1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
|
%% $Id: pst-func-doc.tex 64 2008-12-08 22:14:27Z herbert $
\documentclass[11pt,english,BCOR10mm,DIV13,bibliography=totoc,parskip=false,smallheadings
headexclude,footexclude,oneside]{pst-doc}
\usepackage[utf8]{inputenc}
\usepackage{pst-text}
\usepackage{pst-optic}
\let\pstOpticFV\fileversion
\lstset{pos=t,wide=true,language=PSTricks,basicstyle=\footnotesize\ttfamily}
\let\belowcaptionskip\abovecaptionskip
%
\begin{document}
\title{\texttt{pst-optic}}
\subtitle{Lenses and Mirrors; v.\pstOpticFV}
\author{Manuel Luque \\Herbert Vo\ss}
\docauthor{Herbert Vo\ss}
\date{\today}
\maketitle
\tableofcontents
\clearpage
\begin{abstract}
\noindent
\LPack{pst-optic} loads by default the following packages:
\LPack{pstricks}, \LPack{pst-node}, \LPack{pst-plot}, \LPack{pst-3d},
\LPack{pst-grad}, \LPack{pst-math}, \LPack{multido}, and \LPack{pst-xke}.
All should be already part of your local \TeX\ installation. If not, or in case
of having older versions, go to \url{http://www.CTAN.org/} and load the newest version.
\vfill\noindent
Thanks to: \\
Jean-C\^ome Charpentier,
Arnaud Schmittbuhl.
\end{abstract}
\section{General Options}
All options are by default document wide valid but not supported by all macros.
Table~\ref{tab:generalOptions} shows the general ones. Others are shown in
Table~\ref{tab:defaultLens} and \ref{tab:defaultSpiegel}.
\begin{table}[!htb]
\centering
\caption{General options and the defaults}\label{tab:generalOptions}
\begin{tabular}{@{}l l l @{}}
\emph{Option} & \emph{Name} & \emph{Default}\\\hline
Left value of the picture in cm & \Lkeyword{xLeft} & -7.5\\
Right value of the picture in cm & \Lkeyword{xRight} & 7.5\\
Lowest value of the picture in cm & \Lkeyword{xBottom} & -3\\
Highest value of the picture in cm & \Lkeyword{xTop} & 3\\
x-Offset & \Lkeyword{XO} & 0\\
y-Offset & \Lkeyword{YO} & 0\\
Node A as string & \Lkeyword{nameA} & A\\
Angle A in degrees & \Lkeyword{spotA} & 270\\
Node B as string & \Lkeyword{nameB} & B\\
Angle B in degrees & \Lkeyword{spotB} & 270\\
Node F as string & \Lkeyword{nameF} & F\\
Angle F in degrees & \Lkeyword{spotF} & 270\\
Node O as string & \Lkeyword{nameO} & O\\
Angle O in degrees & \Lkeyword{spotO} & 225\\
Node A' as string & \Lkeyword{nameAi} & A'\\
Angle A' in degrees & \Lkeyword{spotAi} & 90\\
Node B' as string & \Lkeyword{nameBi} & B'\\
Angle B' in degrees & \Lkeyword{spotBi} & 270\\
Node F' as string & \Lkeyword{nameFi} & B'\\
Angle F' in degrees & \Lkeyword{spotFi} & 270\\
Ray color & \Lkeyword{rayColor} & black\\\hline
\end{tabular}
\end{table}
\Lcs{pst-optic} puts the lens and mirror macros in an own \Lenv{pspicture} environment.
