1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
|
\documentclass[acmtog, authorversion]{acmart}
\usepackage{booktabs} % For formal tables
% TOG prefers author-name bib system with square brackets
\citestyle{acmauthoryear}
\setcitestyle{square}
\usepackage[ruled]{algorithm2e} % For algorithms
\renewcommand{\algorithmcfname}{ALGORITHM}
\SetAlFnt{\small}
\SetAlCapFnt{\small}
\SetAlCapNameFnt{\small}
\SetAlCapHSkip{0pt}
\IncMargin{-\parindent}
% Metadata Information
\acmJournal{TOG}
\acmVolume{9}
\acmNumber{4}
\acmArticle{39}
\acmYear{2010}
\acmMonth{3}
% Copyright
%\setcopyright{acmcopyright}
%\setcopyright{acmlicensed}
%\setcopyright{rightsretained}
%\setcopyright{usgov}
\setcopyright{usgovmixed}
%\setcopyright{cagov}
%\setcopyright{cagovmixed}
% DOI
\acmDOI{0000001.0000001_2}
% Paper history
\received{February 2007}
\received{March 2009}
\received[final version]{June 2009}
\received[accepted]{July 2009}
% Document starts
\begin{document}
% Title portion
\title{A Multifrequency MAC Specially Designed for Wireless Sensor
Network Applications}
\author{Gang Zhou}
\orcid{1234-5678-9012-3456}
\affiliation{%
\institution{College of William and Mary}
\streetaddress{104 Jamestown Rd}
\city{Williamsburg}
\state{VA}
\postcode{23185}
\country{USA}}
\email{gang_zhou@wm.edu}
\author{Valerie B\'eranger}
\affiliation{%
\institution{Inria Paris-Rocquencourt}
\city{Rocquencourt}
\country{France}
}
\email{beranger@inria.fr}
\author{Aparna Patel}
\affiliation{%
\institution{Rajiv Gandhi University}
\streetaddress{Rono-Hills}
\city{Doimukh}
\state{Arunachal Pradesh}
\country{India}}
\email{aprna_patel@rguhs.ac.in}
\author{Huifen Chan}
\affiliation{%
\institution{Tsinghua University}
\streetaddress{30 Shuangqing Rd}
\city{Haidian Qu}
\state{Beijing Shi}
\country{China}
}
\email{chan0345@tsinghua.edu.cn}
\author{Ting Yan}
\affiliation{%
\institution{Eaton Innovation Center}
\city{Prague}
\country{Czech Republic}}
\email{yanting02@gmail.com}
\author{Tian He}
\affiliation{%
\institution{University of Virginia}
\department{School of Engineering}
\city{Charlottesville}
\state{VA}
\postcode{22903}
\country{USA}
}
\affiliation{%
\institution{University of Minnesota}
\country{USA}}
\email{tinghe@uva.edu}
\author{Chengdu Huang}
\author{John A. Stankovic}
\author{Tarek F. Abdelzaher}
\affiliation{%
\institution{University of Virginia}
\department{School of Engineering}
\city{Charlottesville}
\state{VA}
\postcode{22903}
\country{USA}
}
\renewcommand\shortauthors{Zhou, G. et al}
\begin{abstract}
Multifrequency media access control has been well understood in
general wireless ad hoc networks, while in wireless sensor networks,
researchers still focus on single frequency solutions. In wireless
sensor networks, each device is typically equipped with a single
radio transceiver and applications adopt much smaller packet sizes
compared to those in general wireless ad hoc networks. Hence, the
multifrequency MAC protocols proposed for general wireless ad hoc
networks are not suitable for wireless sensor network applications,
which we further demonstrate through our simulation experiments. In
this article, we propose MMSN, which takes advantage of
multifrequency availability while, at the same time, takes into
consideration the restrictions of wireless sensor networks. Through
extensive experiments, MMSN exhibits the prominent ability to utilize
parallel transmissions among neighboring nodes. When multiple physical
frequencies are available, it also achieves increased energy
efficiency, demonstrating the ability to work against radio
interference and the tolerance to a wide range of measured time
synchronization errors.
\end{abstract}
%
% The code below should be generated by the tool at
% http://dl.acm.org/ccs.cfm
% Please copy and paste the code instead of the example below.
%
\begin{CCSXML}
<ccs2012>
<concept>
<concept_id>10010520.10010553.10010562</concept_id>
<concept_desc>Computer systems organization~Embedded systems</concept_desc>
<concept_significance>500</concept_significance>
</concept>
<concept>
<concept_id>10010520.10010575.10010755</concept_id>
<concept_desc>Computer systems organization~Redundancy</concept_desc>
<concept_significance>300</concept_significance>
</concept>
<concept>
<concept_id>10010520.10010553.10010554</concept_id>
<concept_desc>Computer systems organization~Robotics</concept_desc>
<concept_significance>100</concept_significance>
</concept>
<concept>
<concept_id>10003033.10003083.10003095</concept_id>
<concept_desc>Networks~Network reliability</concept_desc>
<concept_significance>100</concept_significance>
</concept>
</ccs2012>
\end{CCSXML}
\ccsdesc[500]{Computer systems organization~Embedded systems}
\ccsdesc[300]{Computer systems organization~Redundancy}
\ccsdesc{Computer systems organization~Robotics}
\ccsdesc[100]{Networks~Network reliability}
%
% End generated code
%
\keywords{Wireless sensor networks, media access control,
multi-channel, radio interference, time synchronization}
\maketitle
\input{samplebody-journals}
\end{document}
|