1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
|
% !arara: pdflatex
% !arara: biber
% arara: pdflatex
% arara: pdflatex
% --------------------------------------------------------------------------
% the CHEMMACROS bundle
% chemmacros_en.tex
% macros and commands for chemists
% --------------------------------------------------------------------------
% Clemens Niederberger
% --------------------------------------------------------------------------
% https://bitbucket.org/cgnieder/chemmacros/
% contact@mychemistry.eu
% --------------------------------------------------------------------------
% If you have any ideas, questions, suggestions or bugs to report, please
% feel free to contact me.
% --------------------------------------------------------------------------
% Copyright 2011-2013 Clemens Niederberger
%
% This work may be distributed and/or modified under the
% conditions of the LaTeX Project Public License, either version 1.3
% of this license or (at your option) any later version.
% The latest version of this license is in
% http://www.latex-project.org/lppl.txt
% and version 1.3 or later is part of all distributions of LaTeX
% version 2005/12/01 or later.
%
% This work has the LPPL maintenance status `maintained'.
%
% The Current Maintainer of this work is Clemens Niederberger.
% --------------------------------------------------------------------------
\documentclass[load-preamble+]{cnltx-doc}
\usepackage[utf8]{inputenc}
\usepackage[greek=newtx]{chemmacros}
\setcnltx{
package = {chemmacros},
title = \huge the \chemmacros\ bundle,
url = https://bitbucket.org/cgnieder/chemmacros/ ,
authors = Clemens Niederberger ,
email = contact@mychemistry.eu ,
info = {
packages \chemmacros\ (v\csname chemmacros@version\endcsname),
\chemformula\ (v\csname chemformula@version\endcsname),
\ghsystem\ (v\csname ghsystem@version\endcsname) and
\chemgreek\ (v\csname chemgreek@version\endcsname)\\[2ex]
{\Large documentation for the \chemmacros\ package}} ,
abstract = {%
\centering
\includegraphics{chemmacros-logo.pdf}
\par
} ,
add-cmds = {
abinitio, activatechemgreekmapping, AddRxnDesc, anti, aq, aqi,
ba, bond, bridge,
cd, ch, changechemgreeksymbol, charrow, chcpd, chemabove, Chemalpha,
Chembeta, Chemgamma, Chemdelta, ChemDelta, chemformula@bondlength,
Chemomega, Chemphi, ChemPhi, chemsetup, chlewis, chname , cip, cis, ch,
CNMR,
data, DeclareChemArrow, DeclareChemBond, DeclareChemBondAlias,
declarechemgreekmapping, DeclareChemIUPAC, DeclareChemLatin,
DeclareChemNMR, DeclareChemParticle, DeclareChemPhase,
DeclareChemReaction, DeclareChemState, delm, delp, Delta, Dfi,
el, ElPot, endo, Enthalpy, enthalpy, Entropy,
fmch, fpch, fscrm, fscrp,
gas, ghs, ghslistall, ghspic, Gibbs, gram,
hapto, HNMR, Helmholtz,
insitu, invacuo, iupac,
Ka, Kb, Kw,
Lfi, listofreactions, lqd,
mch, mega, meta, mhName,
newchemgreekmapping,
newman, NMR, Nu, Nuc,
orbital, ortho, ox, OX,
para, pch, per, pH, phase, photon, pKa, pKb, pOH, pos, positron,
Pot, prt,
Rad, redox, RenewChemArrow, RenewChemBond, renewchemgreekmapping,
RenewChemIUPAC, RenewChemLatin, RenewChemNMR, RenewChemParticle,
RenewChemPhase, RenewChemState,
Sf, scrm, scrp, second, selectchemgreekmapping, setchemformula,
ShowChemArrow, ShowChemBond, sld, Sod, State,
trans,
val
} ,
add-silent-cmds = {
addplot,
bottomrule,
cancel, cdot, ce, cee, celsius, centering, chemfig, chemname, clap,
cnsetup, color, cstack, cstsetup,
DeclareInstance, DeclareSIUnit, definecolor, draw,
electronvolt,
footnotesize,
glqq, grqq,
hertz, hspace,
includegraphics, intertext, IUPAC,
joule,
kilo,
latin, lewis, Lewis, liquid, ltn,
metre, midrule, milli, mmHg, mole,
nano, nicefrac, num, numrange,
ominus, oplus,
percent, pgfarrowsdeclarealias, pgfarrowsrenewalias,
renewtagform, rightarrow,
sample, scriptscriptstyle, setatomsep, setbondoffset, sfrac, shorthandoff,
si, SI, sisetup, square, subsection,
textcolor, textendash, textsuperscript, tiny, toprule,
upbeta, upeta, upgamma, usetikzlibrary,
volt, vphantom, vspave,
xspace,
z@, z@skip
}
}
\usepackage{chemfig,booktabs,cancel,varioref,csquotes}
\usepackage[version=3]{mhchem}
\expandafter\def\csname libertine@figurestyle\endcsname{LF}
\usepackage[libertine]{newtxmath}
\expandafter\def\csname libertine@figurestyle\endcsname{OsF}
\usepackage[biblatex]{embrac}
\ChangeEmph{[}[,.02em]{]}[.055em,-.08em]
\ChangeEmph{(}[-.01em,.04em]{)}[.04em,-.05em]
\usepackage[accsupp]{acro}
\acsetup{
long-format = \scshape ,
short-format = \scshape
}
\DeclareAcronym{ghs}{
short = ghs ,
long = Globally Harmonized System of Classification and Labelling of
Chemicals ,
pdfstring = GHS ,
accsupp = GHS
}
\DeclareAcronym{eu}{
short = EU ,
long = European Union ,
pdfstring = EU ,
accsupp = EU
}
\DeclareAcronym{iupac}{
short = iupac ,
long = International Union of Pure and Applied Chemistry ,
pdfstring = IUPAC ,
accsupp = IUPAC
}
\DeclareAcronym{UN}{
short = un ,
long = United Nations ,
pdfstring = UN ,
accsupp = UN
}
\DeclareAcronym{dvi}{
short = dvi ,
long = device independent file format ,
pdfstring = DVI ,
accsupp = DVO
}
\DeclareAcronym{pdf}{
short = pdf ,
long = portable document file ,
pdfstring = PDF ,
accsupp = PDF
}
\DeclareAcronym{id}{
short = id ,
long = identification string ,
pdfstring = ID ,
accsupp = ID
}
\chemsetup{
option/synchronize ,
chemformula/format = \libertineLF
}
% \colorlet{chemformula}{black!90}
\sisetup{
detect-mode=false,
mode=text,
text-rm=\libertineLF
}
\usepackage{filecontents}
\defbibheading{bibliography}{\addsec{References}}
\addbibresource{\jobname.bib}
\begin{filecontents*}{\jobname.bib}
@book{iupac:greenbook,
author = {E. Richard Cohan and Tomislav Cvita\v{s} and Jeremy G. Frey and
Bertil Holmstr\"om and Kozo Kuchitsu and Roberto Marquardt and Ian Mills and
Franco Pavese and Martin Quack and J\"urgen Stohner and Herbert L. Strauss and
Michio Takami and Anders J Thor} ,
title = {``Quantities, Symbols and Units in Physical Chemistry'', \acs{iupac}
Green Book} ,
sorttitle = {Quantities, Symbols and Units in Physical Chemistry} ,
indexsorttitle = {Quantities, Symbols and Units in Physical Chemistry} ,
edition = {3rd Edition. 2nd Printing} ,
year = {2008} ,
publisher = {\acs{iupac} \&\ RSC Publishing, Cambridge}
}
@book{iupac:redbook,
author = {Neil G. Connelly and Ture Damhus and Richard M. Hartshorn and
Alan T. Hutton} ,
title = {``Nomenclature of Inorganic Chemistry'', \acs{iupac} Red Book} ,
sorttitle = {Nomenclature of Inorganic Chemistry} ,
indexsorttitle = {Nomenclature of Inorganic Chemistry} ,
year = {2005} ,
publisher = { \acs{iupac} \&\ RSC Publishing, Cambridge} ,
isbn = {0-85404-438-8}
}
@book{iupac:bluebook,
author = {R. Panico and W. H. Powell and J-C. Richer},
title = {``Nomenclature of Organic Chemistry, Sections A, B, C, D, E, F,
and H'', \acs{iupac} Blue Book},
edition = {\mkbibacro{draft}},
date = {2004-10-07},
url =
{http://old.iupac.org/reports/provisional/abstract04/BB-prs310305/CompleteDraft.pdf},
urldate = {2013-07-07}
}
@misc{eu:ghsystem_regulation,
author = {{The European Parliament and The Council of the European Union}},
title = {Regulation (EC) No 1272/2008 of the European Parliament and of
the Council} ,
subtitle = {on classification, labelling and packaging of substances and
mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and
amending Regulation (EC) No 1907/2006} ,
journal = {Official Journal of the European Union} ,
date = {2008-12-16}
}
@online{unece:ghsystem_implementation,
author = {{United Nations Economic Commission for Europe}} ,
title = {GHS Implementation} ,
url =
{http://www.unece.org/trans/danger/publi/ghs/implementation_e.html} ,
urldate = {2012-03-20} ,
date = {2012-03-20}
}
\end{filecontents*}
\DeclareInstance{xfrac}{chemformula-text-frac}{text}
{
scale-factor = 1 ,
denominator-bot-sep = -.2ex ,
denominator-format = \scriptsize #1 ,
numerator-top-sep = -.2ex ,
numerator-format = \scriptsize #1 ,
slash-right-kern = .05em ,
slash-left-kern = .05em
}
\usetikzlibrary{calc,positioning,decorations.pathmorphing,patterns}
% \newpackagename\chemmacros{chemmacros}
\newpackagename\chemformula{chemformula}
\newpackagename\ghsystem{ghsystem}
\newpackagename\chemgreek{chemgreek}
\newidxcmd\manual{\textsf{#1}}[\ (manual)]
\newenvironment{codedesc}
{%
\def\Code##1{\item\code{##1}\hfill\newline}%
\cnltxlist
}
{\endcnltxlist}
\renewcommand*\AmS{\hologo{AmS}}
\newcommand*\TikZ{Ti\textit{k}Z}
\newcommand*\tablehead[1]{\textrm{\bfseries#1}}
\DeclareChemPhase{\aqi}{aq,$\infty$}% aqueous solution at infinite dilution
\DeclareChemPhase{\cd}{cd}% condensed phase
\DeclareChemPhase{\lc}{lc}% liquid crystal
\newname\hensel{Martin}{Hensel}
\newname\pedersen{Bjørn}{Pedersen}
\begin{document}
\part{Preliminaries}
\section{Licence, Requirements and \textsc{README}}
\license
The \chemmacros\ bundle needs the bundles \bnd{l3kernel}~\cite{bnd:l3kernel}
and \bnd{l3packages}~\cite{bnd:l3packages}. It also needs the packages
\needpackage{siunitx}~\cite{pkg:siunitx},
\needpackage{mathtools}~\cite{pkg:mathtools}, \needpackage{bm}~\cite{pkg:bm},
\needpackage{nicefrac}~\cite{pkg:nicefrac} and
\needpackage{environ}~\cite{pkg:environ} as well as
\pkg{tikz}\footnote{\CTANurl[graphics]{pgf}}~\cite{pkg:pgf} and the \TikZ\
libraries \code{calc} and \code{arrows}. Language support is done with the
help of the \needpackage{translations}~\cite{pkg:translations}. The
\chemmacros\ package also loads the other packages of this bundle.
The package option \option{xspace} also loads the package
\pkg{xspace}~\cite{pkg:xspace}.
The \chemmacros\ bundle bundles four packages: \chemmacros, \chemformula,
\ghsystem\ and \chemgreek. The package dependencies of the other packages are
described in the respective manuals.
\section{Motivation and Background}
\chemmacros\ started some years ago as a growing list of custom macros that I
frequently used. I cannot completely recall when and why I decided to release
them as a package. Well -- here we go and you might find it useful, too, I
hope.
Both the macros and their functionality have changed over time and quite a lot
have been added. Many things have been unified and what's probably most
important: many possibilities to customize have been added, too.
Probably every chemist using \LaTeXe\ is aware of the great \pkg{mhchem}
package by \hensel. There have always been some difficulties intertwining it
with \chemmacros, though. Also, some other minor points in \pkg{mhchem}
always bothered me, but they hardly seemed enough for a new package. They
weren't even enough for a feature request to the \pkg{mhchem} author. The
challenge and the fun of creating a new package and the wish for a highly
customizable alternative led to \chemformula\ after all.
\chemformula\ works very similar to \pkg{mhchem} but is more strict as to how
compounds, stoichiometric factors and arrows are input. In the same time
\chemformula\ offers possibilities to customize the output that \pkg{mhchem}
does not. Although \chemformula\ is meant as an \emph{alternative} to
\pkg{mhchem} \chemmacros\ only loads \chemformula\ and uses it at various
places internally, too.