The star version enables the clipping option of \LPack{pstricks}:
\begin{lstlisting}[style=syntax]
\begin{pspicture}*(xLeft,yBottom)(xRight,yTop)
\lens[focus=2,OA=-3,AB=1,XO=0,YO=0,xLeft=-7.5,xRight=7.5,yBottom=-3,yTop=3]
\end{pspicture}
\end{lstlisting}
If you need other values for the \Lenv{pspicture} environment, then use the \Lcs{rput}
command to place the macro at any position.
\begin{LTXexample}
\begin{pspicture}[showgrid=true](-5,-2.2)(7,4)
\rput(1.5,1.5){%
\lens[lensType=DVG,lensGlass=true,lensWidth=0.5,rayColor=red,
focus=-2,AB=2,spotAi=270,spotBi=90]}
\end{pspicture}
\end{LTXexample}
\subsection{\nxLcs{resetOpticOptions}}
The Macro \Lcs{resetOpticOptions} resets all \LPack{pst-optic} options to the default value.
\subsection{Optical axis line style}
\LPack{pst-optic} definies a line style \Lnotation{opticalAxis} with the predefines values
of:
\begin{lstlisting}[style=syntax]
\newpsstyle{opticalAxis}{linewidth=0.5pt,linecolor=black,linestyle=solid}
\end{lstlisting}
It can be overwritten in the same way with \Lcs{newpsstyle}.
\begin{LTXexample}
\newpsstyle{opticalAxis}{linewidth=0.5pt,linecolor=blue,linestyle=dashed}
\lens
\end{LTXexample}
\newpsstyle{opticalAxis}{linewidth=0.5pt,linecolor=black,linestyle=solid}% reset the changes
\clearpage
\section{Lenses}
There are macros for the convergent and divergent lens
\begin{BDef}
\Lcs{lens}\OptArgs\\
\Lcs{lensCVG}\OptArgs\% \textbf{C}on\textbf{v}er\textbf{g}ent (Collecting lens ) -- default\\
\Lcs{lensDVG}\OptArgs\% \textbf{D}i\textbf{v}er\textbf{g}ent (Scatter lens )
\end{BDef}
\subsection{The Coordinates of the predefined Nodes}
The following figure shows the coordinates of the predefined nodes (see Table~\ref{tab:generalOptions}).
\resizebox{\textwidth}{!}{%
\begin{pspicture*}(-8,-3.25)(8,3.25)
\rput(0,0){%
\lens[drawing=false]
\psline[linewidth=1pt](xLeft)(xRight)
\qdisk(A){1.5pt}
\qdisk(B){1.5pt}
\qdisk(A'){1.5pt}\qdisk(B'){1.5pt}
\qdisk(F){1.5pt}\qdisk(F'){1.5pt}
\qdisk(O){1.5pt}\qdisk(I){1.5pt}
\qdisk(I'){1.5pt}\qdisk(I1){1.5pt}
\qdisk(I2){1.5pt}
\uput[270](A){A}\uput[90](B){B}\uput[270](F){F}\uput[0](I){I}
\uput[0](I'){$\mathrm{I'}$}\uput[270](F'){$\mathrm{F'}$}
\uput[270](B'){$\mathrm{B'}$}\uput[90](A'){$\mathrm{A'}$}
\uput[180](I1){I1}\uput[0](I2){I2}}
\psgrid[subgriddiv=0,griddots=4,gridlabels=7pt]
\end{pspicture*}}
\captionof{figure}{Coodinates of the predefined Nodes}\label{fig:nodes}
\subsection{The Lens Type}
\begin{LTXexample}[wide=false]
\lens[lensType=CVG]
\end{LTXexample}
\vspace*{-2ex}
\captionof{figure}{Collecting lens}\label{fig:defaultCVG}
\begin{LTXexample}[wide=false]
\lens[lensType=PCVG]
\end{LTXexample}
\vspace*{-2ex}
\captionof{figure}{Plan Collecting lens}
\enlargethispage{2ex}
\begin{LTXexample}[wide=false]
\psscalebox{0.75}{\lens[lensType=DVG,focus=-2,spotAi=270,spotBi=90]}
\end{LTXexample}
\vspace*{-2ex}
\captionof{figure}{Scatter lens}\label{fig:defaultDVG}
\begin{LTXexample}[wide=false]
\lens[lensType=PDVG,focus=-2,spotAi=270,spotBi=90]
\end{LTXexample}
\vspace*{-2ex}
\captionof{figure}{Plan Scatter lens}
\clearpage
Using \Lcs{lens}\OptArg{\Lkeyword{lensType}=\ldots} gives the in figures \ref{fig:defaultCVG} and
\ref{fig:defaultDVG} shown lenses with the default values from Table~\ref{tab:defaultLens}.
