begin{itemize}
	\circuititembip{battery}{Battery}{}
	\circuititembip{european voltage source}{Voltage source (european style)}{}
	\circuititembip{american voltage source}{Voltage source (american style)}{}
	\circuititembip{european current source}{Current source (european style)}{}
	\circuititembip{american current source}{Current source (american style)}{}
\end{itemize}

\begin{framed}
The options \texttt{europeancurrent} [resp. \texttt{europeanvoltage}] (the default) and \texttt{americancurrent} [resp. \texttt{americanvoltage}] define which current [resp. voltage] source is selected by default when the abbreviated styles \texttt{current source}, \texttt{csource}, \texttt{I} [resp. \texttt{voltage source}, \texttt{vsource}, \texttt{V}] are used.

One can also use the related styles \texttt{[european current]} [resp. \texttt{[european voltage]}] and \texttt{[american current]} [resp. \texttt{[american voltage]}].
\end{framed}


\paragraph{Diodes and such}
\begin{itemize}
	\circuititembip{empty diode}{Empty diode}{Do}
	\circuititembip{empty Schottky diode}{Empty Schottky diode}{sDo}
	\circuititembip{empty Zener diode}{Empty Zener diode}{zDo}
	\circuititembip{empty tunnel diode}{Empty tunnel diode}{tDo}
	\circuititembip{empty photodiode}{Empty photodiode}{pDo}
	\circuititembip{empty led}{Empty led}{leDo}
	\circuititembip{empty varcap}{Empty varcap}{VCo}
	\circuititembip{full diode}{Full diode}{D*}
	\circuititembip{full Schottky diode}{Full Schottky diode}{sD*}
	\circuititembip{full Zener diode}{Full Zener diode}{zD*}
	\circuititembip{full tunnel diode}{Full tunnel diode}{tD*}
	\circuititembip{full photodiode}{Full photodiode}{pD*}
	\circuititembip{full led}{Full led}{leD*}
	\circuititembip{full varcap}{Full varcap}{VC*}
	\end{itemize}

\begin{framed}
The options \texttt{fulldiode} and \texttt{emptydiode} (and the styles \texttt{[full diode]} and \texttt{[full diode]}) define which shape will be used by abbreviated commands such that \texttt{D}, \texttt{sD}, \texttt{zD}, \texttt{tD}, \texttt{pD}, \texttt{leD}, and \texttt{VC}.
\end{framed}

\paragraph{Basic dynamical bipoles}
\begin{itemize}
	\circuititembip{capacitor}{Capacitor}{C}
\end{itemize}	

If  \texttt{europeaninductor} option is active (or the style \texttt{[european inductor]} is used), the inductor is displayed as follows:
\begin{itemize}
   \ctikzset{european inductor=true}
   \circuititembip{L}{Inductor}{inductor}
\end{itemize}
If instead (default behaviour) \texttt{americaninductor} option is active (or the style \texttt{[american inductor]} is used), the inductor is displayed as follows:
\begin{itemize}
   \ctikzset{european inductor=false}
   \circuititembip{L}{Inductor}{inductor}
\end{itemize}


\paragraph{Sinusoidal sources} Here because I was asked for them. But how do you distinguish one from the other?!
\begin{itemize}
	\circuititembip{sinusoidal voltage source}{Sinusoidal voltage source}{vsourcesin, sV}
	\circuititembip{sinusoidal current source}{Sinusoidal current source}{isourcesin, sI}
\end{itemize}

%\begin{framed}
%The options \texttt{europeancurrent} [resp. \texttt{europeanvoltage}] (the default) and \texttt{americancurrent} [resp. \texttt{americanvoltage}] define which sinusoidal current [resp. voltage] source is selected by default when the abbreviated styles \texttt{sinusoidal current source}, \texttt{csourcesin}, \texttt{cI} [resp. \texttt{sinusoidal voltage source}, \texttt{vsourcesin}, \texttt{cV}] are used.

