1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
|
\section{Choice of the view point}
\begin{center}
\begin{pspicture}(-5,-5.7)(10,7)
\psset{lightsrc=10 20 30,viewpoint=50 30 20 rtp2xyz}
\definecolor{bleuciel}{rgb}{0.78,0.84,0.99}
\psSolid[object=cube,fillcolor=bleuciel,a=2,action=draw*]%%
%\psSolid[object=cubemaillage,fillcolor=bleuciel,a=2]%%
\psSolid[object=grille,base=0 8 0 10,action=draw]%%
\psSolid[object=grille,base=0 7 0 10,action=draw,RotY=90](0,0,7)%
\psSolid[object=grille,base=0 8 0 7,action=draw,RotX=-90](0,0,7)%
\psSolid[object=cube,fillcolor=bleuciel,a=1,action=draw*](0.5,0.5,0.5)%
\psSolid[object=grille,base=-1 1 -1 1,action=draw,linecolor=blue](0,0,1)%
\psSolid[object=grille,base=-1 1 -1 1,action=draw,RotY=90,linecolor=blue](1,0,0)%
\psSolid[object=grille,base=-1 1 -1 1,action=draw,RotX=-90,linecolor=blue](0,1,0)%
\axesIIID(1,1,1)(8,10,7)
\pstVerb{
/dV 12 def % distance V
/dE 6 def % distance \'{e}cran
/Theta 60 def
/Phi 30 def
dV Theta Phi rtp2xyz
/zV exch def
/yV exch def
/xV exch def
dE Theta Phi rtp2xyz
/zE exch def
/yE exch def
/xE exch def
}%
\psPoint(xV,yV,zV){V}
\psPoint(xE,yE,zE){E}
\psPoint(xV,yV,0){Vp}
%
% 5 distance \'{e}cran
%\psPoint(dE Theta cos mul Phi cos div dE Theta sin mul Phi cos div 0){Vq}
\psPoint(xV,0,0){Vx}
\psPoint(0,yV,0){Vy}
\psPoint(0,0,zV){Vz}
\psdot(V)
{\psset{linestyle=dashed,linecolor=red}
\psline(V)(Vp)\psline(Vx)(Vp)\psline(Vy)(Vp)\psline(V)(Vz)\psline(V)(O)\psline(Vp)(O)}
%\psSolid[object=grille,base=-5 5 -3 3,action=draw,RotX=-60,linecolor=red](xE,yE,zE)%
\psTransformPoint[RotX=-60](-5 -3 0)(xE,yE,zE){A}
\psTransformPoint[RotX=-60](-5 3 0)(xE,yE,zE){B}
\psTransformPoint[RotX=-60](5 3 0)(xE,yE,zE){C}
\psTransformPoint[RotX=-60](5 -3 0)(xE,yE,zE){D}
\pspolygon[fillstyle=vlines,hatchcolor=yellow!90,hatchwidth=0.02,hatchsep=0.04](A)(B)(C)(D)
%
%
\PointEcran(1,1,1){S1}
\psPoint(1,1,1){s1}
\psline(S1)(V)
\psline[linestyle=dashed](s1)(S1)
%
\PointEcran(1,1,-1){S2}
\psPoint(1,1,-1){s2}
\psline(S2)(V)
\psline[linestyle=dashed](s2)(S2)
%
\PointEcran(-1,1,-1){S3}
\psPoint(-1,1,-1){s3}
\psline(S3)(V)
\psline[linestyle=dashed](s3)(S3)
%
\PointEcran(-1,1,1){S4}
\psPoint(-1,1,1){s4}
\psline(S4)(V)
\psline[linestyle=dashed](s4)(S4)
%
\PointEcran(1,-1,-1){S5}
\psPoint(1,-1,-1){s5}
\psline(S5)(V)
\psline[linestyle=dashed](s5)(S5)
%
\PointEcran(1,-1,1){S6}
\psPoint(1,-1,1){s6}
\psline(S6)(V)
\psline[linestyle=dashed](s6)(S6)
%
\PointEcran(-1,-1,1){S7}
\psPoint(-1,-1,1){s7}
\psline(S7)(V)
\psline[linestyle=dashed](s7)(S7)
\psset{solidmemory}
\psSolid[object=plan,
definition=equation,
args={[0 0 1 0]},
base=-5 5 -3 3,
RotX=-60,
% showBase,
action=none,
name=planbase,
]
%% here, we define the plantype object "Ecran"
\codejps{
planbase
dup xE yE zE planputorigine
dup -180 rotateplan
/Ecran exch def
}%
%% uncomment follow line to draw "Ecran"
%\psSolid[object=plan,args=Ecran,showBase,planmarks]
\psProjection[object=texte,
plan=Ecran,
fontsize=20,
text=Projection Screen](-2,2)
%
\psset{linecolor=red,fillstyle=vlines,hatchsep=0.04,hatchwidth=0.02}
\pspolygon[hatchcolor=red!60](S1)(S2)(S3)(S4)
\pspolygon[,hatchcolor=red!60](S1)(S2)(S5)(S6)
\pspolygon[hatchcolor=red!10](S1)(S4)(S7)(S6)
\psdots(s1)(s2)(s3)(s4)(s5)(s6)(s7)(S1)(S2)(S3)(S4)(S5)(S6)(S7)
\psbrace[ref=lC,linecolor=black](V)(E){$D$}
\uput[45](V){View Point}
\end{pspicture}
\end{center}
The coordinates of the object, in this case the bluish cube, are setup in the axes of coordinates $Oxyz$. The \Index{coordinates} of the \Index{view point} ($V$), are setup in the same axes of coordinates, either in \Index{spherical coordinates}---with the adding option \verb+[rtp2xyz]+, or in Cartesian coordinates---which is the default option.