\begin{table}[!htb]
\centering
\begin{minipage}{\columnwidth}
\centering
\caption{Available options for lenses with the defaults}\label{tab:defaultLens}
\begin{tabular}{@{} l l l @{}}
\emph{Option} & \emph{Name} & \emph{Default}\\\hline
Lense type (\Lkeyval{CVG}|\Lkeyval{DVG}|\Lkeyval{PCVG}|\Lkeyval{PDVG}) & \Lkeyword{lensType} & \Lkeyval{CVG}\\
Lense height in cm & \Lkeyword{lensHeight} & 5cm\\
Lense width in cm & \Lkeyword{lensWidth} & 0.5cm\footnotemark\\
vertical scale (obsolet) & \Lkeyword{lensScale} & 1\\
View the lens & \Lkeyword{lensGlass} & \false\\
Second lens & \Lkeyword{lensTwo} & \false\\
Focus in cm & \Lkeyword{focus} & 2\\
Distance $\mathrm{\overline{OA}}$& \Lkeyword{OA} & -4\\
Distance $\mathrm{\overline{AB}}$& \Lkeyword{AB} & 1.5\\
Lens color & \Lkeyword{lenscolor} & \black\\
Arrow length in cm & \Lkeyword{lensarrowsize} & 0.2\\
Arrow inset in cm & \Lkeyword{lensarrowinset} & 0.5\\
\end{tabular}
\footnotetext{\textsuperscript{1} only for \Lkeyset{lensGlass=true}, otherwise set to \texttt{2\textbackslash pslinewidth}}
\end{minipage}
\end{table}
The origin of the coordinate system is by default vertically and horinzontally symmetric.
If you want to place the lens at another coordinates then define your own
\Lenv{pspicture}-environment and use the \Lcs{rput}-command:
\begin{lstlisting}[style=syntax]
\begin{pspicture}(-7.5,-3)(7.5,3)
\rput(x,y){\lens[...]}
\begin{pspicture}
\begin{pspicture*}(-7.5,-3)(7.5,3)
\rput(x,y){\lens[...]}
\begin{pspicture*}
\end{lstlisting}
The star version enables the clipping option.
\subsection{\nxLcs{Transform}}
The \Lcs{Transform}-macro renames all existing nodes in names with an additional
,,1``. Table~\ref{tab:Transform} shows a list of all nodes.
\Lcs{Transform} also defines a new node \verb|factice|\index{factice@\texttt{factice}} with the coordinates
\verb|(XO1,YO1)|. The renaming of all nodes makes it easier to handle objects with more than one lens.
With the option \Lkeyset{lensTwo=true} it is possible to chain the different rays of the lenses
(Figure~\ref{fig:lensTwoC}).