As a chemist you are probably aware of the fact that the \acl{UN} have
developed the \ac{ghs} as a global replacement for the various different
systems in different countries. While it has not been implemented by all
countries yet~\cite{unece:ghsystem_implementation}, it is only a matter of
time.
The package \ghsystem\ enables you to typeset all the hazard and precautionary
statements and pictograms in a very easy way. The statements are taken from
\acs{eu} regulation 1272/2008~\cite{eu:ghsystem_regulation}.
There are four points I hope I have achieved with this bundle:
\begin{itemize}
\item intuitive usage as far as the syntax of the commands is concerned
\item the commands shall not only make typesetting easier and faster but also
the document source more readable with respect to semantics
(\code{\cs{ortho}-dichlorobenzene} is easier to read and understand than
\code{\cs*{textit}\Marg{o}-dichlorobenzene})
\item as much customizability as I could think of so every user can adapt the
commands to his or her own wishes
\item default settings compliant with the recommendations of the \acf{iupac}.
\end{itemize}
Especially the last point needed some pushing from users to get things right
in many places. If you find anything not compliant with \ac{iupac}
recommendations\footnote{This does not concern the \cs{ox} command. The
\ac{iupac} version is \cs{ox}\sarg.} I would welcome an email very much!
\section{News}
\subsection{Version~4.0}
With version~4.0 some changes have been made:
\begin{itemize}
\item first of all the packages \chemformula\ and \ghsystem\ do not load
\chemmacros\ any more which means they can be used independently.
\item the option \option{bpchem} has been dropped.
\item the commands \cs{mch} and \cs{pch} now match \chemformula's
charges.
\item the option \option{method} has been dropped.
\item the option \option{append} has deprecated.
\item the option \option{greek} has been extended to support other uppercase
greek letters, for example those provided by \pkg{kpfonts}. This is
handled internally by the new package in the family: \chemgreek. This
package is not really a package for usage at a user-level but could in
principle be used to extend the \option{greek} option.
\item language support is now done with the help of the \pkg{translations}.
This means that with version~4.0 the document language is recognized
automatically.
\item the status of the commands \cs{Lfi} and \cs{Dfi} has been changed
from \emph{deprecated} to \emph{dropped}.
\item various other changes like bug fixes and improvements on the
typographical appearance of \chemformula's inline formulae with \cs{ch}.
\end{itemize}
\subsection{Version~4.2}
\begin{itemize}
\item Changed particles with electron pairs such as \cs{ba} to use
\chemformula's new macro \cs{chlewis} for the Lewis electrons.
\item Changed the implicit \cs*{Delta} in the thermodynamic state variables
into \cs*{ChemDelta} to ensure that an upright symbol is used.
\item Change in the syntax of \cs{DeclareChemState} and
\cs{RenewChemState}. The old syntax is still supported but discouraged.
\end{itemize}
\section{Package Options}\label{sec:options}
\chemmacros\ has several package options. They all are used as key/value pairs
like
\begin{sourcecode}
\usepackage[option1 = <value1>, option2 = <value2>]{chemmacros}
\end{sourcecode}
Some also can be used without value
(\verbcode+\usepackage[option1]{chemmacros}+), which means that the
\default{underlined} value is used.
Both \chemformula\ and \ghsystem\ don't have package options of their own. If
you load them explicitly any given option will silently fail. Options can
then only be set using the setup command.
\begin{options}
% circled
\keychoice{circled}{\default{formal},all,none}\Module{option}\Default{formal}
\chemmacros\ uses two different kinds of charges which indicate the usage
of real ($+/-$) and formal (\fplus/\fminus) charges. The option
\code{formal} distinguishes between them, option \code{none} displays them
all without circle, option \code{all} circles all.
% circletype
\keychoice{circletype}{\default{chem},math}\Module{option}\Default{chem}
This option switches between two kinds of circled charge symbols:
\cs{fplus} \fplus\ and \verbcode+$\oplus$+ $\oplus$.
% cmversion
\keychoice{cmversion}{1,2,3,4,newest}\Module{option}\Default{newest}
This option restores the old definitions of some commands and tries to
ensure backwards compatibility as much as possible (default = \code{4}).
Actually \code{2} and \code{3} are aliases, as are -- for now -- \code{4}
and \code{newest}. \emph{This option can only be chosen in the preamble}.
% ghsystem
\keybool{ghsystem}\Module{option}\Default{true}
\keyis{ghsystem}{false} disables the automatic loading of the \ghsystem\
package.
% greek
\keychoice{greek}{\default{auto},kpfonts,math,newtx,textgreek,upgreek}%
\Module{option}\Default{auto}
This option determines how the letters \cs{Chemalpha} and friends are
typeset. See page~\pageref{desc:upgreek} for more information. Please
note that this option \emph{does not load either \pkg{upgreek},
\pkg{kpfonts}, \pkg{newtxmath} nor \pkg{textgreek}!} It only
determines which one to choose if available. The option \code{auto} will
detect if either (in order of priority) \pkg{upgreek}, \pkg{textgreek},
\pkg{kpfonts} or \pkg{newtxmath} have been loaded and use them if
available. If you explicitly choose \code{upgreek}, \code{textgreek},
\pkg{kpfonts} or \pkg{newtxmath} you also have to load the
corresponding package. \emph{This option can only be chosen in the
preamble}.
% iupac
\keychoice{iupac}{auto,restricted,strict}\Module{option}\Default{auto}
Take care of how \ac{iupac} naming commands are defined, see
page~\pageref{desc:iupac}.
% language
\keychoice{language}{american,british,english,french,german,italian,ngerman}%
\Module{option}\Default
Load the language used by \chemmacros. \emph{This option can only be
chosen in the preamble}.
% Nu
\keychoice{Nu}{\default{chemmacros},mathspec}\Module{option}\Default{chemmacros}
The package \pkg{mathspec} also defines a macro \cs{Nu}. This option
chooses which definition holds, see page~\pageref{Nu}. \emph{This option
can only be chosen in the preamble}.
% strict
\keybool{strict}\Module{option}\Default{false}
Setting \key{strict}{true} will turn all warning messages into erros
messages.
% synchronize
\keybool{synchronize}\Module{option}\Default{false}
The setting \code{true} will tell \chemmacros\ to adapt the font settings
of \chemformula.
% xspace
\keybool{xspace}\Module{option}\Default{true}
With this option most commands are defined with a \cs*{xspace}.
\end{options}
\section{Setup}\label{sec:setup}
Various of \chemmacros', \chemformula's and \ghsystem's commands have
key/value pairs with which they can be customized. Most times they can be
used as (optional) argument of the commands themselves. They also can most
times be used with the \cs{chemsetup} command.
\begin{commands}
\command{chemsetup}[\oarg{module}\Marg{\meta{key} = \meta{value}}]
Set up the options for module \meta{module} only or
\command{chemsetup}[\Marg{\meta{module}/\meta{key} = \meta{value}}]
in combination with options from other modules.
\end{commands}
The keys each belong to a module, which defines for which commands they are
intended for. If a key is presented, you'll see the module to which it
belongs in the left margin. You have two ways to use keys with the
\cs{chemsetup}, as you can see above.
The package options can also be seen as keys belonging to the module
\module{option}. This means they can also be used with the \cs{chemsetup}
command (except for the option \choicekey{version}{1,2,3}).
\begin{example}
\chemsetup[option]{circled=none}
\leavevmode\mch\ \pch\ \fmch\ \fpch\ \el\ \prt \par
\chemsetup[option]{circled=formal}
\leavevmode\mch\ \pch\ \fmch\ \fpch\ \el\ \prt \par
\chemsetup[option]{circletype=math}
\leavevmode\mch\ \pch\ \fmch\ \fpch\ \el\ \prt \par
\chemsetup{option/circletype=chem,option/circled=all}%
\leavevmode\mch\ \pch\ \fmch\ \fpch\ \el\ \prt \par
\chemsetup{option/circletype=math}
\leavevmode\mch\ \pch\ \fmch\ \fpch\ \el\ \prt
\end{example}
Keys \emph{not} belonging to a module \emph{cannot} be used with
\cs{chemsetup}!
All options of \chemformula\ belong to the module \module{chemformula} and all
of \ghsystem's options belong to the module \module{ghsystem}.
\section{Language Settings}\label{sec:languages}
\subsection{How it Works}
\chemmacros\ uses the \pkg{translations} package for a number of language
dependent strings. That means that if a suitable translation to those strings
is given the \pkg{babel}~\cite{pkg:babel} or
\pkg{polyglossia}~\cite{pkg:polyglossia} language will be picked up
automatically. You can, however, overwrite this mechanism by explicitly
chosing the language you want. This is done with the package option
\option{language}.
Section~\ref{sec:supported-languages} lists all language dependent strings and
the provided translations.
\subsection{Supported Languages}\label{sec:supported-languages}
By choosing the option
\begin{commands}
\command{chemsetup}[\oarg{option}\Marg{language=\meta{language}}]
Selection of the language \meta{language}.
\end{commands}
you can set the language that is used by \chemmacros\ if you want it to be a
\emph{different language than your main document language}.
There are some language definitions made by \chemmacros. They include
\begin{itemize}
\item the header of the list of reactions,
\item the beginning of the entries in the list of reactions, and
\item the H- and P-statements of the \ac{ghs} statements.
\end{itemize}
\chemmacros\ uses the \pkg{translations} to get translated strings sensitive
to \pkg{babel} or \pkg{polyglossia} settings. All pre-defined
\pkg{translations} keys are listed in
table~\ref{tab:language-dependent-strings}. To some of those a few
non-English translations are provided.
\begin{table}
\centering
\caption{Language dependent strings.}
\label{tab:language-dependent-strings}
\begin{tabular}{>{\ttfamily}ll}
\toprule
\normalfont\bfseries \pkg{translations} key &
\bfseries English default \\
\midrule
K-acid & \GetTranslation{K-acid} \\
K-base & \GetTranslation{K-base} \\
K-water & \GetTranslation{K-water} \\
\midrule
phase-sld & \GetTranslation{phase-lqd} \\
phase-lqd & \GetTranslation{phase-sld} \\
phase-gas & \GetTranslation{phase-gas} \\
phase-aq & \GetTranslation{phase-aq} \\
\midrule
list-of-reactions & \GetTranslation{list-of-reactions} \\
reaction & \GetTranslation{lor-reaction} \\
\bottomrule
\end{tabular}
\end{table}
Currently this includes the following translations:
\begin{sourcecode}
% subscript used in \Ka:
\DeclareTranslation{German}{K-acid}{S}
% the phases \sld and \lqd:
\DeclareTranslation{German}{phase-sld}{f}
\DeclareTranslation{German}{phase-lqd}{f{}l}
% heading of the list of reactions:
\DeclareTranslation{English}{list-of-reactions}{List of reactions}
\DeclareTranslation{German} {list-of-reactions}{Reaktionsverzeichnis}
\DeclareTranslation{Italian}{list-of-reactions}{Elenco delle reazioni}
\DeclareTranslation{French} {list-of-reactions}{Table des r\'eactions}
% name at the beginning of each entry in the list of reactions:
\DeclareTranslation{English}{reaction}{Reaction}
\DeclareTranslation{German} {reaction}{Reaktion}
\DeclareTranslation{Italian}{reaction}{Reazione}
\DeclareTranslation{French} {reaction}{R\'eaction}
\end{sourcecode}
All other languages will fall back to English. However, you can always add
the translation you want. If you send me an email with translations you'd
like to have added to \chemmacros\ I'll gladly add them.
\subsection{Specialties}
\subsubsection{German}
If you choose \code{german/ngerman} the phase commands \cs{sld} and \cs{lqd}
and the command \cs{pKa} are translated.
\subsubsection{Italian}
\DeclareChemIUPAC{\ter}{\textit{ter}}\DeclareChemIUPAC{\sin}{\textit{sin}}%
Choosing the language \code{italian} defines two additional \ac{iupac} commands:
\begin{commands}
\command{ter} \iupac{\ter}
\command{sin} \iupac{\sin}
\end{commands}
\part{\chemmacros}\label{part:chemmacros}
\section{Particles, Ions and Symbols}\label{sec:particles}
\subsection{Predefined}
\chemmacros\ defines some simple macros for displaying often needed particles
and symbols. Please note, that they're displayed differently depending on the
package options used, see section~\ref{sec:options}. These commands can be
used in text as well as in math mode. Note that they are not meant to be used
in \chemformula's \cs{ch}.
\begin{commands}
\command{Hpl} \Hpl\ (proton)
\command{Hyd} \Hyd\ (hydroxide)
\command{HtO} \HtO\ (oxonium ion) (\textbf{H} \textbf{t}hree \textbf{O})
\command{water} \water
\command{el} \el\ (electron)
\command{prt} \prt\ (proton)
\command{ntr} \ntr\ (neutron)
\command{Nu} \Nu\ (nucleophile)\par
The package \pkg{mathspec} also defines a macro \cs{Nu}. If you chose
package option \keyis{Nu}{mathspec} \chemmacros\ defines \cs{Nuc}
instead\label{Nu}.