%One can also use the related styles \texttt{[european current]} [resp. \texttt{[european voltage]}] and \texttt{[american current]} [resp. \texttt{[american voltage]}].
%\end{framed}

\paragraph{Switch}
\begin{itemize}
	\circuititembip{closing switch}{Closing switch}{cspst}
	\circuititembip{opening switch}{Opening switch}{ospst}
\end{itemize}	



\subsection{Tripoles}
\paragraph{Controlled sources} Admittedly, graphically they are bipoles. But I couldn't\ldots
\begin{itemize}
	\circuititembip{european controlled voltage source}{Controlled voltage source (european style)}{}
	\circuititembip{american controlled voltage source}{Controlled voltage source (american style)}{}
	\circuititembip{european controlled current source}{Controlled current source (european style)}{}
	\circuititembip{american controlled current source}{Controlled current source (american style)}{}
\end{itemize}

\begin{framed}
The options \texttt{europeancurrent} [resp. \texttt{europeanvoltage}] (the default) and \texttt{americancurrent} [resp. \texttt{americanvoltage}] define which controlled current [resp. voltage] source is selected by default when the abbreviated styles are used.

One can also use the related styles \texttt{[european current]} [resp. \texttt{[european voltage]}] and \texttt{[american current]} [resp. \texttt{[american voltage]}].
\end{framed}

\begin{itemize}
	\circuititembip{controlled sinusoidal voltage source}{Controlled sinusoidal voltage source}{controlled vsourcesin, cvsourcesin, csV}
	\circuititembip{controlled sinusoidal current source}{Controlled sinusoidal current source}{controlled isourcesin, cisourcesin, csI}
	\end{itemize}



\paragraph{Transistors} 
\begin{itemize}
	\circuititem{nmos}{nmos}{}
	\circuititem{pmos}{pmos}{}
	\circuititem{npn}{npn}{}
	\circuititem{pnp}{pnp}{}
\end{itemize}

If the option \texttt{arrowmos} is used (or after the commant \verb!\ctikzset{tripoles/mos style/arrows}! is given), this is the output:
\ctikzset{tripoles/mos style/arrows}
\begin{itemize}
	\circuititem{nmos}{nmos}{}
	\circuititem{pmos}{pmos}{}
\end{itemize}
\ctikzset{tripoles/mos style/no arrows}

\subsection{Double bipoles}

\begin{itemize}
	\circuititem{transformer}{Transformer}{}
	\circuititem{gyrator}{Gyrator}{}
\end{itemize}



\subsection{Logic gates}

\begin{itemize}
	\circuititem{and port}{AND port}{}
	\circuititem{or port}{OR port}{}
	\circuititem{not port}{NOT port}{}
	\circuititem{nand port}{NAND port}{}
	\circuititem{nor port}{NOR port}{}
	\circuititem{xor port}{XOR port}{}
	\circuititem{xnor port}{XNOR port}{}
\end{itemize}


\subsection{Operational Amplifier}
\begin{itemize}
	\circuititem{op amp}{Operational amplifier}{}
\end{itemize}

\subsection{Support shapes}

\begin{itemize}
	\circuititem{currarrow}{Arrows (current and voltage)}{}
	\circuititem{circ}{Connected terminal}{}
	\circuititem{ocirc}{Unconnected terminal}{}
\end{itemize}



\section{Usage}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, l=$R_1$] (2,0);
\end{circuitikz}
\end{LTXexample}	

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R=$R_1$] (2,0);
\end{circuitikz}
\end{LTXexample}	


\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, i=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}	

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, v=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}	

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R=$R_1$, i=$i_1$, v=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}	

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R=$R_1$, i=$i_1$, v=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}


Long names/styles for the bipoles can be used:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}\draw
  (0,0) to[resistor=1<\kilo\ohm>] (2,0) 
;\end{circuitikz}
\end{LTXexample}

\subsection{Labels}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, l^=$R_1$] (2,0);
\end{circuitikz}
\end{LTXexample}	

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, l_=$R_1$] (2,0);
\end{circuitikz}
\end{LTXexample}	




\subsection{Currents}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, i^>=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}	

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, i_>=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}	

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, i^<=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}	

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, i_<=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}	

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, i>^=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}	

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, i>_=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}	

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, i<^=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}	

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, i<_=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}	

Also

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, i<=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}	

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, i>=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}	

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, i^=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}	

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, i_=$i_1$] (2,0);
\end{circuitikz}
\end{LTXexample}	



\subsection{Voltages}

\paragraph{European style} The default, with arrows. Use option \texttt{europeanvoltage} or style \verb![european voltage]!.

