summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/latex/axessibility/axessibilityExampleGoldenMean.tex
blob: 9078e82c2f0134538b6b4b8cc9094d1448a4abce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
% 
% Copyright (C) 2018, 2019 by 
% Anna Capietto, Sandro Coriasco, Tiziana Armano, 
% Nadir Murru, Alice Ruighi, Eugenia Taranto,
% Dragan Ahmetovic, Cristian Bernareggi, Michele Berra
%
% Based on accsupp.sty
%
% This work consists of the main source file axessibility.dtx
% and the derived files
%   axessibility.ins, axessibility.sty, axessibility.pdf, README,
%   axessibilityExampleGoldenMean.tex
% 
% The Current Maintainer of this work is 
%               Sandro Coriasco
% 
% This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 License 
% http://creativecommons.org/licenses/by-nc/4.0/
%

\documentclass[a4paper,11pt]{article}

\usepackage{axessibility}

\title{The golden mean}
\author{}
\date{}

\begin{document}

\maketitle

The golden mean is the number
\[\frac{1 + \sqrt{5}}{2},\] 
that is the root larger in modulus of
\begin{equation} x^2 - x - 1. \end{equation}
It is usually defined as the ratio of two lengths \(a\) and \(b\) such that 
\begin{equation*} (a+b) : a = a : b. \end{equation*} 
Let \(x\) be the ratio \( \frac{a}{b} \), we have \( \frac{a+b}{a} = 1 + \frac{1}{x} \), from which we get the equation \(x^2 = x + 1\).


\end{document}