\command{El} \El\ (electrophile)
\command{ba} \ba\ (base)
\command{fplus} \fplus
\command{fminus} \fminus
\command{transitionstatesymbol} \transitionstatesymbol
\command{standardstate} \standardstate\par
This symbol is only provided by \chemmacros, if the package
\pkg{chemstyle} is not loaded; the idea is borrowed from
there\footnote{many thanks to the package author
\href{http://www.texdev.net/}{Joseph Wright}.}.
\command{changestate} $\changestate$\par
A math operator symbol for denoting the change in an extensive
thermodynamic quantity for a process such as \State{H}. This symbol is
used in the definitions presented in section~\ref{sec:stand-state-therm}.
\command{Chemalpha}[ \Chemalpha, \cs{ChemAlpha} \ChemAlpha]
For each of the 24 greek letters a lowercase and uppercase \cs*{Chem...}
command is defined that maps to the upright greek letter as set with the
option \option{greek}. More details on this can be found in the manual of
the \chemgreek\ package.
\end{commands}
The two particles \cs{Nu} and \cs{ba} can be modified. To do that you use
the option
\begin{options}
\keychoice{elpair}{false,\default{dots},dash}\Module{particle}\Default{false}
Set how the electron pair of the particles \cs{Nu} and \cs{ba} are set.
\end{options}
\begin{example}[side-by-side]
\ba[elpair] \Nu[elpair=dash]
\chemsetup[particle]{elpair}
\ba\ \Nu
\end{example}
\label{desc:upgreek}The greek letters aren't newly defined symbols but are
defined differently depending on the packages you've loaded. The default
definition is the corresponding math letter. If you have loaded the
\pkg{textgreek} package the letters are taken from there, and if you have
loaded the package \pkg{upgreek} the macros of that package are used. This is
also described in the description of the package option \option{greek}, other
details can be found in the documentation of the \chemgreek\ package. This
documentation uses \pkg{newtxmath} and the setting \keyis{greek}{newtx} for
instance.
The reason why \chemmacros\ uses these macros in the first place is \ac{iupac}
compliance. \ac{iupac} recommends to use upright greek letters in
nomenclature.
\begin{cnltxquote}[{\ac{iupac} Green Book {\cite[][p.\,9]{iupac:greenbook}}}]
Greek letters are used in systematic organic, inorganic, macromolecular and
biochemical nomenclature. These should be roman (upright), since they are
not symbols for physical quantities.
\end{cnltxquote}
\chemmacros\ uses these commands now to define nomenclature commands, see
page~\pageref{par:greek_letters}.
\subsection{Own Particles}
Surely sometimes it can be handy to have other particle macros defined such as
\cs*{positron} or \cs*{photon}. This can easily be done with this command:
\begin{commands}
\command{DeclareChemParticle}[\marg{cs}\marg{definition}]
Define a new particle command.
\command{RenewChemParticle}[\marg{cs}\marg{definition}]
Renew the definition of a particle command.
\end{commands}
The particle defined this way behaves uses \chemformula's \cs{ch} to typeset
the particle which means that the \meta{definition} should be a vaild
\chemformula\ compound. Please have a look at the \chemformula\ manual for
details. The particle will obey the \option{circled} option.
\begin{example}
\DeclareChemParticle\positron{\Chembeta+}
\DeclareChemParticle\photon{\Chemgamma}
\RenewChemParticle\el{\Chembeta-}
\positron\ \photon\ \el
\end{example}
\cs{DeclareChemParticle} only defines a particle if \meta{cs} is not already
used by any other command. If it \emph{is} already used \chemmacros\ will
either give a warning or an error, depending on the option \option{strict}.
\cs{RenewChemParticle} \emph{only} defines a particle if \meta{cs} \emph{is}
already used and issues a warning/error otherwise.
\section{Nomenclature, Stereo Descriptors, Latin Phrases}\label{sec:stereo}
\subsection{\acs{iupac} Names}
Similar to the \pkg{bpchem} package \chemmacros\ provides a
command\footnote{The idea and the implementation is shamelessly borrowed from
\pkg{bpchem} by \pedersen.} to typeset \ac{iupac} names. Why is
that useful? \ac{iupac} names can get very long. So long indeed that they
span over more than two lines, especially in two-column documents. This means
they must be allowed to be broken more than one time. This is what the
following command does.
\begin{commands}
\command{iupac}[\marg{IUPAC name}]
Inside this command use \cs{\textbar} and \cs{-} to indicate a breaking
point or a breaking dash. Use \cs{\textasciicircum} as a shortcut for
\cs*{textsuperscript}.
\end{commands}
\begin{example}
\begin{minipage}{.4\linewidth}
\iupac{%
Tetra\|cyclo[2.2.2.1\^{1,4}]\-un\|decane-2\-dodecyl\-%
5\-(hepta\|decyl\|iso\|dodecyl\|thio\|ester)%
}
\end{minipage}
\end{example}
The \cs{iupac} command is more of a semantic command. Most times you can
achieve (nearly) the same thing by using \cs{-} instead of \cs{\textbar},
\code{-} instead of \cs{-} and \cs*{textsuperscript} instead of
\cs{\textasciicircum}.
There are some subtleties: \cs{-} inserts a small space before the hyphen and
removes a small space after it. The command \cs{\textbar} not only prevents
ligatures but also inserts a small space.
\begin{example}[side-by-side]
\huge\iupac{2,4\-Di\|chlor\|pentan} \par
2,4-Dichlorpentan
\end{example}
The spaces inserted by these commands can be customized.
\begin{options}
\keyval{hyphen-pre-space}{dim}\Module{iupac}\Default{.01em}
Set the space that is inserted before the hyphen set with \cs{-}.
\keyval{hyphen-post-space}{dim}\Module{iupac}\Default{-.03em}
Set the space that is inserted after the hyphen set with \cs{-}.
\keyval{break-space}{dim}\Module{iupac}\Default{.01em}
Set the space inserted by \cs{\textbar}.
\end{options}
The command \cs{iupac} serves another purpose, too, however. Regardless of
the setting of the \option{iupac} option all the commands presented in
this section are always defined \emph{inside} \cs{iupac}. Quite a number of
the naming commands have very general names: \cs{meta}, \cs{D}, \cs{E},
\cs{L}, \cs{R}, \cs{S}, \cs{trans} and so forth. This means they either
are predefined already (\cs{L} \L) or are easily defined by another package
or class (the \pkg{cool} package defines both \cs{D} and \cs{E}, for
example). In order to give you control which commands are defined in which
way, there is the package option \option{iupac}\label{desc:iupac}. It
has three modes:
\begin{itemize}
\item \keyis{iupac}{auto}: if the commands are \emph{not} defined by any
package or class you're using they are available generally, otherwise only
\emph{inside} \cs{iupac}.
\item \keyis{iupac}{restricted}: all naming commands are \emph{only} defined
inside \cs{iupac}. If the commands are defined by another package they of
course have that meaning outside. They're not defined outside otherwise.
\item \keyis{iupac}{strict}: \chemmacros\ overwrites any other definition and
makes the commands available throughout the document. Of course the
commands can be redefined (but only in the document body). They will still
be available inside \cs{iupac} then.
\end{itemize}
Table~\ref{tab:iupac_modes} demonstrates the different modes.
\begin{table}[ht]
\centering
\begin{tabular}{lccc}
\toprule
& auto & restricted & strict \\
\midrule
\cs{L} & \L & \L & \iupac{\L} \\
\cs{iupac}\Marg{\cs{L}} & \iupac{\L} & \iupac{\L} & \iupac{\L} \\
\cs{D} & \D & -- & \D \\
\cs{iupac}\Marg{\cs{D}} & \iupac{\D} & \iupac{\D} & \iupac{\D} \\
\bottomrule
\end{tabular}
\caption{Demonstration of \option*{iupac}'s modes.}\label{tab:iupac_modes}
\end{table}
\subsubsection{Predefined Commands}
The macros in this section are intended to make the writing of \ac{iupac}
names more convenient.
\paragraph{Greek Letters}\label{par:greek_letters}
Greek letters in compound names are typeset upright. For this there are for
example the packages \pkg{upgreek} and \pkg{textgreek}. If you have
loaded one of them\footnote{There are other options, see the description of
the \option{greek} option.} the following commands typeset upright Greek
letters:
\begin{itemize}
\item[]
\cs{a} \iupac{\a} \quad
\cs{b} \iupac{\b} \quad
\cs{g} \iupac{\g} \quad
\cs{d} \iupac{\d} \quad
\cs{k} \iupac{\k} \quad
\cs{m} \iupac{\m} \quad
\cs{n} \iupac{\n} \quad
\cs{w} \iupac{\w}
\end{itemize}
\begin{example}
\iupac{5\a\-androstan\-3\b\-ol} \par
\iupac{\a\-(tri\|chloro\|methyl)\-\w\-chloro\|poly(1,4\-phenylene\|methylene)}
\end{example}
\paragraph{Hetero Atoms and added Hydrogen}
Attachments to hetero atoms and added hydrogen atoms are indicated by italic
letters~\cite{iupac:greenbook}. \chemmacros\ defines a few shortcuts for the
most common ones.
\begin{itemize}
\item[]
\cs{H} \iupac{\H} \quad
\cs{O} \iupac{\O} \quad
\cs{N} \iupac{\N} \quad
\cs{Sf} \iupac{\Sf} \quad
\cs{P} \iupac{\P}
\end{itemize}
\begin{example}[side-by-side]
\iupac{\N\-methyl\|benz\|amide} \par
\iupac{3\H\-pyrrole} \par
\iupac{\O\-ethyl hexanethioate}
\end{example}
\paragraph{Cahn-Ingold-Prelog}\label{par:cip}
\begin{commands}
\command{cip}[\marg{conf}]
Typeset Cahn-Ingol-Prelog descriptors, \eg: \cs{cip}\Marg{R,S} \cip{R,S}
\command{R}[ \iupac{\R}]
Typeset recto descriptor.
\command{S}[ \iupac{\S}]
Typeset sinister descriptor.
\end{commands}
Since the command \cs{S} has another meaning already (\S) it is only
available inside \cs{iupac} in the default setting.
Both these commands and the entgegen/zusammen descriptors get a small
additional amount of kerning after the closing parenthesis. This amount can
be changed through the following option:
\begin{options}
\keyval{cip-kern}{dim}\Module{iupac}\Default{.075em}
Set the amount of kerning after the closing parenthesis.
\end{options}
\paragraph{Fischer}
\begin{itemize}
\item[]
\cs{D} \iupac{\D} \quad
\cs{L} \iupac{\L}
\end{itemize}
Since the command \cs{L} has another meaning already (\L) it is only
available inside \cs{iupac} in the default setting.
\paragraph{cis/trans, zusammen/entgegen, syn/anti \& tert}
\begin{itemize}
\item[]
\cs{cis} \iupac{\cis} \quad
\cs{trans} \iupac{\trans} \quad
\cs{fac} \iupac{\fac} \quad
\cs{mer} \iupac{\mer} \quad
\cs{Z} \iupac{\Z} \quad
\cs{E} \iupac{\E} \quad
\cs{syn} \iupac{\syn} \quad
\cs{anti} \iupac{\anti} \quad
\cs{tert} \iupac{\tert}
\end{itemize}
The package \pkg{cool} defines the commands \cs{E} and \cs{D}, too. If you
load it, the \chemmacros\ version will only be available inside \cs{iupac} in
the default setting.
\paragraph{ortho/meta/para}
\begin{itemize}
\item[]
\cs{ortho} \iupac{\ortho} \quad
\cs{meta} \iupac{\meta} \quad
\cs{para} \iupac{\para}
\end{itemize}
Although these commands are provided I like to cite~\cite{iupac:bluebook}:
\begin{cnltxquote}[{\acs{iupac} Blue Book {\cite[][p.\,90]{iupac:bluebook}}}]
The letters \iupac{\ortho}, \iupac{\meta}, and \iupac{\para} have been used
in place of \textit{ortho}, \textit{meta}, and \textit{para}, respectively,
to designate the 1,2- 1,3-, and 1,4- isomers of disubstituted benzene. This
usage is strongly discouraged and is not used in preferred \acs{iupac}
names.
