1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
|
% This software is licensed to you under the terms of a BSD-style license,
% see bsdlic.txt for details.
\input dotnot
\headline{\ifnum\count0=1\hfil\else\centerline\title\fi}
\def\title{A Short Program Whose Construction Isn't}
\def\out{{\it out:\/}}
\centerline{\bf \title}
\beginsection Introduction
This is a construction of a {\it Simple Program Whose Proof Isn't},
as D.~E.~Knuth titled his contribution to {\it Beauty Is Our
Business, A Birthday Salute to Edsger W. Dijkstra}. Knuth's program
is module 103 from \TeX. Given integer $n$ it prints a decimal
fraction that approximates $n/2^{16}$ using just enough digits such
that the fraction determines $n$ uniquely. Both David Gries (in
{\it Binary to Decimal, One More Time}) and Knuth presented proofs
in the same volume that use unique properties of $2^{16}$. But this
program provides a nontrivial generalization, it complies to the
requirements for any $q > n \ge 0$. We call it ``\out''.
\beginsection Notation
For program construction, that is developing the program {\it and\/} its
proof hand in hand, Dijkstra proposed both a notation (see EWD
1300) and a programming language (see {\it A Discipline Of
Programming}) that we are going to use here---however, slightly
modified, blocks are deliminated by $[$ and $]$.
A dot denotes function application, like ``$f.x$'' for ``$f(x)$''.
Dot and colon have the same precedence and are left associative;
e.g., ``$d:hiext.i$'' means ``$(d:hiext).i$''. The precedence is
higher than that of any other operator, e.g., ``$\neg(d \:= a).R0$''
means ``$\neg\bigl((d \:= a).R0\bigr)$''.
For expressions $E$, $F$, and $G$ we notate substitution of $E$ by
$F$ in $G$ as ``$(E \:= F).G$'', e.g.,
\f (x \:= x+y).(x > 0) \meq x+y > 0\qquad,\hbox{or}\\
\f \bigl((10+5) \:= 7\bigr).\bigl((10+5) * 2\bigr)\qquad=\qquad 14\qquad.\\
The last example shows that we don't constraint the
substituion function to predicates but apply it to any expression,
in this case to an integer expression, and that we allow any
expression left of $\:=$, not only program variables.
We denote a conventionally written set $\{t.x \mid r.x\}$ as $\<x :
r.x : t.x\>$. The three colon separated fields denote the dummy
variable ($x$), the range of the dummy ($r.x$) and the terms ($t.x$),
that is the elements of the set. Quantified operators applied to
a set are written just after the $\langle$, e. g., $\<\mx i : i <
10 : i\>$ is the maximum integer exceeded by ten, and $\<\nbr i :
0 \le i < 10 : i\>$ is the number of naturals exceeded by 10.
Throughout this paper, the type of $m$, $n$, $i$, $j$, and $p$ is
integer and of $q$ positive integer and of $r$ rational. The
variables $d$ and $a$ are of type integer array with the lower
bound of its domain being one.
\beginsection Integer Artithmetic
This construction of \out\ is based on
\proclaim Theorem 0.
A half open interval of length $j$ contains exactly $j$ integers.
As programmers we all know this theorem for intervals with integral
end points but its extension to arbitray end points might come as
a surprise. We'll use the following corollaries in this paper.
\proclaim Corollary 0.
$m = \< \mx i : i \le p/q : i\>\meq p/q-1 < m \le p/q$
\proclaim Corollary 1.
$m = \< \mx i : i < p/q : i\>\meq p/q-1 \le m < p/q$
\proclaim Corollary 2.
$ p\div q = \< \mx i : i*q \le p : i\>$
\proclaim Corollary 3.