Example: \verb+[viewpoint=50 30 20 rtp2xyz]+ \qquad (here the notation with spherical coordinates)
See some examples:
\def\decor{%
\psset{solidmemory}
\psSolid[object=plan,
definition=equation,
base=-5 5 -5 5,
args={[0 0 1 0] 180},
name=P1]%
\psset{fontsize=28.45,plan=P1}
\psSolid[object=plan,
args=P1,
plangrid,action=none]
\psProjection[object=texte,
linecolor=red,
text=pst-solides3d](0,3.5)
\psSolid[object=sphere,r=1,fillcolor=red!25,ngrid=18 36](4,4,1)
\psSolid[object=cone,h=3,r=1,fillcolor=cyan,mode=5](-4,4,0)
\psSolid[object=cube,a=2,fillcolor=magenta!20](-4,-4,1)
\psSolid[object=cylindre,r=1,h=4,fillcolor=blue!20,ngrid=4 16](4,-4,0)
\axesIIID(0,0,0)(6,6,6)
\psPoint(0,0,0){O}
\psdot(O)}
\begin{pspicture}(-3,-3)(3,3)
%\psframe(-5,-3)(4,4)
\psset{viewpoint=20 25 15,Decran=20,lightsrc=viewpoint,unit=0.9}
\decor
\rput(0,-4){\texttt{viewpoint=20 25 15}}
\end{pspicture}\qquad\qquad\qquad\qquad
\begin{pspicture}(-3,-3)(3,3)
%\psframe(-5,-3)(4,4)
\psset{viewpoint=-10 0 30,Decran=20,lightsrc=viewpoint,unit=0.9}
\decor
\rput(0,-4){\texttt{viewpoint=-10 0 30}}
\end{pspicture}
\begin{pspicture}(-3,-3)(3,4.5)
%\psframe(-5,-3)(4,4)
\psset{viewpoint=-20 0 10,Decran=10,lightsrc=viewpoint,unit=0.9}
\decor
\rput(0,-4){\texttt{viewpoint=-20 0 10}}
\end{pspicture}\qquad\qquad\qquad\qquad
\begin{pspicture}(-3,-3)(3,4.5)
%\psframe(-5,-3)(4,4)
\psset{viewpoint=-20 -10 25,Decran=20,lightsrc=viewpoint,unit=0.9}
\decor
\rput(0,-4){\texttt{viewpoint=-20 -10 25}}
\end{pspicture}
\section{The definition of the option \texttt{\Index{Decran}}}
The \Index{projection screen} is placed perpendicular to the direction $OV$---central
perspective, at a distance $D$ from the view point $V$: We call that distance
`Decran', with the default value of \texttt{\Lkeyword{Decran}=50}; this value can
either be positive or negative.
The following examples show the behaviour of the parameter \Lkeyword{Decran}.