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[european voltage]
   \draw (0,0) to[R, v^>=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[european voltage]
   \draw (0,0) to[R, v^<=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[european voltage]
   \draw (0,0) to[R, v_>=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[european voltage]
   \draw (0,0) to[R, v_<=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}

\paragraph{American style} For those who like it (not me). Use option \texttt{americanvoltage} or set \verb![american voltage]!.

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american voltage]
   \draw (0,0) to[R, v^>=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american voltage]
   \draw (0,0) to[R, v^<=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american voltage]
   \draw (0,0) to[R, v_>=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american voltage]
   \draw (0,0) to[R, v_<=$v_1$] (2,0);
\end{circuitikz}
\end{LTXexample}



\subsection{Nodes}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, o-o] (2,0);
\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, -o] (2,0);
\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, o-] (2,0);
\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, *-*] (2,0);
\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, -*] (2,0);
\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, *-] (2,0);
\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, o-*] (2,0);
\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, *-o] (2,0);
\end{circuitikz}
\end{LTXexample}

\subsection{Special components}

For some components label, current and voltage behave as one would expect:

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[I=$a_1$] (2,0);
\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[I, i=$a_1$] (2,0);
\end{circuitikz}
\end{LTXexample}


\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[cI=$k\cdot a_1$] (2,0);
\end{circuitikz}
\end{LTXexample}


\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[sI=$a_1$] (2,0);
\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[csI=$k\cdot a_1$] (2,0);
\end{circuitikz}
\end{LTXexample}

The following results from using the option \texttt{americancurrent} or using the style \verb![american current]!.

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american current]
   \draw (0,0) to[I=$a_1$] (2,0);
\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american current]
   \draw (0,0) to[I, i=$a_1$] (2,0);
\end{circuitikz}
\end{LTXexample}


\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american current]
   \draw (0,0) to[cI=$k\cdot a_1$] (2,0);
\end{circuitikz}
\end{LTXexample}


\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american current]
   \draw (0,0) to[sI=$a_1$] (2,0);
\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american current]
   \draw (0,0) to[csI=$k\cdot a_1$] (2,0);
\end{circuitikz}
\end{LTXexample}

The same holds for voltage sources:

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[V=$a_1$] (2,0);
\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[V, v=$a_1$] (2,0);
\end{circuitikz}
\end{LTXexample}


\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[cV=$k\cdot a_1$] (2,0);
\end{circuitikz}
\end{LTXexample}


\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[sV=$a_1$] (2,0);
\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[csV=$k\cdot a_1$] (2,0);
\end{circuitikz}
\end{LTXexample}

The following results from using the option \texttt{americanvoltage} or the style \verb![american voltage]!.

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american voltage]
   \draw (0,0) to[V=$a_1$] (2,0);
\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american voltage]
   \draw (0,0) to[V, v=$a_1$] (2,0);
\end{circuitikz}
\end{LTXexample}


\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american voltage]
   \draw (0,0) to[cV=$k\cdot a_1$] (2,0);
\end{circuitikz}
\end{LTXexample}


\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american voltage]
   \draw (0,0) to[sV=$a_1$] (2,0);
\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}[american voltage]
   \draw (0,0) to[csV=$k\cdot a_1$] (2,0);
\end{circuitikz}
\end{LTXexample}


\subsection{Integration with {\ttfamily siunitx}}

If the option {\ttfamily siunitx} is active, then the following are equivalent:

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, l=1<\kilo\ohm>] (2,0);
\end{circuitikz}
\end{LTXexample}	

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, l=$\SI{1}{\kilo\ohm}$] (2,0);
\end{circuitikz}
\end{LTXexample}	

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, i=1<\milli\ampere>] (2,0);
\end{circuitikz}
\end{LTXexample}	

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, i=$\SI{1}{\milli\ampere}$] (2,0);
\end{circuitikz}
\end{LTXexample}	

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, v=1<\volt>] (2,0);
\end{circuitikz}
\end{LTXexample}	

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R, v=$\SI{1}{\volt}$] (2,0);
\end{circuitikz}
\end{LTXexample}	

\subsection{Putting them together}
\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[R=1<\kilo\ohm>,
      i>_=1<\milli\ampere>, o-*] (3,0);
\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz}
   \draw (0,0) to[D*, v=$v_D$,
      i=1<\milli\ampere>, o-*] (3,0);
\end{circuitikz}
\end{LTXexample}

%} %comment


\section{Not only bipoles}

Since only bipoles can be placed "along a line", components with more than two terminals are placed as nodes:
\begin{LTXexample}[varwidth=true]
\tikz \node[npn]  at (0,0) {};
\end{LTXexample}

\subsection{Anchors}

In order to allow connections with other components, all components define anchors. 