$(p-1)\div q = \< \mx i : i*q < p : i\>$
\beginsection Specification of \out
Given integers $n$, $q$ with $0 \le n < q$, \out\ computes a decimal
representation of $n/q$. It stores the digits in an array $d$ with
$d.lob = 1$. For any integer array $a$ with $a.lob=1$ let $a.s$
be the sum
\f a.s = \< \su i : a.lob \le i \le a.hib : a.i/10^i\>\\
{\it d.s is close enough to $n/q$\/}:
\nf R0: (n-1/2)/q \le d.s < (n+1/2)/q\\
{\it The length of $d$ is minimal\/}:
\nf R1: \< \fa a : a.hib < d.hib : \neg(d \:= a).R0 \>\\
{\it
If there is more than one approximation that is close enough to
$n/q$ and yielded by an array of minimal length, $d.s$ is the closest one\/}:
\nf R2: \<\nbr a : (d \:= a).R0 \mand a.hib = d.hib : a.s \> > 1
\mimpl |n/q - d.s| \le | n/q - a.s|\\
{\it d contains decimal digits\/}:
\nf R3: \< \fa i : d.lob \le i \le d.hib : 0 \le d.i < 10\>\\
\beginsection Construction of \out
For brevity, we define expressions that depend implicitly on $d$, the only
variable in the state space of \out.
\dnf L: d.hib\\Q: 10^L\!/q\\
\dnf N: 10^L*d.s\\J: \<r : (n-1/2)*Q \le r < (n+1/2)*Q : r\>\\
We introduced $N$ because it is an integer and $J$ because it is
a half open interval of length $Q$. They are related to $R0$ by
\nrf0 R0 \meq N \in J\qquad.\\
For the proof of (0) we observe
\f R0 \\
\heq {multiply by $10^L$, definition of $N$ and $Q$}
\f (n-1/2)*Q \le N < (n+1/2)*Q\\
\heq {Def. of $J$}
\f N \in J\\
We construct a loop that starts with an empty array $d$, appends an
integer to $d$ in each iteration and terminates
with $R0 \mand R1$.
Applying the Linear Search Theorem to find the minimal length
we introduce the loop guard
\nf G0: \< \fa a : a.hib = L : \neg(d \:= a).R0 \>\qquad.\\
Since $N$ is an integer and $J$ depends on $L$ only, not on the entries
of $d$, (0) lets us conclude
\f G0 \mff \<\nbr i : i \in J : i\> = 0\qquad.\\
\filbreak
To test for $\<\nbr i : i \in J : i\> > 0$, we use a wittness $N$
that is in $J$ whenever $J$ contains an integer at all. Two candidates for
$N$ come to mind:
\df N = \< \mx i : i < (n+1/2)*Q : i\>\\ N = \< \mn i : (n-1/2)*Q\le i : i\>\\
\df \;\mand\\ \;\mand \\
\df \<\nbr i : i \in J : i\> = 0\\ \<\nbr i : i \in J : i\> = 0\\
\dh\eq {arithmetic} \eq {arithmetic}
\df N < (n-1/2)*Q \\ (n+1/2)*Q \le N \\
\filbreak
We decide for the left alternative. It leads to a nondecreasing
sequence of the intermediate sums $d.s$, and that is equivalent to
the entries in $d$ being naturals. We take
\nf P0: N = \< \mx i : i < (n+1/2)*Q : i \> \\
\unparskip
as a loop invariant and replace $G0$ by the loop guard
\nf G1: N < (n-1/2)*Q\qquad.\\
\filbreak
The program reads---with $E$ chosen such that $wp.``d:hiext.E".P0$ holds:
\bblock
d \vir int \array \:= (1) \co{R1; P0}
;\do G1 \-> d:hiext.E \co{R1; P0} \od
\cofl{\neg G1; R1; P0}
\eblock
We are going to prove that $P0$ and $R1$ are loop invariants.