\begin{table}[!htb]
\addtolength{\tabcolsep}{-2pt}
\caption{Renaming of the nodes after calling the macro \nxLcs{Transform}}\label{tab:Transform}
\centering
{\ttfamily\begin{tabular}{@{}l|lllllllllllll @{}}
\emph{old} & A & B & A' & B' & O & F & F' & I & I' & XO & YO & OA' & A'B'\\\hline
\emph{new} &A1& B1& A'1& B'1& O1& F1& F'1& I1& I'1& XO1& YO1& O1A1'& A'1B'1
\end{tabular}}
\end{table}
\begin{LTXexample}[wide=false]
\begin{pspicture*}(-7.5,-2.75)(7.5,3)
\rput(0,0){\lens[lensScale=0.6,XO=-4,focus=1,OA=-2,lensGlass=true, lensWidth=0.5]}
\rput(0,0){\lens[lensScale=1.2,XO=2,focus=2,lensGlass=true,lensWidth=0.5]}
\end{pspicture*}
\end{LTXexample}
\vspace*{-2ex}
\captionof{figure}{Definition of two unchained lenses}
\begin{LTXexample}[wide=false]
\begin{pspicture*}(-7.5,-2.75)(7.5,3)
\rput(0,0){\lens[lensScale=0.6,XO=-4,focus=1,OA=-2,lensGlass=, lensWidth=0.5]}
\Transform
\rput(0,0){\lens[lensScale=1.2,XO=2,focus=2,lensTwo=true,lensGlass=true,lensWidth=0.5]}
\end{pspicture*}
\end{LTXexample}
\vspace*{-2ex}
\captionof{figure}{Definition of two chained lenses}
\begin{LTXexample}[wide=false]
\begin{pspicture*}(-7.5,-2.75)(7.5,3)
\rput(0,0){\lens[lensScale=0.6,XO=-4,nameF=F_1,nameA=A_1,nameB=B_1,
nameFi=F'_1,nameAi={ },nameBi={},nameO=O_1,focus=1,OA=-2,lensGlass=true, lensWidth=0.5]}
\pspolygon[style=rayuresJaunes,linestyle=none](B)(I)(B')(I')(B)
\Transform
\rput(0,0){\lens[lensScale=1.2,XO=2,focus=2,nameA=A'_1,spotA=90,nameB=B'_1,spotB=270,
nameO=O_2,nameAi=A'_2,spotAi=270,nameBi=B'_2,spotBi=90,nameF=F_2,nameFi=F'_2,
lensTwo=true,lensGlass=true,lensWidth=0.5]}
\pspolygon[style=rayuresJaunes,linestyle=none](B)(I)(B')(I')(B)
\end{pspicture*}
\end{LTXexample}
\vspace*{-2ex}
\captionof{figure}{Definition of two chained lenses and an additional modification of the node labels.}\label{fig:lensTwoC}
\clearpage
\subsection{\nxLcs{rayInterLens}}
This macro is only useful for a two-lens-system. Figure~\ref{fig:RayInter} shows such a system.
The nodes \Lnotation{B1}, \Lnotation{I11}, \Lnotation{F'1}, and \Lnotation{B'1} are predefined
by the \Lcs{lens}-macro. To draw the two rays
from the left lense via the node \Lnotation{B'1} to the second lens, we need the coordinates of these
points. \Lcs{rayInterLense} defines such nodes. The Syntax:
\begin{BDef}
\Lcs{rayInterLense}\Largr{StartNode}\Largr{IntermediatNode}\Largr{LensDistance}\Largb{LensNode}
\end{BDef}
Two parallel lines are drawn with the \Lcs{Parallel}-Macro.
\begin{LTXexample}
\begin{pspicture*}(-7.5,-4)(7.5,4)
\rput(0,0){\lens[focus=1.5,OA=-2,AB=0.6,XO=-5,lensGlass,yBottom=-4,yTop=4,drawing=false,
lensWidth=0.5,lensScale=0.5,nameF=F_1,nameFi=F'_1]}
\psline[linewidth=1pt](xLeft)(xRight)
\Transform
\rput(0,0){\lens[focus=2,XO=4,lensGlass,yBottom=-4,yTop=4,drawing=false,lensWidth=0.5,
lensHeight=7,nameF=F_2,nameFi=F'_2,spotF=90,spotFi=90]}
\psline{->}(A1)(B1)\psline{->}(A'1)(B'1)
\psset{linecolor=red}
\uput[45](B1){B1} \uput[90](O){O} \uput[225](O1){O1} \uput[45](I11){I11} \uput[45](B'1){$B'_1$}
\rayInterLens(I11)(B'1){4}{Inter1L2} \rayInterLens(O1)(B'1){4}{Inter2L2}
\uput[350](Inter1L2){Inter1L2}
\psline(B1)(I11)(B'1)(Inter1L2) \psline(B1)(O1)(B'1)(Inter2L2)
\Parallel(B'1)(O)(Inter2L2){B2inftyRigth} \Parallel(B'1)(O)(Inter1L2){B3inftyRigth}
\psset{length=-2,linestyle=dashed}
\Parallel(B'1)(O)(Inter2L2){B2inftyLeft} \Parallel(B'1)(O)(Inter1L2){B3inftyLeft}
\psline[linestyle=dotted, linewidth=2pt,linecolor=black]{->}(0,-4)(0,+4)
\end{pspicture*}
\end{LTXexample}
\captionof{figure}{Demonstration of \nxLcs{rayInterLens}\label{fig:RayInter}}
\subsection{\nxLcs{telescope}}
Figure~\ref{fig:defaultTele} shows the configuration of a telescope and Table~\ref{tab:defaultSpiegel}
the special options for the \Lcs{telescop}-Macro.