\paragraph{Logical ports} All logical ports, except NOT, have to inputs and one output. They are called respectively \texttt{in 1}, \texttt{in 2}, \texttt{out}:

\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw 
  (0,0) node[and port] (myand)  {}
  (myand.in 1) node[anchor=east] {1}
  (myand.in 2) node[anchor=east] {2}
  (myand.out) node[anchor=west] {3}
;\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw 
  (0,2) node[and port] (myand1)  {}
  (0,0) node[and port] (myand2)  {}
  (2,1) node[xnor port] (myxnor)  {}
  (myand1.out) -| (myxnor.in 1)
  (myand2.out) -| (myxnor.in 2)
;\end{circuitikz}
\end{LTXexample}

In the case of NOT, there are only \texttt{in} and \texttt{out}:

\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw 
  (1,0) node[not port] (not1)  {}
  (3,0) node[not port] (not2)  {}
  (0,0) -- (not1.in) 
  (not2.in) -- (not1.out) 
  ++(0,-1) node[ground] {} to[C] (not1.out) 
  (not2.out) -| (4,1) -| (0,0)
;\end{circuitikz}
\end{LTXexample}

\paragraph{Transistors} For MOS transistors one has \texttt{base}, \texttt{gate}, \texttt{source} and \texttt{drain} anchors (which can be abbreviated with \texttt{B}, \texttt{G}, \texttt{S} and \texttt{D}):

\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw 
  (0,0) node[nmos] (mos)  {}
  (mos.base) node[anchor=west] {B}
  (mos.gate) node[anchor=east] {G}
  (mos.drain) node[anchor=south] {D}
  (mos.source) node[anchor=north] {S}
;\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw 
  (0,0) node[pmos] (mos)  {}
  (mos.B) node[anchor=west] {B}
  (mos.G) node[anchor=east] {G}
  (mos.D) node[anchor=north] {D}
  (mos.S) node[anchor=south] {S}
;\end{circuitikz}
\end{LTXexample}

For BJT transistors the anchors are  \texttt{base}, \texttt{emitter} and \texttt{collector} anchors (which can be abbreviated with \texttt{B}, \texttt{E} and \texttt{C}):

\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw 
  (0,0) node[npn] (npn)  {}
  (npn.base) node[anchor=east] {B}
  (npn.collector) node[anchor=south] {C}
  (npn.emitter) node[anchor=north] {E}
;\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw 
  (0,0) node[pnp] (pnp)  {}
  (pnp.B) node[anchor=east] {B}
  (pnp.C) node[anchor=north] {C}
  (pnp.E) node[anchor=south] {E}
;\end{circuitikz}
\end{LTXexample}

Here is one composite example (please notice that the \texttt{xscale=-1} style would also reflect the label of the transistors, so here a new node is added and its text is used, instead of that of \texttt{pnp1}):

\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw 
  (0,0) node[pnp] (pnp2) {2}
  (pnp2.B) node[pnp, xscale=-1, anchor=B] (pnp1) {}
    (pnp1) node {1}
  (pnp1.C) node[npn, anchor=C] (npn1) {}
  (pnp2.C) node[npn, xscale=-1, anchor=C] (npn2) {}
  (pnp1.E) -- (pnp2.E)  (npn1.E) -- (npn2.E)
  (pnp1.B) node[circ] {} |- (pnp2.C) node[circ] {}
;\end{circuitikz}
\end{LTXexample}
\paragraph{Operational amplifier} The op amp defines the inverting input (\texttt{-}), the non-inverting input (\texttt{+}) and the output (\texttt{out}) anchors:

\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw 
  (0,0) node[op amp] (opamp) {}
  (opamp.+) node[left] {$v_+$}
  (opamp.-) node[left] {$v_-$}
  (opamp.out) node[right] {$v_o$}
;\end{circuitikz}
\end{LTXexample}

There are also two more anchors defined, \texttt{up} and \texttt{down}, for the power supplies:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw 
  (0,0) node[op amp] (opamp) {}
  (opamp.+) node[left] {$v_+$}
  (opamp.-) node[left] {$v_-$}
  (opamp.out) node[right] {$v_o$}
  (opamp.down) node[ground] {}
  (opamp.up) ++ (0,.5) node[above] {\SI{12}{\volt}} 
     -- (opamp.up)
;\end{circuitikz}
\end{LTXexample}