\doparskip
\dnf P0 \hbox{ is established by the initialization}:\\
P0 \hbox{ is maintained}:\\
\df wp.``d \:= (1)".P0\\
wp.``d:hiext.E".P0\\
\dh\eq {$N, L \:= 0,0$}
\eq {choice of $E$}
\df 0 = \<\mx i : i < (n+1/2)/q : i\>\\
true\\
\heq {Corollary 1}
\f (n+1/2)/q - 1 \le 0 < (n + 1/2)/q\\
\heq {$0 \le n$ implies the right $<$}
\f n+1/2 \le q\\
\heq {$n$, $q$ are integers}
\f n < q\\
\heq {precondition of \out}
\f true\\
\doparskip
\dnf R1\hbox{ is established by the initialization}:\\
R1\hbox{ is maintained}:\\
\df wp.``d \:= (1)".R1\\
wp.``d:hiext.E".R1\\
\dh\eq {$L \:= 0$}
\eq {$L \:= L+1$}
\df \<\fa i : 0 \le i < 0 : \neg(L \:= i).R0 \>\\
\< \fa i : 0 \le i < L+1 : \neg(L \:= i).R0 \>\\
\dh\eq {predicate calculus: empty range of $\fa$}
\eq {predicate calculus: split range}
\df true\\
\< \fa i : 0 \le i < L : \neg(L \:= i).R0 \> \mand \neg(L \:= L).R0\\
\dh {} {} \eq {Def. of $R1$}
\df \\ R1 \mand \neg R0\\
\dh{} {} \eq {$R1$ is precondition}
\df \\ \neg R0\\
\dh {} {} \ff {construction of $G1$}
\df \\ G1\\
\dh {} {} \eq {$G1$ is precondition}
\df \\ true\\
For the termination proof, we note that $L$ is incremented in each iteration
and bounded from above:
\f 10^L < q\\
\heq {Def. of $Q$, $q > 0$}
\f Q < 1\\
\h\ff {$J$ is an half open interval of length $Q$; Theorem 0}
\f \<\nbr i : i \in J : i\> = 0\\
\heq {$G1 \mand P0$}
\f true\\
That finishes the proof of the above program and we are ready to turn to
\nf R2: \<\nbr a : (d \:= a).R0 \mand a.hib = L : a.s \> > 1
\mimpl |n/q - d.s| \le | n/q - a.s|\qquad.\\
$R2$'s antecedent reduces to $\<\nbr i : i \in J : i\> > 1$, since
for any $a$ with $a.hib = L$ the number $a.s*10^L$ is an integer,
which is contained in $J$ precisely when $(d \:= a).R0$ holds.
$R2$'s consequence is equivalent to
\f n*Q - 1/2 \le N \le n*Q+1/2\qquad.\\
Since this condition does not always determine a unique solution
for $N$, we impose the slightly stronger one constraining $N$ to
a half open interval of length 1.
\nf R2C: n*Q - 1/2 < N \le n*Q+1/2\qquad.\\
\filbreak
$R2C$ looks quite different from $P0$. To avoid appending a "wrong"
digit according to $P0$, we take a further loop invariant that
implies the negation of $R2$'s antecedent.
\f \<\nbr i : i \in J : i\> \le 1\\
\h\ff {$J$ is an half open interval of length $Q$; Theorem 0}
\nf P1: Q \le 1\\
$P1$ is established by initialization:
\f wp.``d \:= (1)".P1 \\
\heq {$Q \:= 1/q$}
\f 1 \le q\\
\heq {$0 \le n < q$}
\f true\\
We calculate guard $G2$ such that $P1$ is maintained:
\f wp.``d:hiext.E".P1\\
\heq {$Q \:= 10*Q$}
\nf G2: 10*Q \le 1\\
With $G2$, the loop might terminate while $G1$ is still true, that is without
reaching $R0$. In that case, we compute the last digit according to $R2C$.
The program now reads---with $E$ chosen such that $wp.``d:hiext.E".P0$ holds
and $F$ chosen such that $wp.``d:hiext.F".R2C$ holds:
\bblock
d \vir int \array \:= (1) \co{P0\and R1\and P1}
; \do G1 \mand G2 \-> d:hiext.E \co{P0\and R1\and P1} \od
\cofl{\neg (G1 \and G2) \and P0 \and R1 \and P1}
; \IF G1 \-> d:hiext.F \co{R2C} \| \neg G1 \-> skip\FI
\cofl{R0\and R1\and R2}
\eblock
We will prove that the if-statement establishes the postconditions.
We already have proven that the loop terminates and establishes
its postconditions. According to the guards of the if-statement,
our proof takes two cases:
Case zero: The loop terminates with $\neg G1$:
Here the if-statement selects the skip statement. Its predicate
transformer, $wp.skip$, is the identity function.
$R0$ is reached:
\df (n-1/2)*Q \le N \\ N < (n+1/2)*Q \\
\dh\eq {$\neg G1$} \eq {$P0$}
\df true \\ true \\
$R1$ is reached: $R1$ is a precondition of the if-statement.
$R2$ is reached: $P1$ implies the negation of $R2$'s antecedent
and is a precondition of the if-statement.
This ends the proof for case zero.
\filbreak
Case one: The loop terminates with $G1$:
$R0$ is reached: We show that $R0$ holds in the state after
``d:hiext.F''.