\end{cnltxquote}
\paragraph{Absolute Configuration} (uses \TikZ)
\begin{commands}
\command{Rconf}[\oarg{letter}]
\cs{Rconf}: \Rconf \quad \cs{Rconf}\oarg{}: \Rconf[]
\command{Sconf}[\oarg{letter}]
\cs{Sconf}: \Sconf \quad \cs{Sconf}\oarg{}: \Sconf[]
\end{commands}
Examples:
\begin{example}
\iupac{\D\-Wein\|s\"aure} =
\iupac{\cip{2S,3S}\-Wein\|s\"aure} \par
\iupac{\D\-($-$)\-Threose} =
\iupac{\cip{2S,3R}\-($-$)\-2,3,4\-Tri\|hydroxy\|butanal} \par
\iupac{\cis\-2\-Butene} =
\iupac{\Z\-2\-Butene}, \par
\iupac{\cip{2E,4Z}\-Hexa\|diene} \par
\iupac{\meta\-Xylol} =
\iupac{1,3\-Di\|methyl\|benzene}
\end{example}
\paragraph{Coordination Chemistry}
\chemmacros\ provides two commands useful with coordination chemistry:
\begin{itemize}
\item[]
\cs{bridge}\marg{num} \bridge{3} \quad
\cs{hapto}\marg{num} \hapto{5}
\end{itemize}
\begin{example}
Ferrocene = \iupac{bis(\hapto{5}cyclo\|penta\|dienyl)iron} \par
\iupac{tetra\-\bridge{3}iodido\-tetrakis[tri\|methyl\|platinum(IV)]}
\end{example}
Two options allow customization:
\begin{options}
\keychoice{bridge-number}{sub,super}\Module{iupac}\Default{sub}
Appends the number as a subscript or superscript. \ac{iupac}
recommendation is the subscript~\cite{iupac:redbook}.
\keybool{coord-use-hyphen}\Module{iupac}\Default{true}
Append a hyphen to \cs{hapto} and \cs{bridge} or don't.
\end{options}
\subsubsection{Own Naming Commands}
If you find any commands missing you can define them using
\begin{commands}
\command{DeclareChemIUPAC}[\marg{cs}\marg{declaration}]
Define a new \ac{iupac} command that is in any case defined inside of
\cs{iupac} regardless if \meta{cs} is defined elsewhere already.
\command{RenewChemIUPAC}[\marg{cs}\marg{declaration}]
Redefine an existing \ac{iupac} command that is in any case defined inside
of \cs{iupac} regardless if \meta{cs} is defined elsewhere already.
\end{commands}
A command defined in this way will obey the setting of the option
\option{iupac}. This means any existing command is only overwritten with
\keyis{iupac}{strict}. However, \cs{DeclareChemIUPAC} will \emph{not} change
the definition of an existing \ac{iupac} naming command but issue a warning/an
error (depending on the package option \option{strict}) if the \ac{iupac}
naming command already exists.
\begin{example}
\DeclareChemIUPAC\endo{\textit{endo}}
\RenewChemIUPAC\anti{\textit{anti}}
\iupac{(2\-\endo,7\-\anti)\-2\-bromo\-7\-fluoro\|bicyclo[2.2.1]heptane}
\end{example}
\cs{RenewChemIUPAC} allows you to redefine the existing \ac{iupac} naming
commands.
\begin{example}[side-by-side]
\iupac{\meta\-Xylol} \par
\RenewChemIUPAC\meta{\textup{m}}
\iupac{\meta\-Xylol}
\end{example}
\subsection{Latin Phrases}
The package \pkg{chemstyle} provides the command \cs{latin} to typeset common
latin phrases in a consistent way. \chemmacros\ defines a similar \cs{latin}
only if \pkg{chemstyle} has \emph{not} been loaded and additionally provides
these commands:
\begin{itemize}
\item[]
\cs{insitu} \insitu \quad
\cs{abinitio} \abinitio \quad
\cs{invacuo} \invacuo
\end{itemize}
If the package \pkg{chemstyle} has been loaded they are defined using
\pkg{chemstyle}'s \cs{latin} command. This means that then the appearance
depends on \pkg{chemstyle}'s option \code{abbremph}.
The commands are defined through
\begin{commands}
\command{DeclareChemLatin}[\marg{cs}\marg{phrase}]
Define a new latin phrase.
\command{RenewChemLatin}[\marg{cs}\marg{phrase}]
Redefine an existing latin phrase.
\end{commands}
\begin{example}[side-by-side]
\DeclareChemLatin\ltn{latin text}\ltn
\end{example}
If you have \emph{not} loaded \pkg{chemstyle} you can change the appearance
with this option:
\begin{options}
\keyval{format}{definition}\Module{latin}\Default{\cs*{itshape}}
Set the format of the latin phrases.
\end{options}
\section{Units for the Usage With \pkg*{siunitx}}\label{sec:einheiten}
In chemistry some non-SI units are very common. \pkg{siunitx} provides the
command \cs*{DeclareSIUnit}\marg{command}\marg{unit} to add arbitrary units.
\chemmacros\ uses that command to provide some units. Like all \pkg{siunitx}
units they're only valid inside \cs*{SI}\marg{num}\marg{unit} and
\cs*{si}\marg{unit}.
\begin{commands}
\command{atmosphere} \si{\atmosphere}
\command{atm} \si{\atm}
\command{calory} \si{\calory}
\command{cal} \si{\cal}
\command{cmc} \si{\cmc} \par
The units \cs{cmc}, \cs{molar}, and \cs{Molar} are defined by the
package \pkg{chemstyle} as well. \chemmacros\ only defines them, if
\pkg{chemstyle} is not loaded.
\command{molar} \si{\molar}
\command{moLar} \si{\moLar}
\command{Molar} \si{\Molar}
\command{MolMass} \si{\MolMass}
\command{normal} \si{\normal}
\command{torr} \si{\torr}
\end{commands}
By the way: \cs*{mmHg} \si{\mmHg} already is defined by \pkg{siunitx} and
\pkg{chemstyle}.
\section{Acid/Base}\label{sec:saeure_base}
Easy representation of \pH, \pKa \ldots\ (the command \cs{pKa} depends on the
package option \option{language}). The translations may be adapted, though,
see section~\ref{sec:languages}.
\begin{commands}
\command{pH} \pH
\command{pOH} \pOH
\command{Ka} \Ka
\command{Kb} \Kb
\command{Kw} \Kw
\command{pKa}[\oarg{num}] \cs{pKa}: \pKa, \cs{pKa}\Oarg{1}: \pKa[1]
\command{pKb}[\oarg{num}] \cs{pKb}: \pKb, \cs{pKb}\Oarg{1}: \pKb[1]
\command{p}[\marg{anything}] \eg\ \cs{p}\Marg{\cs{Kw}} \p{\Kw}
\end{commands}
\begin{example}[side-by-side]
\Ka \Kb \pKa \pKa[1] \pKb \pKb[1]
\end{example}
\begin{cnltxquote}[{\acs{iupac} Green Book {\cite[][p.\,103]{iupac:greenbook}}}]
The operator \p{} \textelp{} shall be printed in Roman type.
\end{cnltxquote}
There is one option which changes the style the \p{} is typeset:
\begin{options}
\keychoice{p-style}{italics,slanted,upright}\Module{acid-base}\Default{upright}
Set the style of the \p{} operator.
\keyval{K-acid}{text}\Module{acid-base}
The subscript to \cs{Ka} and \cs{pKa}.
\keyval{K-base}{text}\Module{acid-base}
The subscript to \cs{Kb} and \cs{pKb}.
\keyval{K-water}{text}\Module{acid-base}
The subscript to \cs{Kw}.
\end{options}
\begin{example}
\pH, \pKa \par
\chemsetup[acid-base]{p-style=slanted} \pH, \pKa \par
\chemsetup[acid-base]{p-style=italics} \pH, \pKa
\end{example}
As\sinceversion{4.2d} you can see the default subscripts of \cs{Kw}, \cs{Ka}
and \cs{Kb} are uppercase letters. The literature is inconclusive about if
this is the right way or if lowercase letters should be preferred. In
textbooks the uppercase variant usually seems to be used while journals seem
to prefer the lowercase variant. Since I like the uppercase version better
this is the default. If you want to change this you have two possibilities:
\begin{example}
% this works only in the preamble:
% \DeclareTranslation{English}{K-acid}{a}% use your language here
% alternative:
\chemsetup{acid-base/K-acid=a}% overwrites language dependent settings
\pKa
\end{example}
\section{Oxidation Numbers, Real and Formal Charges}\label{sec:ladungen}
\chemmacros\ distinguishes between real ($+$/$-$) and formal (\fplus/\fminus)
charge symbols, also see section~\ref{sec:options}. All commands using formal
charge symbols start with a \code{f}.
\subsection{Ion Charges}\label{ssec:ionen}
Simple displaying of (real) charges. It is worth noting that these commands
really are relicts from a time when \chemmacros\ tried hard to be compliant
with \pkg{mhchem} and \chemformula\ didn't exist, yet. They are still provided
for backwards compatibility but \emph{my recommendation is to use} \cs{ch}
(see the documentation of the \chemformula\ package) \emph{and forget about
these commands:}
\begin{commands}
\command{pch}[\oarg{number}]
positive charge (\textbf{p}lus + \textbf{ch}arge)
\command{mch}[\oarg{number}]
negative charge (\textbf{m}inus + \textbf{ch}arge)
\end{commands}
\begin{example}[side-by-side]
\leavevmode
\pch, Na\pch, Ca\pch[2]\par
\leavevmode
\mch, F\mch, S\mch[2]
\end{example}
The same for formal charges:
\begin{commands}
\command{fpch}[\oarg{number}]
positive charge
\command{fmch}[\oarg{number}]
negative charge
\end{commands}
\begin{example}[side-by-side]
\leavevmode
\fpch\ \fmch\ \fpch[3] \fmch[3]
\end{example}
\subsection{Oxidation Numbers}\label{ssec:oxidationszahlen}
Typesetting oxidation numbers:
\begin{commands}
\command{ox}[\oarg{options}\Marg{\meta{number},\meta{atom}}]
Places \meta{number} above \meta{atom}; \meta{number} has to be a
(rational) number!
\end{commands}
\begin{example}
\ox{+1,Na}, \ox{2,Ca}, \ox{-2,S}, \ox{-1,F}
\end{example}
There are a number of keys, that can be used to modify the \cs{ox} command.
\begin{options}
\keybool{parse}\Module{ox}\Default{true}
When \code{false} an arbitrary entry can be used for \code{<number>}.
\keybool{roman}\Module{ox}\Default{false}
Switches from roman to arabic numbers.
\keychoice{pos}{top,super,side}\Module{ox}\Default{top}
\code{top} places \meta{number} above \meta{atom}, \code{super} to the
upper right as superscript and \code{side} to the right and inside
brackets.
\keybool{explicit-sign}\Module{ox}\Default{false}
Shows the $+$ for positiv numbers and the $\pm$ for $0$.
\keychoice{decimal-marker}{comma,point}\Module{ox}\Default{point}
Choice for the decimal marker for formal oxidation numbers like \ox{1.2,X}.
\keychoice{align}{center,right}\Module{ox}\Default{center}
Center the oxidation number relative to the atom or right-align it.
\end{options}
\begin{example}[side-by-side]
\ox[roman=false]{2,Ca} \ox{2,Ca} \\
\ox[pos=super]{3,Fe}-Oxide \\
\ox[pos=side]{3,Fe}-Oxide \\
\ox[parse=false]{?,Mn} \\
\ox[align=right]{2,Ca}
\end{example}
The \keyis{pos}{super} variant also can be set with the shortcut \cs{ox}\sarg:
\begin{example}[side-by-side]
\ox{3,Fe} \ox*{3,Fe}
\end{example}
Using the \option{explicit-sign} key will always show the sign of the
oxidation number:
\begin{example}
\chemsetup[ox]{explicit-sign = true}
\ox{+1,Na}, \ox{2,Ca}, \ox{-2,S}, \ch{"\ox{0,F}" {}2}
\end{example}
\begin{example}
Compare \ox{-1,\ch{O2^2-}} to \ch{"\ox{-1,O}" {}2^2-}
\end{example}
Sometimes one might want to use formal oxidation numbers like \num{.5} or
$\frac{1}{3}$:
\begin{example}[side-by-side]
\ox{.5,\ch{Br2}} \ch{"\ox{1/3,I}" {}3+}
\end{example}
The fraction uses the \cs*{sfrac} command of the \pkg{xfrac} package. For
this purpose the instance \code{chemmacros-ox-frac} is defined.
\begin{sourcecode}
\DeclareInstance{xfrac}{chemmacros-ox-frac}{text}{
scale-factor = 1.2 ,
denominator-bot-sep = -.5ex ,
numerator-top-sep = -.3ex ,
slash-left-kern = -.2em ,
slash-right-kern = -.2em ,
slash-symbol-font = lmr
}
\end{sourcecode}
Of course you can redefine it so that it suits your needs as the output often
strongly depends on the used font.