\begin{LTXexample}[wide=false]
\telescope
\end{LTXexample}
\captionof{figure}{\nxLcs{telescope}-Macro}\label{fig:defaultTele}
\section{Mirrors}
\subsection{options}
Figure~\ref{fig:Spiegel} shows the available mirrors and Table~\ref{tab:defaultSpiegel} the possible options.
\begin{table}[!htb]
\centering
\caption{List of options for mirrors with the predefines values}\label{tab:defaultSpiegel}
\begin{tabularx}{\linewidth}{@{} >{\RaggedRight}X l l @{}}
\emph{Option} & \emph{Name} & \emph{Default}\\\hline
Left value of the picture in cm & \Lkeyword{xLeft} & -0.5\\
Right value of the picture in cm & \Lkeyword{xRight} & 11\\
Lowest value of the picture in cm & \Lkeyword{xBottom} & -6\\
Highest value of the picture in cm & \Lkeyword{xTop} & 2.5\\
Mirror height in cm & \Lkeyword{mirrorHeight} & 5\\
Mirror depth in cm & \Lkeyword{mirrorDepth} & 1\\
Mirror width in cm & \Lkeyword{mirrorWidth} & 0.25\\
Mirror color & \Lkeyword{mirrorColor} & lightgray\\
Ray color & \Lkeyword{rayColor} & black\\
Focus in cm
(only together with the option \Lkeyword{posMirrorTwo} senseful) & \Lkeyword{mirrorFocus} & 8\\
Position of the 2. mirror in cm & \Lkeyword{posMirrorTwo} & 8\\
Inclination of the 2. mirror in degrees & \Lkeyword{mirrorTwoAngle} & 45\\
Draw lines & \Lkeyword{drawing} & true\\
\end{tabularx}
\end{table}
\begin{LTXexample}[width=4cm,pos=l]
\begin{pspicture*}[showgrid=true](-1,-3)(3,3)
\rput(0,0){\mirrorCVG[mirrorColor=gray,drawing=false]}
\psaxes[linestyle=dashed,linecolor=red,linewidth=1pt,arrows=->](0,0)(-1,-3)(3,3)
\qdisk(Focus){2pt} \rput(Focus){\rput(0,0.25){Focus}}
\pcline[arrows=|-|](-0.75,-2.5)(-0.75,2.5)\ncput*[nrot=:U]{mirrorHeight}
\pcline[arrows=|-|](0,2.75)(1,2.75) \rput[l](1.1,2.75){mirrorDepth}
\pcline[arrows=|-|](1,-2.75)(0.75,-2.75) \rput[l](1.1,-2.75){mirrorWidth}
\rput[l](1,-1){mirrorColor}
\psline{<-}(0.2,-1)(0.8,-1)
\end{pspicture*}
\end{LTXexample}
\begin{LTXexample}[width=5cm,pos=l]
\begin{pspicture*}[showgrid=true](-4,-3)(1,3)
\rput(0,0){\mirrorDVG[mirrorColor=gray,drawing=false]}
\psaxes[linestyle=dashed,linecolor=red,linewidth=1pt,arrows=->](0,0)(-4,-3)(1,3)
\qdisk(Focus){2pt} \rput(Focus){\rput(0,0.25){Focus}}
\pcline[arrows=|-|](.5,-2.5)(.5,2.5) \ncput*[nrot=:U]{mirrorHeight}