\nf R0: (n-1/2)*Q \le N < (n+1/2)*Q\\
\heq {towards $R2C$}
\f n*Q -(1/2)*Q \le N < n*Q + (1/2)*Q\\
\h \ff {$1<Q$, see (**) below; transitiviy of $<$ and $=$}
\f n*Q -1/2 \le N \le n*Q + 1/2\\
\heq {$F$ chosen sucht that $R2C$ holds}
\f true\\
(**)$1<Q$ holds because
\f wp.``d:hiext.F".(1<Q)\\
\heq {$Q \:= 10*Q$}
\f 1 < 10*Q\\
\heq {Definition of $G2$}
\f \neg G2\\
\heq {$G1 \mand (\neg G1 \mor \neg G2)$}
\f true\\
$R1$ is reached: The proof for the invariance of $R1$ can be taken
verbatim, since here we have the same preconditions ($G1; R1; P0$).
$R2$ is reached: Its consequence $R2C$ is established by the choice of $F$.
That finishes the proof for $R0$, $R1$, and $R2$. So far, we
ignored $R3$. In fact, the final value of $d.s$ and $L$ is uniquely
defined by the other three conditions. But the intermediate values
of $d.s$ and---equivalently the entries of $d$---are not. We can
only hope that \out\ delivers decimal digits.
We show $0 \le E < 10$ in the state before
``$d:hiext.E$'', where $wp.``d:hiext.E".P0$ holds.
\f wp.``d:hiext.E".P0\\
\heq {$N, Q \:= 10*N+E, 10*Q$}
\f 10*N + E = \<\mx i : i < (n+1/2)*10*Q : i \>\\
\heq {simplify}
\f E = \<\mx i : i < \bigl((n+1/2)*Q - N\bigr)*10 : i \>\\
\heq {Corollary 1}
\f \bigl((n+1/2)*Q - N\bigr)*10 - 1 \le E < \bigl((n+1/2)*Q-N\bigr)*10 \\
We observe:
\f 0 \le E \\
\heq {trick, 0 and $E$ are integers}
\df -1 < E \\
E < 10 \\
\dh\ff {above, left end}
\ff {above, right end}
\df -1 < \bigl((n+1/2)*Q - N\bigr)*10 - 1 \\
\bigl((n+1/2)*Q - N\bigr)*10 \le 10 \\
\dh \eq {simplify}
\eq {simplify}
\df N < (n+1/2)*Q\\
(n+1/2)*Q \le N + 1\\
\dh \eq {$P0$, right end}
\eq {$P0$, left end}
\df true\\
true\\
\filbreak
So far so good! Now $F$.
We show $0 \le F < 10$ in the state before
``$d:hiext.F$'', where $wp.``d:hiext.F".R2C$ holds.
\f wp.``d:hiext.F".R2C \\
\heq {$N, Q \:= 10*N+F, 10*Q$}
\f (n*Q-N)*10 - 1/2 < F \le (n*Q-N)*10 + 1/2\\
\filbreak
We observe:
\df 0 \le F \\
F < 10 \\
\dh \eq {trick, 0 and $F$ are integers}
\ff {see above, right end}
\df -1 < F\\
(n*Q-N)*10 + 1/2 < 10\\
\dh \ff {see above, left end}
\eq {heading for $P0$, left end}
\df -1 \le (n*Q-N)*10 - 1/2\\
(n*Q-1)*10 + 1/2 < N*10\\
\dh \eq {simplify}
\ff {$P0$, left end}
\df -1/2 \le (n*Q-N)*10\\
(n*Q-1)*10 + 1/2 < (n+1/2)*Q*10-10\\
\dh \ff {arithmetic}
\eq {simplify}
\df N < n*Q\\
1/2 < (1/2)*Q*10\\
\dh\eq {$G1$}
\eq {$\neg G2$}
\df true\\
true\\
\filbreak
Now that \out\ is proved correct---lucky as we are, $R3$ holds---,
we reduce the expressions to integer arithmetics. We start with
\nf G2: 10*Q \le 1\\
\heq {$Q=10^L\!/q$}
\f 10^{L+1} \le q\\
\heq {new variable $u$ with invariant $u = 10^{L+1}$}
\f u \le q\\
The invariant of $u$ is established by $u \:= 10$ and maintained
by $u \:= 10*u$.