\subsection{Partial Charges and Similar Stuff}\label{ssec:partialladungen}
The next ones probably are seldomly needed but nevertheless useful:
\begin{commands}
\command{delp} \delp\ (\textbf{del}ta + \textbf{p}lus)
\command{delm} \delm\ (\textbf{del}ta + \textbf{m}inus)
\command{fdelp} \fdelp
\command{fdelm} \fdelm
\end{commands}
These macros for example can be used with the \cs{ox} command or with the
\pkg{chemfig} package:
\begin{example}
\chemsetup{
option/circled = all,
ox/parse = false
}
\ch{"\ox{\delp,H}" -{} "\ox{\delm,Cl}"} \hspace*{1cm}
\chemfig{\chemabove[3pt]{\lewis{246,Br}}{\delm}-\chemabove[3pt]{H}{\delp}}
\end{example}
The following macros are useful together with \pkg{chemfig}, too.
\begin{commands}
\command{scrp} \scrp\ (\textbf{scr}iptstyle + \textbf{p}lus)
\command{scrm} \scrm\ (\textbf{scr}iptstyle + \textbf{m}inus)
\command{fscrp} \fscrp
\command{fscrm} \fscrm
\command{fsscrp} \fsscrp\ (using \cs*{scriptscriptstyle})
\command{fsscrm} \fsscrm
\end{commands}
\begin{example}
\setatomsep{1.8em}\chemfig{CH_3-\chemabove{C}{\scrp}(-[6]C|H_3)-\vphantom{H_3}CH_3}
\chemfig{\fmch{}|O-\chemabove{N}{\fscrp}(-[1]O|\fmch)-[7]O|\fmch}
\end{example}
\section{Reaction Mechanisms}\label{sec:mechanismen}
\begin{commands}
\command{mech}[\oarg{type}]
Allows to specify the most common reaction mechanisms.
\end{commands}
\meta{type} can have one of the following values:
\begin{commands}
\command{mech}
(empty, no opt. argument) nucleophilic substitution \mech
\command{mech}[\Oarg{1}]
unimolecular nucleophilic substitution \mech[1]
\command{mech}[\Oarg{2}]
bimolecular nucleophilic substitution \mech[2]
\command{mech}[\Oarg{se}]
electrophilic substitution \mech[se]
\command{mech}[\Oarg{1e}]
unimolecular electrophilic substitution \mech[1e]
\command{mech}[\Oarg{2e}]
bimolecular electrophilic substitution \mech[2e]
\command{mech}[\Oarg{ar}]
electrophilic aromatic substitution \mech[ar]
\command{mech}[\Oarg{e}]
elimination \mech[e]
\command{mech}[\Oarg{e1}]
unimolecular elimination \mech[e1]
\command{mech}[\Oarg{e2}]
bimolecular elimination \mech[e2]
\command{mech}[\Oarg{cb}]
unimolecular elimination \enquote{conjugated base}, \ie, via carbanion
\mech[cb]
\end{commands}
\section{Redox Reactions}\label{sec:redoxreaktionen}% TODO: watch pagebreaks!
\chemmacros\ provides two commands to visualize the transfer of electrons in
redox reactions. Both commands are using \TikZ.
\begin{commands}
\command{OX}[\Marg{\meta{name},\meta{atom}}]
Label \meta{atom} with the label \meta{name}.
\command{redox}[\Darg{\meta{name1},\meta{name2}}\oarg{tikz}\oarg{num}\marg{text}]
Connect two \meta{atom}s previously labelled with \cs{OX}. Only the first
argument \Darg{\meta{name1},\meta{name2}} is required, the others are all
optional.
\end{commands}
\cs{OX} places \meta{atom} into a node, which is named with \meta{name}. If
you have set two \cs{OX}, they can be connected with a line using \cs{redox}.
To do so the names of the two nodes that are to be connected are written in
the round braces. Since \cs{redox} draws a \code{tikzpicture} with options
\code{remember picture,overlay}, the document needs to be \emph{compiled at
least two times}.
\begin{example}
\vspace{7mm}
\OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b){oxidation}
\end{example}
This line can be customized using \TikZ\ keys in \oarg{tikz}:
\begin{example}
\vspace{7mm}
\OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b)[->,red]{ox}
\end{example}
With the argument \oarg{num} the length of the vertical parts of the line can
be adjusted. The default length is \code{.6em}. This length is multiplied
with \meta{num}. If you use a negative value the line is placed \emph{below}
the text.
\begin{example}
\vspace{7mm}
\OX{a,Na} $\rightarrow$ \OX{b,Na}\pch
\redox(a,b)[->,red]{ox}
\redox(a,b)[<-,blue][-1]{red}
\vspace{7mm}
\end{example}
The default length of the vertical lines can be customized with the option
\begin{options}
\keyval{dist}{dim}\Module{redox}\Default{.6em}
A \TeX\ dimension.
\end{options}
\begin{example}
\vspace{7mm}
\chemsetup{redox/dist=1em}
\OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b)[->,red]{ox}
\end{example}
\begin{options}
\keyval{sep}{dim}\Module{redox}\Default{.2em}
The option can be used to change the distance between the atom and the
beginning of the line.
\end{options}
\begin{example}
\vspace{7mm}
\chemsetup{redox/sep=.5em}
\OX{a,Na} $\rightarrow$ \OX{b,Na}\pch\redox(a,b)[->,red]{ox}
\end{example}
Examples:% TODO: watch pagebreaks!
\begin{example}
\vspace{7mm}
\ch{
2 "\OX{o1,Na}" + "\OX{r1,Cl}" {}2
->
2 "\OX{o2,Na}" {}+ + 2 "\OX{r2,Cl}" {}-
}
\redox(o1,o2){\small OX: $- 2\el$}
\redox(r1,r2)[][-1]{\small RED: $+ 2\el$}
\vspace{7mm}
\end{example}
\begin{example}
\vspace{7mm}
\ch{
2 "\OX{o1,\ox{0,Na}}" + "\OX{r1,\ox{0,Cl}}" {}2
->
2 "\OX{o2,\ox{+1,Na}}" {}+ + 2 "\OX{r2,\ox{-1,Cl}}" {}-
}
\redox(o1,o2){\small OX: $- 2\el$}
\redox(r1,r2)[][-1]{\small RED: $+ 2\el$}
\vspace{7mm}
\end{example}
\begin{example}
\vspace{14mm}
\ch{
2 "\OX{o1,\ox{0,Na}}" + "\OX{r1,\ox{0,Cl}}" {}2
->
2 "\OX{o2,\ox{+1,Na}}" {}+ + 2 "\OX{r2,\ox{-1,Cl}}" {}-
}
\redox(o1,o2)[draw=red,->][3.33]{\small OX: $- 2\el$}
\redox(r1,r2)[draw=blue,->]{\small RED: $+ 2\el$}
\end{example}
\begin{example}
\vspace{7mm}
\ch{
2 "\OX{o1,\ox{0,Na}}" + "\OX{r1,\ox{0,Cl}}" {}2
-> 2 "\OX{o2,\ox{+1,Na}}" {}+ + 2 "\OX{r2,\ox{-1,Cl}}" {}-
}
\redox(o1,o2)[green,-stealth]{\small OX}
\redox(r1,r2)[purple,-stealth][-1]{\small RED}
\vspace{7mm}
\end{example}
\section{(Standard) State, Thermodynamics}\label{sec:stand-state-therm}
\subsection{Thermodynamic Variables}\label{sec:therm-vari}
The following commands use \pkg{siunitx}:
\begin{commands}
\command{Enthalpy}[\oarg{options}\darg{subscript}\marg{value}]
Typeset the amount of enthalpy.
\command{Entropy}[\oarg{options}\darg{subscript}\marg{value}]
Typeset the amount of entropy.
\command{Gibbs}[\oarg{options}\darg{subscript}\marg{value}]
Typeset the amount of Gibbs enthalpy.
\end{commands}
Their usage is pretty much self-explaining:
\begin{example}[side-by-side]
\Enthalpy{123} \par
\Entropy{123} \par
\Gibbs{123}
\end{example}
The argument \darg{subscript} adds a subscript for specification:
\cs{Enthalpy}\Darg{r}\Marg{123} \Enthalpy(r){123}.
There are several keys to customize the commands. They do not belong to a
module and can only be used in the optional arguments of the commands.
\begin{options}
\keyval{exponent}{anything}
Choose \meta{anything} as exponent.
\keychoice{delta}{\meta{anything},false}
Disable or choose a symbol in front of the main symbol. \meta{anything}
will be placed in math mode!
\keychoice{subscript}{left,right}
Choose if the subscript is placed to the left or the right of the main
symbol.
\keyval{unit}{unit}
Set the unit of the variable.
\end{options}
The default values depend on the command.
\begin{example}[side-by-side]
\Enthalpy[unit=\kilo\joule]{-285} \par
\Gibbs[delta=false]{0} \par
\Entropy[delta=\Delta,exponent=]{56.7}
\end{example}
The unit is set corresponding to the rules of \pkg{siunitx} and depends on
its settings:
\begin{example}[side-by-side]
\Enthalpy{-1234.56e3} \par
\sisetup{
per-mode=symbol,
exponent-product=\cdot,
output-decimal-marker={,},
group-four-digits=true
}
\Enthalpy{-1234.56e3}
\end{example}
\subsubsection{Create New Variables or Redefine Existing Ones}\label{sec:create-new-variables}
\begin{commands}
\command{DeclareChemState}[\marg{name}\oarg{options}\marg{symbol}\marg{unit}]
Define new corresponding commands. \meta{name} may either be a control
sequence token or a control sequence name without leading backslash.
\changedversion{4.2}This means that \cs{DeclareChemState}\Marg{name} and
\cs{DeclareChemState}\Marg{\cs*{name}} are equivalent. The reason for
this rather strange definition is a syntax change in \cs{DeclareChemState}
while retaining backwards compaitibility. The latter version is
recommended though and the former version may deprecate in the future.
\command{RenewChemState}[\marg{name}\oarg{options}\marg{symbol}\marg{unit}]
Redefine existing state commands. \meta{name} may either be a control
sequence token or a control sequence name without leading backslash.
\changedversion{4.2}This means that \cs{RenewChemState}\Marg{name} and
\cs{RenewChemState}\Marg{\cs*{name}} are equivalent. The reason for
this rather strange definition is a syntax change in \cs{RenewChemState}
while retaining backwards compaitibility. The latter version is
recommended though and the former version may deprecate in the future.
\end{commands}
\begin{example}
\DeclareChemState\Helmholtz{A}{\kilo\joule\per\mole}
\DeclareChemState\ElPot[subscript-left=false,exponent=]{E}{\volt}
\Helmholtz{123.4} \par
\ElPot{-1.1} \par
\ElPot[exponent=0]($\ch{Sn}|\ch{Sn^2+}||\ch{Pb^2+}|\ch{Pb}$){0.01}
\end{example}
The command has some keys with which the default behaviour of the new command
can be set.
\begin{options}
\keyval{exponent}{anything}\Default{\cs{standardstate}}
Set the default exponent.
\keychoice{delta}{\meta{anything},false}\Default{\cs{changestate}}
Choose the default ``delta'' symbol that is placed in front of the
main symbol. \meta{anything} will be placed in math mode!
\keybool{subscript-left}\Default{true}
Choose the default position of the sybscript.
\keyval{subscript}{anything}\Default
Choose the default subscript symbol.
\end{options}
\begin{example}[side-by-side]
\RenewChemState\Enthalpy{h}{\joule}
\Enthalpy(f){12.5}
\end{example}
The existing commands have been defined like this:
\begin{sourcecode}
\DeclareChemState\Enthalpy{H}{\kilo\joule\per\mole}
\DeclareChemState\Entropy[delta=false,subscript-left=false]{S}
{\joule\per\kelvin\per\mole}
\DeclareChemState\Gibbs{G}{\kilo\joule\per\mole}
\end{sourcecode}
So -- for following thermodynamic conventions -- one could define a molar and
an absolute variable:
\begin{example}
\DeclareChemState\enthalpy[exponent=]{h}{\kilo\joule\per\mole}% molar
\RenewChemState\Enthalpy[exponent=]{H}{\kilo\joule}% absolute
\enthalpy{-12.3} \Enthalpy{-12.3}
\end{example}
\subsection{State}\label{ssec:state}
The commands presented in section~\ref{sec:therm-vari} internally all use the
command\footnote{Please note that \marg{subscript} is an \emph{optional}
argument.}
\begin{commands}
\command{State}[\oarg{options}\marg{symbol}\marg{subscript}]
Typeset a state variable.