\begin{center}
\begin{pspicture}(-2,-3)(2.5,3)
\psaxes[yAxis=false](-2,-2)(2,2)
\psset{viewpoint=0 0 5,Decran=5}
\psSolid[object=grille,base=-2 2 -2 2]
\psSolid[object=vecteur,args=0 0 0 2 2 0,linecolor=red,linewidth=2pt]
\axesIIID(3,3,3)\pnode(2,-2){B}\pnode(2,2){A}
\end{pspicture}
\qquad
\begin{pspicture}(-0.5,-3)(5,3)
\psaxes[yAxis=false](0,-2)(5,2)
\psset{viewpoint=5 0 5,Decran=5,RotX=-90}
\psSolid[object=grille,base=-2 2 -2 2,RotX=89.9]
\axesIIID[axisnames={x,z,y}](3,3,0)
\psdot(5,0)\uput[0](5,0){V}
\psline[tbarsize=3mm 5]{<->|}(0,-0.5)(5,-0.5)\rput*(2.5,-0.5){$D=V$}
\psline[linestyle=dashed](0,2)(5,0)\psline[linestyle=dashed](0,-2)(5,0)
\uput[-90](0,-2.5){Original}\uput[-90](0,-2.85){Image}
\psline[linestyle=dotted](A)(0,2)
\psline[linestyle=dotted](B)(0,-2)
\rput(-1,2.75){Rotation: }
\rput(-1,2.25){90$^\circ$ around $x$}
\psSolid[object=vecteur,args=0 0 0 2 2 0,linecolor=red,linewidth=2pt]
\end{pspicture}\\[\normalbaselineskip]
%
\begin{pspicture}(-2,-3)(2.5,3)
\psaxes[yAxis=false](-2,-2)(2,2)
\psset{viewpoint=0 0 5,Decran=2.5}
\psSolid[object=grille,base=-2 2 -2 2]
\psSolid[object=vecteur,args=0 0 0 2 2 0,linecolor=red,linewidth=2pt]
\axesIIID(3,3,3)\pnode(1,-1){B}\pnode(1,1){A}
\end{pspicture}
\qquad
\begin{pspicture}(-0.5,-3)(5,3)
\psaxes[yAxis=false](0,-2)(5,2)
\psset{viewpoint=5 0 5,Decran=2.5,RotX=-90}
\psline[linewidth=1pt](0,2)(0,-2)
\psline[linewidth=1.5pt,linecolor=red]{->}(0,0)(0,-2)
\psdot(5,0)\uput[0](5,0){V}
\psline[tbarsize=3mm 5]{<->|}(0,1.5)(5,1.5)\rput*(2.5,1.5){$V$}
\psline[linestyle=dashed](0,2)(5,0)\psline[linestyle=dashed](0,-2)(5,0)
\psline[tbarsize=3mm 5]{|<->|}(2.5,-1.5)(5,-1.5)\rput*(3.75,-1.5){$D$}
\psline[linewidth=1.5pt](2.5,1)(2.5,-1)
\psline[linewidth=1.5pt,linecolor=red]{->}(2.5,0)(2.5,-1)
\psline{->}(2.5,0)(3.5,0)\uput[0](3.5,0){$z$}
\uput[-90](0,-2.5){Original}\uput[-90](2.5,-2.5){Image}
\psline[linestyle=dotted](A)(2.5,1)
\psline[linestyle=dotted](B)(2.5,-1)
\rput(-1.5,1.75){Rotation:}
\rput(-1.5,1.25){90$^\circ$ around $x$}
\end{pspicture}
\end{center}
If you keep the view point and make the \Lkeyword{Decran} value smaller, then the
image gets smaller. If you make the \Lkeyword{Decran} value larger, then the image gets larger.
Here are some examples, where we keep the same object, the same view point
and just vary the \Lkeyword{Decran} value:
\begin{center}
\begin{pspicture}(-2,-2)(2,2)
%\psgrid
\psset{solidmemory}
\psset{viewpoint=0 50 0,Decran=50}
%\psSolid[object=sphere,r=2,ngrid=18 36]
\psSolid[object=plan,definition=normalpoint,plangrid,linecolor=red,
base=-2 2 -2 2,args={0 0 0 [0 1 0 180]},name=monplan]
\psset{plan=monplan}
\psProjection[object=texte,
linecolor=red,
fontsize=105.35,
text=PS]%
\composeSolid
\rput*(0,-1.75){\texttt{Decran=50}}
\end{pspicture}\qquad
\begin{pspicture}(-2,-2)(2,2)
%\psgrid
\psset{solidmemory}
\psset{viewpoint=0 50 0,Decran=25}
%\psSolid[object=sphere,r=2,ngrid=18 36]
\psSolid[object=plan,definition=normalpoint,plangrid,linecolor=red,
base=-2 2 -2 2,args={0 0 0 [0 1 0 180]},name=monplan]
\psset{plan=monplan}
\psProjection[object=texte,
linecolor=red,
fontsize=105.35,
text=PS]%
\composeSolid
\rput*(0,-1.75){\texttt{Decran=25}}
\end{pspicture}\qquad
\begin{pspicture}(-2,-2)(2,2)
%\psgrid
\psset{solidmemory}
\psset{viewpoint=0 50 0,Decran=-50}
\psSolid[object=plan,definition=normalpoint,plangrid,linecolor=red,
base=-2 2 -2 2,args={0 0 0 [0 1 0 180]},name=monplan]
\psset{plan=monplan}
\psProjection[object=texte,
linecolor=red,
fontsize=105.35,
text=PS]%
\composeSolid
\rput*(0,-1.75){\texttt{Decran=-50}}
\end{pspicture}
\end{center}
\endinput
|