\filbreak
Next, we reduce
\nf G1: N < (n-1/2)*Q \\
\heq {expand with $q$, reuse $u$}
\f N*q*10 < (n-1/2)*u\\
\heq {think positive}
\f u/2 < n*u - N*q*10\\
\heq {$u = 10^{L+1}$ is even}
\f u \div 2 < n*u - N*q*10\\
\heq {new variable $v$ with invariant $v=n*u-N*q*10$}
\f u \div 2 < v\\
\filbreak
The expressions $n*u$ and $N*q*10$ might take large values. To avoid integer
overflow, we store their difference in $v$. The invariant of $v$ is established
by $v \:= 10*n$.
We calculate $V$ such that $v$'s invariant is maintained by $v \:= V$.
\f wp.``d:hiext.E; u, v \:= 10*u, V".(v = n*u - N*q*10)\\
\heq {semantics of the semicolon}
\f wp.``d:hiext.E".\bigl(wp.``u, v \:= 10*u, V".(v = n*u - N*q*10)\bigr)\\
\heq {semantics of the assignment}
\f wp.``d:hiext.E".(V = n*10*u - N*q*10)\\
\heq {array semantics: $N \:= 10*N+E$}
\f V = n*10*u - (10*N+E)*q*10\\
\heq {simplify}
\f V = (n*u - 10*N*q-E*q)*10\\
\heq {invariant for $v$}
\f V = (v-E*q)*10\\
\filbreak
Reducing $E$ and $F$ to $\div$ is straight forward by the well
known Corollary 2 and the slightly less well known Corollary 3.
\dnf E: \<\mx i : i < \bigl((n+1/2)*Q - N\bigr)*10 : i \>\\
F: \<\mx i : i \le (n*Q - N)*10 + 1/2 : i \>\\
\dh= {expand with $q$}
= {expand with $q$, reuse $u$}
\df \<\mx i : i*q < (n+1/2)*10^{L+1} - N*q*10 : i \>\\
\<\mx i : i*q \le n*u - N*q*10 + q/2 : i \>\\
\dh= {reuse $u$}
= {reuse $v$}
\df \<\mx i : i*q < n*u+ u/2 - N*q*10 : i \>\\
\<\mx i : i*q \le v + q/2 : i \>\\
\dh= {reuse $v$ , $u$ is even}
= {see (*)}
\df \<\mx i : i*q < v + u \div 2 : i \>\\
\<\mx i : i*q \le v + q \div 2 : i \>\\
\dh= {Corollary 3}
= {Corollary 2}
\df (v + u \div 2 - 1) \div q\\
(v + q \div 2) \div q\\
\filbreak
The equation at (*) holds when $q$ is even, since then $q/2 = q \div 2$.
And when $q$ is odd, we have $q/2 = q \div 2 + 1/2$ and we observe
\f i*q \le v + q/2\\
\heq {$q$ is odd}
\f i*q \le v + q \div 2 + 1/2\\
\heq {$i*q$ and $v + q \div 2$ are integers}
\f i*q \le v + q \div 2\\
\filbreak
This ends the reduction of \out\ to integer arithmetic and the construction
of our program.
\bblock
\out\; \[\glocon n, q; \virvar d \co {0 \le n < q}
; \privar u, v
; d \vir int \array, u \vir int, v \vir int \:= (1), 10, n*10
; \do u \div 2 < v \mand u \le q \->\&%
d:hiext.\bigl((v + u \div 2 - 1) \div q\bigr)
; u, v \:= 10*u, (v - d.high*q)*10 \decind
\od
; \IF u \div 2 < v \-> d:hiext.\bigl((v + q \div 2) \div q\bigr)
\| u \div 2 \ge v \-> skip
\FI
\] \co {R0 \mand R1 \mand R2 \mand R3}
\eblock
That's it. The program is only proved correct, not tested. The
proof and/or the program might contain errors. Please don't hesitate
to contact me if you found one, or if you know a better way to
apply Dijkstra's technique to a problem that turned out to be
surprisingly hard.
\vfill
\bi
Wolfgang Helbig\hfill {\tt helbig@lehre.ba-stuttgart.de}\qquad\bi
Stauferstr. 22\hfill {\tt wwwlehre.ba-stuttgart.de/\~{}helbig/}\qquad\bi
71334 Waiblingen\hfill October 2008\qquad\hfill
\eject
\end
|