\end{commands}
It can be used to write the thermodynamic state variables without value and
unit.
\begin{example}
\State{A}, \State{G}{f},
\State[subscript-left=false]{E}{\ch{Na}},
\State[exponent=\SI{1000}{\celsius}]{H}
\end{example}
Again there are some keys to customize the command:
\begin{options}
\keyval{exponent}{anything}\Module{state}
Set the default exponent symbol.
\keybool{subscript-left}\Module{state}
Set the default subscript position.
\keychoice{delta}{\meta{anything},false}\Module{state}
Set the default ``delta'' symbol. \meta{anything} will be placed in math
mode!
\end{options}
\section{Spectroscopy and Experimental Data}\label{sec:spektroskopie}
\subsection{The \cs*{NMR} Command}
When you're trying to find out if a compound is the one you think it is often
NMR spectroscopy is used. The experimental data are typeset similar to this:
\begin{center}
\NMR(400)[CDCl3] = \num{1.59}
\end{center}
\chemmacros\ provides a command which simplifies the input (uses
\pkg{siunitx}).
\begin{commands}
\command{NMR}[\sarg\Marg{\meta{num},\meta{element}}%
\Darg{\meta{num},\meta{unit}}\oarg{solvent}]
Typeset nuclear magnetic resonance data.
\end{commands}
\emph{All} Argument are optional! Without arguments we get:
\begin{example}[side-by-side]
\NMR \par
\NMR*
\end{example}
The first argument specifies the kind of NMR:
\begin{example}[side-by-side]
\NMR{13,C}
\end{example}
The second argument sets the frequency (in \si{\mega\hertz}):
\begin{example}[side-by-side]
\NMR(400)
\end{example}
You can choose another unit:
\begin{example}[side-by-side]
\NMR(4e8,\hertz)
\end{example}
Please note that the setup of \pkg{siunitx} also affects this command:
\begin{example}[side-by-side]
\sisetup{exponent-product=\cdot}
\NMR(4e8,\hertz)
\end{example}
The third argument specifies the solvent:
\begin{example}[side-by-side]
\NMR[CDCl3]
\end{example}
\subsection{Short Cuts}
It is possible to define short cut commands for specific nuclei.
\begin{commands}
\command{DeclareChemNMR}[\marg{cs}\Marg{\meta{num},\meta{atom}}]
Define a new shortcut macro for typesetting a certain type of magnetic
resonence data.
\command{RenewChemNMR}[\marg{cs}\Marg{\meta{num},\meta{atom}}]
Redefine an existing shortcut macro for typesetting a certain type of
magnetic resonence data.
\end{commands}
This defines a command with the same arguments as \cs{NMR} \emph{except} for
\Marg{\meta{num},\meta{atom}}:
\begin{example}[side-by-side]
\DeclareChemNMR\HNMR{1,H}%
\DeclareChemNMR\CNMR{13,C}%
\CNMR*(100) \par
\HNMR*(400)
\end{example}
\subsection{An Environment to Typeset Experimental Data}
\chemmacros\ provides an environment to ease the input of experimental data.
\begin{environments}
\environment{experimental}
Environment for the output of experimental data. Inside the environment
the following commands are defined.
\end{environments}
\begin{commands}
\command{data}[\marg{type}\oarg{specification}]
Type of data, \eg\ IR, MS\ldots\ The optional argument takes further
specifications which are output in parentheses.
\command{data}[\sarg\marg{type}\oarg{specification}]
Like \cs{data} but changes the \code{=} into a \code{:}, given that
\keyis{use-equal}{true} is used.
\command{NMR}[\Marg{\meta{num},\meta{elem}\oarg{coupling
core}}\Darg{\meta{num},\meta{unit}}\oarg{solvent}]
This command gets an additional argument:
\cs{NMR}\Marg{13,C[\textasciicircum 1H]} \NMR{13,C[^1H]}
\command{J}[\Darg{\meta{bonds};\meta{nuclei}}\oarg{unit}\marg{list of nums}]
Coupling constant, values are input separated by \code{;} (NMR). The
argument \Darg{\meta{bonds};\meta{nuclei}} is optional and enables further
specifications of the coupling.
\command{\#}[\marg{num}]
Number of nuclei (NMR).
\command{pos}[\marg{num}]
Position of nuclues (NMR).
\command{val}[\marg{num}]
A number, an alias of \pkg{siunitx}' \cs*{num}\marg{num}.
\command{val}[\Marg{\meta{num1}--\meta{num2}}]
An alias of \pkg{siunitx}' \cs*{numrange}\marg{num1}\marg{num2}.
\end{commands}
\begin{example}
\begin{experimental}
\data{type1} Data.
\data{type2}[specifications] More data.
\data*{type3} Even more data.
\end{experimental}
\end{example}
\subsection{Customization}
The output of the environment and of the NMR commands can be customized be a
number of options. For historical reasons they all belong to the module
\module{nmr}.
\begin{options}
\keyval{unit}{unit}\Module{nmr}\Default{\cs*{mega}\cs*{hertz}}
The used default unit.
\keychoice{nucleus}{\Marg{\meta{num},\meta{atom}}}\Module{nmr}\Default{\Marg{1,H}}
The used default nucleus.
\keyval{format}{commands}\Module{nmr}\Default
For example \cs*{bfseries}.
\keychoice{pos-number}{side,sub}\Module{nmr}\Default{side}
Position of the number next to the atom.
\keyval{coupling-unit}{unit}\Module{nmr}\Default{\cs*{hertz}}
A \pkg{siunitx} unit.
\keybool{parse}\Module{nmr}\Default{true}
Treat the solvent as \chemformula\ formula or not.
\keyval{delta}{tokens}\Module{nmr}\Default
The \meta{tokens} are added after $\delta$.
\keybool{list}\Module{nmr}\Default{false}
The environment \env{nmr}[<optionen>]{} is formatted as a list
\keyval{list-setup}{setup}\Module{nmr}
Setup of the list. See below for the default settings.
\keybool{use-equal}\Module{nmr}\Default{false}
Add egual sign after \cs{NMR} and \cs{data}.
\end{options}
The default setup of the list:
\begin{sourcecode}
\topsep\z@skip \partopsep\z@skip
\itemsep\z@ \parsep\z@ \itemindent\z@
\leftmargin\z@
\end{sourcecode}
\begin{example}
\begin{experimental}[format=\bfseries]
\data{type1} Data.
\data{type2}[specifications] More data.
\data*{type3} Even more data.
\end{experimental}
\end{example}
The command \cs{NMR} and all commands defined through \cs{DeclareChemNMR}
can be used like \cs{data} for the NMR data.
\begin{example}
\begin{experimental}[format=\bfseries,use-equal]
\data{type1} Data.
\data{type2}[specifications] More data.
\NMR Even more data.
\end{experimental}
\end{example}
\subsection{An Example}
The code below is shown with different specifications for \meta{options}.
Of course options can also be chosen with \cs{chemsetup}.
\begin{sourcecode}
\sisetup{separate-uncertainty,per-mode=symbol,detect-all,range-phrase=--}
\begin{experimental}[<optionen>]
\data*{yield} \SI{17}{\milli\gram} yellow needles (\SI{0.04}{\milli\mole},
\SI{13}{\percent}).
%
\data{mp.} \SI{277}{\celsius} (DSC).
%
\NMR(600)[CDCl3] \val{2.01} (s, \#{24}, \pos{5}), \val{2.31} (s, \#{12},
\pos{1}), \val{6.72--6.74} (m, \#{2}, \pos{11}), \val{6.82} (s, \#{8},
\pos{3}), \val{7.05--7.07} (m, \#{2}, \pos{12}), \val{7.39--7.41} (m, \#{4},
\pos{9}), \val{7.48--7.49} (m, \#{4}, \pos{8}).
%
\NMR{13,C}(150)[CDCl3] \val{21.2} ($+$, \#{4}, \pos{1}), \val{23.4} ($+$,
\#{8}, \pos{5}), \val{126.0} ($+$, \#{4}, \pos{9}), \val{128.2} ($+$, \#{8},
\pos{3}), \val{130.8} ($+$, \#{2}, \pos{12}), \val{133.6} ($+$, \#{2},
\pos{11}), \val{137.0} ($+$, \#{4}, \pos{8}), \val{138.6} (q, \#{4},
\pos{2}), \val{140.6} (q, \#{2}, \pos{10}), \val{140.8} (q, \#{8}, \pos{4}),
\val{141.8} (q, \#{4}, \pos{6}), \val{145.6} (q, \#{2}, \pos{7}).
%
\data{MS}[DCP, EI, \SI{60}{\electronvolt}] \val{703} (2, \ch{M+}), \val{582}
(1), \val{462} (1), \val{249} (13), \val{120} (41), \val{105} (100).
%
\data{MS}[\ch{MeOH + H2O + KI}, ESI, \SI{10}{\electronvolt}] \val{720} (100,
\ch{M+ + OH-}), \val{368} (\ch{M+ + 2 OH-}).
%
\data{IR}[KBr] \val{3443} (w), \val{3061} (w), \val{2957} (m), \val{2918}
(m), \val{2856} (w), \val{2729} (w), \val{1725} (w), \val{1606} (s),
\val{1592} (s), \val{1545} (w), \val{1446} (m), \val{1421} (m), \val{1402}
(m), \val{1357} (w), \val{1278} (w), \val{1238} (s), \val{1214} (s),
\val{1172} (s), \val{1154} (m), \val{1101} (w), \val{1030} (w), \val{979}
(m), \val{874} (m), \val{846} (s), \val{818} (w), \val{798} (m), \val{744}
(w), \val{724} (m), \val{663} (w), \val{586} (w), \val{562} (w), \val{515}
(w).
%
\data*{UV-Vis} \SI{386}{\nano\metre} ($\varepsilon = \val{65984}$),
\SI{406}{\nano\metre} ($\varepsilon = \val{65378}$).
%
\data*{quantum yield} $\Phi = \val{0.74+-0.1}$\,.
\end{experimental}
\end{sourcecode}
\subsubsection{Nearly Standard}
Output with these options:
\begin{sourcecode}
delta=(ppm),pos-number=sub,use-equal
\end{sourcecode}
\begin{experimental}[delta=(ppm),pos-number=sub,use-equal]
\sisetup{separate-uncertainty,per-mode=symbol,detect-all,range-phrase=--}
\data*{yield} \SI{17}{\milli\gram} yellow needles (\SI{0.04}{\milli\mole},
\SI{13}{\percent}).
%
\data{mp.} \SI{277}{\celsius} (DSC).
%
\NMR(600)[CDCl3] \val{2.01} (s, \#{24}, \pos{5}), \val{2.31} (s, \#{12},
\pos{1}), \val{6.72--6.74} (m, \#{2}, \pos{11}), \val{6.82} (s, \#{8},
\pos{3}), \val{7.05--7.07} (m, \#{2}, \pos{12}), \val{7.39--7.41} (m, \#{4},
\pos{9}), \val{7.48--7.49} (m, \#{4}, \pos{8}).
%
\NMR{13,C}(150)[CDCl3] \val{21.2} ($+$, \#{4}, \pos{1}), \val{23.4} ($+$,
\#{8}, \pos{5}), \val{126.0} ($+$, \#{4}, \pos{9}), \val{128.2} ($+$, \#{8},
\pos{3}), \val{130.8} ($+$, \#{2}, \pos{12}), \val{133.6} ($+$, \#{2},
\pos{11}), \val{137.0} ($+$, \#{4}, \pos{8}), \val{138.6} (q, \#{4},
\pos{2}), \val{140.6} (q, \#{2}, \pos{10}), \val{140.8} (q, \#{8}, \pos{4}),
\val{141.8} (q, \#{4}, \pos{6}), \val{145.6} (q, \#{2}, \pos{7}).
%
\data{MS}[DCP, EI, \SI{60}{\electronvolt}] \val{703} (2, \ch{M+}), \val{582}
(1), \val{462} (1), \val{249} (13), \val{120} (41), \val{105} (100).
%
\data{MS}[\ch{MeOH + H2O + KI}, ESI, \SI{10}{\electronvolt}] \val{720} (100,
\ch{M+ + OH-}), \val{368} (\ch{M+ + 2 OH-}).
%
\data{IR}[KBr] \val{3443} (w), \val{3061} (w), \val{2957} (m), \val{2918}
(m), \val{2856} (w), \val{2729} (w), \val{1725} (w), \val{1606} (s),
\val{1592} (s), \val{1545} (w), \val{1446} (m), \val{1421} (m), \val{1402}
(m), \val{1357} (w), \val{1278} (w), \val{1238} (s), \val{1214} (s),
\val{1172} (s), \val{1154} (m), \val{1101} (w), \val{1030} (w), \val{979}
(m), \val{874} (m), \val{846} (s), \val{818} (w), \val{798} (m), \val{744}
(w), \val{724} (m), \val{663} (w), \val{586} (w), \val{562} (w), \val{515}
(w).