\paragraph{Double bipoles} All the (few, actually) double bipoles/quadrupoles have
the four anchors, two for each port. The first port, to the left, is port \texttt{A}, having the anchors \texttt{A1} (up) and \texttt{A2} (down); same for port \texttt{B}. They also expose the \texttt{base} anchor, for labelling:

\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw 
  (0,0) node[transformer] (T) {}
  (T.A1) node[anchor=east] {A1}
  (T.A2) node[anchor=east] {A2}
  (T.B1) node[anchor=west] {B1}
  (T.B2) node[anchor=west] {B2}
  (T.base) node{K}
;\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw 
  (0,0) node[gyrator] (G) {}
  (G.A1) node[anchor=east] {A1}
  (G.A2) node[anchor=east] {A2}
  (G.B1) node[anchor=west] {B1}
  (G.B2) node[anchor=west] {B2}
  (G.base) node{K}
;\end{circuitikz}
\end{LTXexample}

\section{Customization}

\subsection{Parameters}

Pretty much all Circui\TikZ\ relies heavily on \texttt{pgfkeys} for value handling and configuration. Indeed, at the beginning of \texttt{circuitikz.sty} a series of key definitions can be found that modify all the graphical characteristics of the package.

All can be varied using the \verb!\ctikzset! command, anywhere in the code:

\begin{LTXexample}[varwidth=true]
\tikz \draw (0,0) to[R=1<\ohm>] (2,0); \par
\ctikzset{bipoles/resistor/height=.6}
\tikz \draw (0,0) to[R=1<\ohm>] (2,0);
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\tikz \draw (0,0) to[C=1<\farad>] (2,0); \par
\ctikzset{bipoles/thickness=1}
\tikz \draw (0,0) to[C=1<\farad>] (2,0);
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\tikz \draw (0,0) to[R, v=1<\volt>] (2,0); \par
\ctikzset{voltage/distance from node=.1}
\tikz \draw (0,0) to[R, v=1<\volt>] (2,0);
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\tikz \draw (0,0) node[nand port] {}; \par
\ctikzset{tripoles/nand port/input height=.2}
\ctikzset{tripoles/nand port/port width=.2}
\tikz \draw (0,0) node[nand port] {};
\end{LTXexample}

\begin{LTXexample}[varwidth=true]
\tikz \draw (0,0) to[C, i=$\imath$] (2,0); \par
\ctikzset{current/distance = .2}
\tikz \draw (0,0) to[C, i=$\imath$] (2,0);
\end{LTXexample}


Admittedly, not all graphical properties have understandable names, but for the time it will have to do:
\begin{LTXexample}[varwidth=true]
\tikz \draw (0,0) node[xnor port] {};
\ctikzset{tripoles/xnor port/aaa=.2}
\ctikzset{tripoles/xnor port/bbb=.6} 
\tikz \draw (0,0) node[xnor port] {};
\end{LTXexample}

\subsection{Components size}
Perhaps the most important parameter is \verb!\circuitikzbasekey/bipoles/length!, which 
can be interpreted as the length of a resistor (including reasonable connections): all other lenghts are relative to this value. For instance:

\begin{LTXexample}[pos=t,varwidth=true]
\ctikzset{bipoles/length=1.4cm} 
\begin{circuitikz}[scale=1.2]\draw
  (0,0) node[anchor=east] {B}
        to[short, o-*] (1,0)
        to[R=20<\ohm>, *-*] (1,2)
        to[R=10<\ohm>, v=$v_x$] (3,2) -- (4,2)
        to[cI=$\frac{\siemens}{5} v_x$, *-*] (4,0) -- (3,0)
        to[R=5<\ohm>, *-*] (3,2)
  (3,0) -- (1,0)
  (1,2) to[short, -o] (0,2) node[anchor=east]{A}  
;\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[pos=t,varwidth=true]
\ctikzset{bipoles/length=.8cm} 
\begin{circuitikz}[scale=1.2]\draw
  (0,0) node[anchor=east] {B}
        to[short, o-*] (1,0)
        to[R=20<\ohm>, *-*] (1,2)
        to[R=10<\ohm>, v=$v_x$] (3,2) -- (4,2)
        to[cI=$\frac{\siemens}{5} v_x$, *-*] (4,0) -- (3,0)
        to[R=5<\ohm>, *-*] (3,2)
  (3,0) -- (1,0)
  (1,2) to[short, -o] (0,2) node[anchor=east]{A}  
;\end{circuitikz}
\end{LTXexample}

