1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
\section{Parameterised surfaces}
\subsection{The method}
The parameterised \Index{surfaces} are setup as $[x(u,v),y(u,v),z(u,v)]$ and administered thanks to the macro \Lcs{psSolid} by the option
\texttt{\Lkeyword{object}=\Lkeyval{surfaceparametree}} and defined either in \textit{Reverse Polish Notation}(\textit{RPN}):
\begin{verbatim}
\defFunction{shell}(u,v){1.2 v exp u Sin dup mul v Cos mul mul}% x(u,v)
{1.2 v exp u Sin dup mul v Sin mul mul}% y(u,v)
{1.2 v exp u Sin u Cos mul mul} % z(u,v)
\end{verbatim}
or in \textit{algebraic notation}:
\begin{verbatim}
\defFunction[algebraic]{shell}(u,v){1.2^v*(sin(u)^2*cos(v))}% x(u,v)
{1.2^v*(sin(u)^2*sin(v))}% y(u,v)
{1.2^v*(sin(u)*cos(u))} % z(u,v)
\end{verbatim}
The range for the values of $u$ and $v$ are defined within the option
\texttt{\Lkeyword{range}=$\mathtt{u_{min}}$ $\mathtt{u_{max}}$ $\mathtt{v_{min}}$ %$
$\mathtt{v_{max}}$}.
The drawing of the function is activated with
\texttt{\Lkeyword{function}=name}, this name is implied when the parametric equations are written:
\verb+\defFunction{name}...+
Any other choice of $u$ and $v$ are accepted. Let's remind that the argument of
\texttt{Sin} and \texttt{Cos} must be in radians those of \texttt{sin} and
\texttt{cos} in degrees if \textit{RPN} is used. Within the algebraic notation, the argument is in radians.
\subsection{Example 1: a \Index{sea shell}}
\newcommand\quadrillage{%
\psset{linecolor={[cmyk]{1,0,1,0.5}}}\green
\multido{\ix=-4+1}{9}{%
\psPoint(\ix\space,4,-3){X1}
\psPoint(\ix\space,4 .2 add,-3){X2}
\psline(X1)(X2)
\uput[-120](X1){\small\ix}}
\multido{\iy=-4+1}{9}{%
\psPoint(-4,\iy\space,-3){Y1}
\psPoint(-4 .2 sub,\iy\space,-3){Y2}
\psline(Y1)(Y2)
\uput[0](Y1){\small\iy}}
\multido{\iz=-3+1}{7}{%
\psPoint(4,4,\iz\space){Z1}
\psPoint(4,4 .2 add,\iz\space){Z2}
\psline(Z1)(Z2)
\uput[l](Z1){\small\iz}}
\psPoint(0,4 0.5 add,-3){X0}
\uput[-120](X0){$x$}
\psPoint(-4 .5 sub,0,-3){Y0}
\uput[0](Y0){$y$}}
\begin{LTXexample}[width=7.8cm]
\psset{unit=0.75}
\begin{pspicture}(-5.5,-6)(4.5,4)
\psframe*(-5.5,-6)(4.5,4)
\psset[pst-solides3d]{viewpoint=20 120 30 rtp2xyz,
Decran=15,lightsrc=-10 15 10}
% Parametric Surfaces
\psSolid[object=grille,base=-4 4 -4 4,
action=draw*,linecolor={[cmyk]{1,0,1,0.5}}]
(0,0,-3)
\defFunction{shell}(u,v)
{1.2 v exp u Sin dup mul v Cos mul mul}
{1.2 v exp u Sin dup mul v Sin mul mul}
{1.2 v exp u Sin u Cos mul mul}
\psSolid[object=surfaceparametree,
linecolor={[cmyk]{1,0,1,0.5}},
base=0 pi pi 4 div neg 5 pi mul 2 div,
fillcolor=yellow!50,incolor=green!50,
function=shell,linewidth=0.5\pslinewidth,ngrid=25]%
\psSolid[object=parallelepiped,a=8,b=8,c=6,
action=draw,linecolor={[cmyk]{1,0,1,0.5}}]%
\quadrillage
\end{pspicture}
\end{LTXexample}
\begin{LTXexample}[width=7.8cm]
\psset{unit=0.75}
\begin{pspicture}(-5,-4)(5,6)
\psframe*(-5,-4)(5,6)
\psset[pst-solides3d]{viewpoint=20 20 -10 rtp2xyz,
Decran=15,lightsrc=5 10 2}
% Parametric Surfaces
\psSolid[object=grille,base=-4 4 -4 4,
action=draw*,linecolor=red](0,0,-3)
\defFunction[algebraic]{shell}(u,v)
{1.21^v*(sin(u)*cos(u))}
{1.21^v*(sin(u)^2*sin(v))}
{1.21^v*(sin(u)^2*cos(v))}
%% \defFunction{shell}(u,v)
%% {1.2 v exp u Sin u Cos mul mul}
%% {1.2 v exp u Sin dup mul v Sin mul mul}
%% {1.2 v exp u Sin dup mul v Cos mul mul}
\psSolid[object=surfaceparametree,
linecolor={[cmyk]{1,0,1,0.5}},
base=0 pi pi 4 div neg 5 pi mul 2 div,
fillcolor=green!50,incolor=yellow!50,
function=shell,linewidth=0.5\pslinewidth,
ngrid=25]%
\white%
\gridIIID[Zmin=-3,Zmax=4,linecolor=white,
QZ=0.5](-4,4)(-4,4)
\end{pspicture}
\end{LTXexample}
\subsection{Example 2: a \Index{helix}}
\begin{LTXexample}[width=5.5cm]
\psset{unit=0.75}
\begin{pspicture}(-3,-4)(3,6)
\psset[pst-solides3d]{viewpoint=20 10 2,Decran=20,
lightsrc=20 10 10}
% Parametric Surfaces
\defFunction{helix}(u,v)
{1 .4 v Cos mul sub u Cos mul 2 mul}
{1 .4 v Cos mul sub u Sin mul 2 mul}
{.4 v Sin mul u .3 mul add}
\psSolid[object=surfaceparametree,linewidth=0.5\pslinewidth,
base=-10 10 0 6.28,fillcolor=yellow!50,incolor=green!50,
function=helix,
ngrid=60 0.4]%
\gridIIID[Zmin=-3,Zmax=3](-2,2)(-2,2)
\end{pspicture}
\end{LTXexample}
\subsection{Example 3: a \Index{cone}}
\begin{LTXexample}[width=10cm]
\psset{unit=0.5}
\begin{pspicture}(-9,-7)(10,12)
\psframe*(-9,-7)(10,12)
\psset[pst-solides3d]{
viewpoint=20 5 10,
Decran=50,lightsrc=20 10 5}
\psSolid[
object=grille,base=-2 2 -2 2,
linecolor=white](0,0,-2)
% Parametric Surfaces
\defFunction{cone}(u,v)
{u v Cos mul}{u v Sin mul}{u}
\psSolid[object=surfaceparametree,
base=-2 2 0 2 pi mul,
fillcolor=yellow!50,
incolor=green!50,function=cone,
linewidth=0.5\pslinewidth,
ngrid=25 40]%
\psset{linecolor=white}\white
\gridIIID[Zmin=-2,Zmax=2]
(-2,2)(-2,2)
\end{pspicture}
\end{LTXexample}
\subsection{An advised website}
You will find on the website:
\centerline{\url{http://k3dsurf.sourceforge.net/}}
an excellent software to represent surfaces with numerous examples of parameterised surfaces and others.
\endinput
|