%
\data*{UV-Vis} \SI{386}{\nano\metre} ($\varepsilon = \val{65984}$),
\SI{406}{\nano\metre} ($\varepsilon = \val{65378}$).
%
\data*{quantum yield} $\Phi = \val{0.74+-0.1}$\,.
\end{experimental}
\subsubsection{Formatted List}
Output with these options:
\begin{sourcecode}
format=\bfseries,delta=(ppm),list=true,use-equal
\end{sourcecode}
\begin{experimental}[format=\bfseries,delta=(ppm),list=true,use-equal]
\sisetup{separate-uncertainty,per-mode=symbol,detect-all,range-phrase=--}
\data*{yield} \SI{17}{\milli\gram} yellow needles (\SI{0.04}{\milli\mole},
\SI{13}{\percent}).
%
\data{mp.} \SI{277}{\celsius} (DSC).
%
\NMR(600)[CDCl3] \val{2.01} (s, \#{24}, \pos{5}), \val{2.31} (s, \#{12},
\pos{1}), \val{6.72--6.74} (m, \#{2}, \pos{11}), \val{6.82} (s, \#{8},
\pos{3}), \val{7.05--7.07} (m, \#{2}, \pos{12}), \val{7.39--7.41} (m, \#{4},
\pos{9}), \val{7.48--7.49} (m, \#{4}, \pos{8}).
%
\NMR{13,C}(150)[CDCl3] \val{21.2} ($+$, \#{4}, \pos{1}), \val{23.4} ($+$,
\#{8}, \pos{5}), \val{126.0} ($+$, \#{4}, \pos{9}), \val{128.2} ($+$, \#{8},
\pos{3}), \val{130.8} ($+$, \#{2}, \pos{12}), \val{133.6} ($+$, \#{2},
\pos{11}), \val{137.0} ($+$, \#{4}, \pos{8}), \val{138.6} (q, \#{4},
\pos{2}), \val{140.6} (q, \#{2}, \pos{10}), \val{140.8} (q, \#{8}, \pos{4}),
\val{141.8} (q, \#{4}, \pos{6}), \val{145.6} (q, \#{2}, \pos{7}).
%
\data{MS}[DCP, EI, \SI{60}{\electronvolt}] \val{703} (2, \ch{M+}), \val{582}
(1), \val{462} (1), \val{249} (13), \val{120} (41), \val{105} (100).
%
\data{MS}[\ch{MeOH + H2O + KI}, ESI, \SI{10}{\electronvolt}] \val{720} (100,
\ch{M+ + OH-}), \val{368} (\ch{M+ + 2 OH-}).
%
\data{IR}[KBr] \val{3443} (w), \val{3061} (w), \val{2957} (m), \val{2918}
(m), \val{2856} (w), \val{2729} (w), \val{1725} (w), \val{1606} (s),
\val{1592} (s), \val{1545} (w), \val{1446} (m), \val{1421} (m), \val{1402}
(m), \val{1357} (w), \val{1278} (w), \val{1238} (s), \val{1214} (s),
\val{1172} (s), \val{1154} (m), \val{1101} (w), \val{1030} (w), \val{979}
(m), \val{874} (m), \val{846} (s), \val{818} (w), \val{798} (m), \val{744}
(w), \val{724} (m), \val{663} (w), \val{586} (w), \val{562} (w), \val{515}
(w).
%
\data*{UV-Vis} \SI{386}{\nano\metre} ($\varepsilon = \val{65984}$),
\SI{406}{\nano\metre} ($\varepsilon = \val{65378}$).
%
\data*{quantum yield} $\Phi = \val{0.74+-0.1}$\,.
\end{experimental}
\subsubsection{Crazy}
Output for these options:
\begin{sourcecode}
format=\color{red}\itshape,
list=true,
delta=\textcolor{green}{\ch{M+ + H2O}},
pos-number=side,
coupling-unit=\mega\gram\per\square\second,
list-setup=,
use-equal
\end{sourcecode}
\begin{experimental}[
format=\color{red}\itshape,
list=true,
delta=\textcolor{green}{\ch{M+ + H2O}},
pos-number=side,
coupling-unit=\mega\gram\per\square\second,
list-setup=,use-equal]
\sisetup{separate-uncertainty,per-mode=symbol,detect-all,range-phrase=--}
\data*{yield} \SI{17}{\milli\gram} yellow needles (\SI{0.04}{\milli\mole},
\SI{13}{\percent}).
%
\data{mp.} \SI{277}{\celsius} (DSC).
%
\NMR(600)[CDCl3] \val{2.01} (s, \#{24}, \pos{5}), \val{2.31} (s, \#{12},
\pos{1}), \val{6.72--6.74} (m, \#{2}, \pos{11}), \val{6.82} (s, \#{8},
\pos{3}), \val{7.05--7.07} (m, \#{2}, \pos{12}), \val{7.39--7.41} (m, \#{4},
\pos{9}), \val{7.48--7.49} (m, \#{4}, \pos{8}).
%
\NMR{13,C}(150)[CDCl3] \val{21.2} ($+$, \#{4}, \pos{1}), \val{23.4} ($+$,
\#{8}, \pos{5}), \val{126.0} ($+$, \#{4}, \pos{9}), \val{128.2} ($+$, \#{8},
\pos{3}), \val{130.8} ($+$, \#{2}, \pos{12}), \val{133.6} ($+$, \#{2},
\pos{11}), \val{137.0} ($+$, \#{4}, \pos{8}), \val{138.6} (q, \#{4},
\pos{2}), \val{140.6} (q, \#{2}, \pos{10}), \val{140.8} (q, \#{8}, \pos{4}),
\val{141.8} (q, \#{4}, \pos{6}), \val{145.6} (q, \#{2}, \pos{7}).
%
\data{MS}[DCP, EI, \SI{60}{\electronvolt}] \val{703} (2, \ch{M+}), \val{582}
(1), \val{462} (1), \val{249} (13), \val{120} (41), \val{105} (100).
%
\data{MS}[\ch{MeOH + H2O + KI}, ESI, \SI{10}{\electronvolt}] \val{720} (100,
\ch{M+ + OH-}), \val{368} (\ch{M+ + 2 OH-}).
%
\data{IR}[KBr] \val{3443} (w), \val{3061} (w), \val{2957} (m), \val{2918}
(m), \val{2856} (w), \val{2729} (w), \val{1725} (w), \val{1606} (s),
\val{1592} (s), \val{1545} (w), \val{1446} (m), \val{1421} (m), \val{1402}
(m), \val{1357} (w), \val{1278} (w), \val{1238} (s), \val{1214} (s),
\val{1172} (s), \val{1154} (m), \val{1101} (w), \val{1030} (w), \val{979}
(m), \val{874} (m), \val{846} (s), \val{818} (w), \val{798} (m), \val{744}
(w), \val{724} (m), \val{663} (w), \val{586} (w), \val{562} (w), \val{515}
(w).
%
\data*{UV-Vis} \SI{386}{\nano\metre} ($\varepsilon = \val{65984}$),
\SI{406}{\nano\metre} ($\varepsilon = \val{65378}$).
%
\data*{quantum yield} $\Phi = \val{0.74+-0.1}$\,.
\end{experimental}
\section{Commands for \pkg*{mhchem}}\label{sec:mhchem}
\pkg{mhchem} is not officially supported by \chemmacros\ as it used
\chemformula\ instead. However, for historical reasons the following command
is still provided.
\begin{commands}
\command{mhName}[\oarg{options}\marg{formula}\marg{text}]
Writes \meta{text} below \meta{formula}
\end{commands}
For example:
\begin{example}
\ce{
4 C2H5Cl + Pb{/}Na
->
\mhName{Pb(C2H5)4}{former antiknock additive} + NaCl
}
\end{example}
There are several keys to customize \cs{mhName}.
\begin{options}
\keyval{align}{alignment command}\Module{mhName}\Default{\cs*{centering}}
The alignment of the text in the box it is placed in.
\keyval{format}{anything}\Module{mhName}\Default
The format of the text.
\keyval{fontsize}{font size command}\Module{mhName}\Default{\cs*{tiny}}
The fontsize of the text.
\keychoice{width}{\meta{dim},auto}\Module{mhName}\Default{auto}
The width of the box the text is placed in.
\end{options}
Since version~3.13 of \pkg{mhchem} you need to hide the command in braces if
you want to use the optional argument,
\begin{example}
\ce{
4 C2H5Cl + Pb / Na
->
{\mhName[fontsize=\footnotesize]{Pb(C2H5)4}{former antiknock additive}}
+ NaCl
}\par
\chemsetup[mhName]{
align=\raggedright,
fontsize=\small,
format=\bfseries\color{red},
width=3cm
}
\ce{
4 C2H5Cl + Pb / Na
->
\mhName{Pb(C2H5)4}{former antiknock additive} + NaCl
}
\end{example}
\section{Reaction Environments}\label{sec:reactions}
\subsection{Defined by \chemmacros}
You can use these environments for numbered\ldots
\begin{environments}
\environment{reaction}
A single reaction where \chemformula\ code is placed directly in the
environment body. A wrapper around the \env*{equation} environment.
\environment{reactions}
Several aligned reactions. A wrapper around \pkg{amsmath}'s \env*{align}
environment.
\end{environments}
\ldots and their starred versions for unnumbered reactions.
\begin{environments}
\environment{reaction*}
A wrapper around the \env*{equation*} environment.
\environment{reactions*}
A wrapper around \pkg{amsmath}'s \env*{align*} environment.
\end{environments}
With them you can create (un)numbered reaction equations similar to
mathematical equations.
Theses environments use the \env*{equation}/\env*{equation*} environments or
the \env*{align}/\env*{align*} environments, respectively, to display the
reactions.
\begin{example}
Reaction with counter:
\begin{reaction}
A -> B
\end{reaction}
\end{example}
\begin{example}
Reaction without counter:
\begin{reaction*}
C -> D
\end{reaction*}
\end{example}
\begin{example}
Several aligned reactions with counter:
\begin{reactions}
A &-> B + C \\
D + E &-> F
\end{reactions}
\end{example}
\begin{example}
Several aligned reactions without counter:
\begin{reactions*}
G &-> H + I \\
J + K &-> L
\end{reactions*}
\end{example}
If you want to change the layout of the counter tags, you can use
\cs{renewtagform}\marg{tagname}\oarg{format}\marg{right delimiter}\marg{left
delimiter}\footnote{Provided by the \pkg{mathtools} package}.
\begin{example}
\renewtagform{reaction}[R \textbf]{[}{]}
\begin{reaction}
H2O + CO2 <<=> H2CO3
\end{reaction}
\end{example}
With version~3.3 referencing and the use of \AmS math's \cs{intertext} also
function properly:
\begin{example}
\begin{reactions}
A + 2 B &-> 3 C + D \label{rxn:test}
\intertext{Some text in between aligned reactions}
3 E + F &<=> G + 1/2 H
\end{reactions}
See reaction~\ref{rxn:test}.
\end{example}
\emph{You should not use \cs{mch} and its relatives inside the \env{reaction}
environments.}
\subsection{Own Reactions}
You can create new types of reactions with the command:
\begin{commands}
\command{DeclareChemReaction}[\oarg{options}\marg{name}\marg{math name}]
\meta{name} will be the name of the new environment. \meta{math name}
is the underlying math environment.
\end{commands}
The command has two options.
\begin{options}
\keybool{star}
Also create a starred variant.
\keybool{arg}
Add a mandatory argument to the defined environment.
\end{options}
There is \option{star}, which will also define a starred version of the new
environment, if the starred math environment exists. If it doesn't exist,
this will cause an error.
Then there is \option{arg}, which is used to define an environment with a
mandatory argument. Of course this only works, if the used math environment
has a mandatory argument.
The predefined environments are defined via
\begin{sourcecode}
\DeclareChemReaction[star]{reaction}{equation}
\DeclareChemReaction[star]{reactions}{align}.
\end{sourcecode}
Let's suppose, you'd like to have the alignment behaviour of the \env{alignat}
environment for \chemformula\ reactions. You could do the following:
\begin{sourcecode}
\DeclareChemReaction[star,arg]{reactionsat}{alignat}
\end{sourcecode}
With this the \env{reactionsat} environment is defined.
\begin{example}
\DeclareChemReaction[star,arg]{reactionsat}{alignat}
\begin{reactionsat}{3}
A &-> B &&-> C &&-> D \\
aaaaa &-> bbbbb &&-> ccccc &&-> ddddd
\end{reactionsat}
\begin{reactionsat*}{2}
A &-> B & C &-> D \\
aaaaa &-> bbbbb &\quad{} ccccc &-> ddddd
\end{reactionsat*}
\end{example}
\subsection{List of Reactions}
\chemmacros\ also provides a command to display a list of the reactions
created with the \env{reaction} environment.
\begin{commands}
\command{listofreactions}
Print a list of reactions.