\subsection{Colors}

The color of the components is stores in the key \verb!\circuitikzbasekey/color!. Circui\TikZ\ tries to follow the color set in \TikZ, although sometimes it fails. If you change color in the picture, please do not use just the color name as a style, like \verb![red]!, but rather assign the style \verb![color=red]!.

Compare for instance
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw[red]
  (0,2) node[and port] (myand1)  {}
  (0,0) node[and port] (myand2)  {}
  (2,1) node[xnor port] (myxnor)  {}
  (myand1.out) -| (myxnor.in 1)
  (myand2.out) -| (myxnor.in 2)
;\end{circuitikz}
\end{LTXexample}

and

\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw[color=red]
  (0,2) node[and port] (myand1)  {}
  (0,0) node[and port] (myand2)  {}
  (2,1) node[xnor port] (myxnor)  {}
  (myand1.out) -| (myxnor.in 1)
  (myand2.out) -| (myxnor.in 2)
;\end{circuitikz}
\end{LTXexample}

One can of course change the color \emph{in medias res}:
\begin{LTXexample}[pos=t, varwidth=true]
\begin{circuitikz} \draw 
  (0,0) node[pnp, color=blue] (pnp2) {}
  (pnp2.B) node[pnp, xscale=-1, anchor=B, color=brown] (pnp1) {}
  (pnp1.C) node[npn, anchor=C, color=green] (npn1) {}
  (pnp2.C) node[npn, xscale=-1, anchor=C, color=magenta] (npn2) {}
  (pnp1.E) -- (pnp2.E)  (npn1.E) -- (npn2.E)
  (pnp1.B) node[circ] {} |- (pnp2.C) node[circ] {}
;\end{circuitikz}
\end{LTXexample}

The all-in-one stream of bipoles poses some challanges, as only the actual body of the bipole, and not the connecting lines, will be rendered in the specified color. Also, please notice the curly braces around the \texttt{to}:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw 
  (0,0) to[V=1<\volt>] (0,2)
      { to[R=1<\ohm>, color=red] (2,2) }
        to[C=1<\farad>] (2,0) -- (0,0)
;\end{circuitikz}
\end{LTXexample}

Which, for some bipoles, can be frustrating:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw 
  (0,0){to[V=1<\volt>, color=red] (0,2) }
        to[R=1<\ohm>] (2,2) 
        to[C=1<\farad>] (2,0) -- (0,0)
;\end{circuitikz}
\end{LTXexample}

The only way out is to specify different paths:
\begin{LTXexample}[varwidth=true]
\begin{circuitikz} \draw[color=red]
  (0,0) to[V=1<\volt>, color=red] (0,2);
  \draw (0,2) to[R=1<\ohm>] (2,2) 
        to[C=1<\farad>] (2,0) -- (0,0)
;\end{circuitikz}
\end{LTXexample}

And yes: this is a bug and \emph{not} a feature\ldots

\section{Examples}
\begin{LTXexample}[pos=t,varwidth=true]
\begin{circuitikz}[scale=1.4]\draw
  (0,0) to[C, l=10<\micro\farad>] (0,2) -- (0,3)
        to[R, l=2.2<\kilo\ohm>] (4,3) -- (4,2)
        to[L, l=12<\milli\henry>, i=$i_1$] (4,0) -- (0,0)
  (4,2) { to[D*, *-*, color=red] (2,0) }
  (0,2) to[R, l=1<\kilo\ohm>, *-] (2,2) 
        to[cV, v=$\SI{.3}{\kilo\ohm} i_1$] (4,2)
  (2,0) to[I, i=1<\milli\ampere>, -*] (2,2) 
;\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[pos=t,varwidth=true]
\begin{circuitikz}[scale=1.2]\draw
  (0,0) node[ground] {}
        to[V=$e(t)$, *-*] (0,2) to[C=4<\nano\farad>] (2,2)
        to[R, l_=1/4<\kilo\ohm>, *-*] (2,0)
  (2,2) to[R=1<\kilo\ohm>] (4,2)
        to[C, l_=2<\nano\farad>, *-*] (4,0)
  (5,0) to[I, i_=$a(t)$, -*] (5,2) -- (4,2)
  (0,0) -- (5,0)
  (0,2) -- (0,3) to[L, l=2<\milli\henry>] (5,3) -- (5,2)
 