\end{commands}
\begin{example}
\listofreactions
\end{example}
The output of this list can be modified by two options:
\begin{options}
\keyval{list-name}{name of the list}\Module{reaction}\Default{List of
reactions}
Let's you set the name of the list manually. The default name is language
dependent, see section~\ref{sec:languages}.
\keyval{list-entry}{prefix to each entry}\Module{reaction}\Default{Reaction}
Let's you set a prefix to each list entry. The default name is language
dependent, see section~\ref{sec:languages}.
\end{options}
Instead of using the option \option{list-name} you also could redefine
\cs{reactionlistname}.
The list lists all reactions with a number and disregards reactions without
number. All reaction environments without star have an optional argument
which let's you add a description (or caption) for the entry in the list.
\begin{example}
\begin{reaction}[Autoprotolyse]
2 H2O <<=> H3O+ + OH-
\end{reaction}
\end{example}
If you use the \env{reactions} environment this will not work, though. In
this case you can use
\begin{commands}
\command{AddRxnDesc}[\marg{description}]
Add a description to a reaction.
\end{commands}
\begin{example}
\begin{reactions}
Cl "\Lewis{0.,\vphantom{Cl}}" + CH4 &
-> HCl + "\Lewis{4.,\vphantom{CH}}" CH3 \AddRxnDesc{first~step~of~chain} \\
"\Lewis{4.,\vphantom{CH}}" CH3 + Cl2 &
-> CH3Cl + Cl "\Lewis{0.,\vphantom{Cl}}" \AddRxnDesc{second~step~of~chain}
\end{reactions}
\end{example}
Note: you don't have to use the phantom commands if you haven't changed the
format of the atoms (see the documentation of the \chemformula\ package for
information on how to do this).
\section{Phases}\label{sec:phasen}
\subsection{Basics}
These commands are intended to indicate the phase of a compound.
\begin{itemize}
\item[]
\cs{sld} \sld \quad
\cs{lqd} \lqd \quad
\cs{gas} \gas \quad
\cs{aq} \aq
\end{itemize}
\begin{example}
\ch{C\sld{} + 2 H2O\lqd{} -> CO2\gas{} + 2 H2\gas}\par
To make it complete: NaCl\aq.
\end{example}
The \ac{iupac} recommendation to indicate the state of aggregation is to put
it in parentheses after the compound \cite{iupac:greenbook}. However, you
might want to put it as a subscript which is also very common.
\begin{cnltxquote}[{\acs{iupac} Green Book {\cite[][p.\,54]{iupac:greenbook}}}]
The \textelp{} symbols are used to represent the states of aggregation of
chemical species. The letters are appended to the formula in parentheses
and should be printed in Roman (upright) type without a full stop (period).
\end{cnltxquote}
There are two options to customize the output:
\begin{options}
\keychoice{pos}{side,sub}\Module{phases}\Default{side}
Switch the position of the phase indicator.
\keyval{space}{dim}\Module{phases}\Default{.1333em}
Change the default spacing between compound a phase indicator if
\keyis{pos}{side}. A \TeX\ dimension.
\end{options}
\begin{example}
\chemsetup[phases]{pos=sub}
\ch{C\sld{} + 2 H2O\lqd{} -> CO2\gas{} + 2 H2\gas}\par
To make it complete: NaCl\aq.
\end{example}
\subsection{Define Own Phases}
Depending on the subject of your document you might need to indicate other
states of aggregation. You can easily define them.
\begin{commands}
\command{DeclareChemPhase}[\marg{cs}\oarg{german}\marg{english}]
Define a new phase command. Actually the optional argument is an artefact
of an earlier implementation of the command. It has no effect at all.
See section~\ref{sec:lang-depend} for a way to define language dependent
settings.
\command{RenewChemPhase}[\marg{cs}\oarg{german}\marg{english}]
Redefine an existing pahse command. Actually the optional argument is an
artefact of an earlier implementation of the command. It has no effect at
all. See section~\ref{sec:lang-depend} for a way to define language
dependent settings.
\command{phase}[\marg{phase}]
If you need a phase indicator just once or twice.
\end{commands}
\cs{DeclareChemPhase} only defines a phase if \meta{cs} is not already used by
any other command. If it \emph{is} already used \chemmacros\ will either give
a warning or an error, depending on the option \option{strict}.
\cs{RenewChemPhase} \emph{only} defines a phase if \meta{cs} \emph{is} already
used and issues a warning/error otherwise. Unlike the other declaration
commands of \chemmacros\ \cs{DeclareChemPhase} and \cs{RenewChemPhase}
\emph{can only be used in the preamble.}
\begin{example}
% preamble:
% \DeclareChemPhase{\aqi}{aq,$\infty$}% aqueous solution at infinite dilution
% \DeclareChemPhase{\cd}{cd}% condensed phase
% \DeclareChemPhase{\lc}{lc}% liquid crystal
NaOH\aqi\ \ch{H2O\cd} U\phase{cr} A\lc \par
\chemsetup[phases]{pos=sub}
NaOH\aqi\ \ch{H2O\cd} U\phase{cr} A\lc
\end{example}
\subsection{Language Dependencies}\label{sec:lang-depend}
For each pahse command a translation into the custom language can be defined.
If a phase is declared with \cs{DeclareChemPhase} no translation exists and
for every \pkg{babel} languuage the literal string is used that was provided
as a definition. Let's say you define the phase
\begin{sourcecode}
\DeclareChemPhase\liquid{l}
\end{sourcecode}
and want to add the German translation ``f{}l''. Then you could do
\begin{sourcecode}
\DeclareTranslation{German}{phase-liquid}{f{}l}
\end{sourcecode}
This way, when you use it in a German document using the appropriate
\pkg{babel} option using \cs*{liquid} would correctly translate. For this the
package \pkg{translations} is used. The \acs{id} always is
\code{phase-\meta{csname}} where \meta{csname} is the name of the phase
command you defined without leading backslash.
See section~\ref{sec:languages} for predefined translations.
\section{Newman Projections}\label{sec:newman}
\chemmacros\ provides a command to draw Newman projections.
\begin{commands}
\command{newman}[\oarg{options}\darg{angle}%
\Marg{\meta{1},\meta{2},\meta{3},\meta{4},\meta{5},\meta{6}}]
Create Newman projections. This command uses \TikZ\ internally.
\meta{angle} rotates the back atoms counter clockwise with respect to the
front atoms and is an optional argument. \meta{1} to \meta{6} are the
positions, the first three are the front atoms, the last three the back
atoms.
\end{commands}
\begin{example}
\newman{} \newman(170){}
\newman{1,2,3,4,5,6} \newman{1,2,3} \newman{,,,4,5,6}
\end{example}
Several options allow customization:
\begin{options}
\keyval{angle}{angle}\Module{newman}\Default{0}
Default angle.
\keyval{scale}{factor}\Module{newman}\Default{1}
Scale the whole projection by factor \meta{factor}.
\keyval{ring}{tikz}\Module{newman}\Default
Customize the ring with \TikZ\ keys.
\keyval{atoms}{tikz}\Module{newman}\Default
Customize the nodes within which the atoms are set with \TikZ\ keys.
\keyval{back-atoms}{tikz}\Module{newman}\Default
Explicitly customize the nodes of the back atoms with \TikZ\ keys.
\end{options}
\begin{example}
\chemsetup[newman]{angle=45} \newman{}
\newman[scale=.75,ring={draw=blue,fill=blue!20}]{}
\end{example}
\begin{example}
\chemsetup[newman]{atoms={draw=red,fill=red!20,inner sep=2pt,rounded corners}}
\newman{1,2,3,4,5,6}
\end{example}
\begin{example}
\chemsetup[newman]{
atoms = {draw=red,fill=red!20,inner sep=2pt,rounded corners},
back-atoms = {draw=blue,fill=blue!20,inner sep=2pt,rounded corners}
}
\newman{1,2,3,4,5,6} \newman(170){1,2,3,4,5,6}
\end{example}
\section{s, p, and Hybrid Orbitals}\label{sec:orbitale}
\chemmacros\ provides the following command to create orbitals:
\begin{commands}
\command{orbital}[\oarg{options}\marg{type}]
Draw an orbital shape of type \meta{type}. This command uses \TikZ\
internally.
\end{commands}
There are the following types available for \meta{type}:
\begin{itemize}
\item[]
\code{s} \quad
\code{p} \quad
\code{sp} \quad
\code{sp2} \quad
\code{sp3}
\end{itemize}
\begin{example}
\orbital{s} \orbital{p} \orbital{sp} \orbital{sp2} \orbital{sp3}
\end{example}
Depending on the type you have different options to modify the orbitals:
\begin{options}
\keychoice{phase}{\default{+},-}\Module{orbital}\Default{+}
changes the phase of the orbital (all types)
\keyval{scale}{factor}\Module{orbital}\Default{1}
changes the size of the orbital (all types)
\keyval{color}{color}\Module{orbital}\Default{black}
changes the color of the orbital (all types)
\keyval{angle}{angle}\Module{orbital}\Default{0}
rotates the orbitals with a p contribution counter clockwise (all types
except \code{s})
\keybool{half}\Module{orbital}\Default{false}
displays only half an orbital (only \code{p})
\end{options}
\begin{example}
\orbital{s} \orbital[phase=-]{s}
\orbital{p} \orbital[phase=-]{p}
\orbital{sp3} \orbital[phase=-]{sp3}
\orbital[angle=0]{p} \orbital[color=red!50]{p}
\orbital[angle=135,scale=1.5]{p} \orbital[half]{p}
\end{example}
Additionally there are two options, with which the \TikZ\ behaviour can be
changed.
\begin{options}
\keybool{overlay}\Module{orbital}
The orbital \enquote{doesn't need space}; it is displayed with the \TikZ\
option \code{overlay}.
\keyval{opacity}{num}\Module{orbital}
The orbital becomes transparent; \meta{value} can have values between
\code{1} (fully opaque) to \code{0} (invisible).
\end{options}
\begin{example}
\vspace{7mm}
\chemsetup[orbital]{
overlay,
p/color = black!70
}
\setbondoffset{0pt}
\chemfig{
?\orbital{p}
-[,1.3]{\orbital[phase=-]{p}}
-[:30,1.1]\orbital{p}
-[:150,.9]{\orbital[phase=-]{p}}
-[4,1.3]\orbital{p}
-[:-150,1.1]{\orbital[phase=-]{p}}?
}
\vspace{7mm}
\end{example}
\begin{example}
\vspace{7mm}
\setbondoffset{0pt}
\chemsetup[orbital]{
overlay ,
opacity = .75 ,
p/scale = 1.6 ,
s/color = blue!50 ,
s/scale = 1.6
}
\chemfig{
\orbital{s}
-[:-20]{\orbital[scale=2]{p}}
{\orbital[half,angle=0]{p}}
{\orbital[angle=170,half]{p}}
{\orbital[angle=-150,half]{p}}
(-[:-150]\orbital{s})-\orbital{s}
}
\vspace{1cm}
\end{example}
\part{Other Packages of the Bundle}
The other three packages, \chemformula, \ghsystem\ and \chemgreek, all have
their own documentation (if you click on the name the corresponding file will
open):
\begin{itemize}
\item \url{chemformula_en.pdf}
\item \url{ghsystem_en.pdf}
\item \url{chemgreek_en.pdf}
\end{itemize}
This change has been made \sinceversion{4.0}with version~4.0 since with this
version every of those packages can be used independently from the
\chemmacros\ package. It made sense to give each of them an own documentation
file. You should be able to find them in the same folder as this document as
well as via the \code{texdoc} program. You can also try and click on the
names in the list above. They are links and \emph{should} open the respective
file.
\appendix
\part{Appendix}
\addsec{Suggestions and Bug Reports}
Feedback on \chemmacros, \chemformula, \chemgreek, and \ghsystem\ is highly
appreciated and welcome!
If you have suggestions for macros, missing features \etc, please don't
hesitate to contact me. If you recognize any errors, be it chemical ones,
wrong documentation and the like, I'd be grateful about a short
email\footnote{\href{mailto:contact@mychemistry.eu}{contact@mychemistry.eu}}.
If you find any bugs, it would be best, if you'd send me a minimal example,
with which I can reproduce the bug. You can also submit an issue on
\url{https://bitbucket.org/cgnieder/chemmacros/} instead.
Many thanks to all the people who already provided me with feedback,
especially (in alphabetical order):
\begin{itemize}
\item Peter Cao
\item Christina Lüdigk
\item Dr.~Paul King
\item Jonas Rivetti (Special thanks for his translation of the hazard and
precautionary statements into Italian!)
\item Christoph Schäfer
\item Timo Stein
\end{itemize}
\end{document}
|