 {[anchor=south east] (0,2) node {1} (2,2) node {2} (4,2) node {3}}
;\end{circuitikz}
\end{LTXexample}

\begin{LTXexample}[pos=t,varwidth=true]
\begin{circuitikz}[scale=1.2]\draw
  (0,0) node[anchor=east] {B}
        to[short, o-*] (1,0)
        to[R=20<\ohm>, *-*] (1,2)
        to[R=10<\ohm>, v=$v_x$] (3,2) -- (4,2)
        to[cI=$\frac{\siemens}{5} v_x$, *-*] (4,0) -- (3,0)
        to[R=5<\ohm>, *-*] (3,2)
  (3,0) -- (1,0)
  (1,2) to[short, -o] (0,2) node[anchor=east]{A}  
;\end{circuitikz}
\end{LTXexample}
 
 
 \begin{LTXexample}[pos=t,varwidth=true]
\begin{circuitikz}[scale=1.2, american]\draw
  (0,2) to[I=1<\milli\ampere>] (2,2)
        to[R, l_=2<\kilo\ohm>, *-*] (0,0)
        to[R, l_=2<\kilo\ohm>] (2,0)
        to[V, v_=2<\volt>] (2,2)
        to[cspst, l=$t_0$] (4,2) -- (4,1.5)
        to [generic, i=$i_1$, v=$v_1$] (4,-.5) -- (4,-1.5)
  (0,2) -- (0,-1.5) to[V, v_=4<\volt>] (2,-1.5)
        to [R, l=1<\kilo\ohm>] (4,-1.5);

   \begin{scope}[xshift=6.5cm, yshift=.5cm]
    \draw [->] (-2,0) -- (2.5,0) node[anchor=west] {$v_1 [\volt]$};
    \draw [->] (0,-2) -- (0,2) node[anchor=west] {$i_1 [\SI{}{\milli\ampere}]$} ;
    \draw (-1,0) node[anchor=north] {-2} (1,0) node[anchor=south] {2}
          (0,1) node[anchor=west] {4} (0,-1) node[anchor=east] {-4} 
          (2,0) node[anchor=north west] {4}
          (-1.5,0) node[anchor=south east] {-3};
    \draw [thick] (-2,-1) -- (-1,1) -- (1,-1) -- (2,0) -- (2.5,.5);
    \draw [dotted] (-1,1) -- (-1,0) (1,-1) -- (1,0) 
          (-1,1) -- (0,1) (1,-1) -- (0,-1);
   \end{scope}  
\end{circuitikz}
\end{LTXexample}

\section{Revision history}

\begin{itemize}

\item[\itshape version 0.2.2]  (20090520).
   \begin{enumerate}
		\item Added the shape for lamps.
		\item Added options \texttt{europeanresistor}, \texttt{europeaninductor}, \texttt{americanresistor} and \texttt{americaninductor}, with corresponding styles.
		\item \textbf{Fixed}: error in transistor arrow positioning and direction under negative \texttt{xscale} and \texttt{yscale}.
   \end{enumerate}   
   
   
\item[\itshape version 0.2.1]  (20090503).
   \begin{enumerate}
		\item Op-amps added.
		\item Added options \texttt{arrowmos} and \texttt{noarrowmos}.
   \end{enumerate}   


\item[\itshape version 0.2] First public release on CTAN (20090417).
   \begin{enumerate}
		\item \textbf{Backward incompatibility}: labels ending with \texttt{:}\textit{angle} are not parsed for positioning anymore.
		\item Full use of \TikZ\ keyval features.
		\item White background is not filled anymore: now the network can be drawn on a background picture as well.
		\item Several new components added (logical ports, transistors, double bipoles, \ldots).
		\item Color support.
		\item Integration with {\ttfamily siunitx}.
		\item Voltage, american style.
		\item Better code, perhaps. General cleanup at the very least.
   \end{enumerate}
\item[\itshape version 0.1] First public release (2007).
\end{itemize}



\end{document}