\pcline[arrows=|-|](-1.25,2.75)(-.25,2.75) \rput[r](-1.3,2.75){mirrorDepth}
\pcline[arrows=|-|](-1.25,-2.75)(-1,-2.75) \rput[r](-1.3,-2.75){mirrorWidth}
\rput[r](-2,-2){mirrorColor} \psline{->}(-2,-2)(-0.9,-2)
\end{pspicture*}
\end{LTXexample}
\begin{LTXexample}[width=4cm,pos=l]
\begin{pspicture}[showgrid=true](-2,-2)(2,2)
\pnode(-1.5,-1.5){M1} \pnode(1,1){M2}
\uput[-90](M1){$\mathrm{M_1}$}\uput[90](M2){$\mathrm{M_2}$}
\pnode(-1.5,1.5){A}
\planMirrorRay(A)(M1)(M2){A'}
\psline[linewidth=5pt](M1)(M2)\pscircle*(A){2pt}
\uput[0](A){A} \uput[0](A'){$\mathrm{A'}$}
\pscircle*(A'){2pt} \psline[linestyle=dashed](A)(A')
\end{pspicture}
\end{LTXexample}
\captionof{figure}{The different mirror macros: a) \nxLcs{mirrorCVG} b) \nxLcs{mirrorDVG} c)
\nxLcs{planMirrorRay}}\label{fig:Spiegel}\label{fig:planMirror}
\subsection{\nxLcs{mirrorCVG}}
Figure~\ref{fig:mirrorCVG} shows the default for the \Lcs{mirrorCVG}-macro with the
predefined nodes anf three default rays.
\begin{LTXexample}[width=7cm,pos=l]
\begin{pspicture*}[showgrid=true](-1,-3)(6,3)
\rput(0,0){\mirrorCVG[rayColor=red]}
\end{pspicture*}
\end{LTXexample}
\captionof{figure}{Parabolic Mirror \nxLcs{mirrorCVG}}\label{fig:mirrorCVG}
\begin{LTXexample}[width=8.5cm,pos=l]
\begin{pspicture*}(-0.5,-4)(8,4)
\rput(0,0){\mirrorCVG[mirrorHeight=8,mirrorDepth=4,drawing=false]}
\multido{\rY=-4.00+0.25}{33}{%
\mirrorCVGRay[linewidth=0.5pt,mirrorHeight=8,
mirrorDepth=4](10,\rY)(1,\rY){Dummy}}
\end{pspicture*}
\end{LTXexample}
\captionof{figure}{Example}\label{fig:CVGAnwendung}
\clearpage
\section{\nxLcs{mirrorDVG}}
%Figure~\ref{fig:mirrorDVG} shows the defaults for the macro \Lcs{mirrorDVG}-Makros.
\begin{LTXexample}[width=7cm,pos=l]
\begin{pspicture*}[showgrid=true](-2,-2.6)(5,3)
\rput(0,0){\mirrorDVG[rayColor=red]}
\end{pspicture*}
\end{LTXexample}
\vspace{-10mm}
\captionof{figure}{\nxLcs{mirrorDVG}}\label{fig:mirrorDVG}
\enlargethispage{13mm}
\begin{LTXexample}[wide]
\begin{pspicture*}[showgrid=true](-4,-4)(6,4)
\rput(0,0){\mirrorCVG[drawing=false,mirrorDepth=0.75,mirrorHeight=7]}
\qdisk(Focus){2pt} \rput(6,2.5){\eye}
\pnode(1.75,-1.5){A}\pnode(1.75,1){B}\psline[arrows=->,linewidth=4pt](A)(B)
\uput{0.2}[0](2,0){\Huge G} \psset{linecolor=red}
\mirrorCVGRay[rayColor=red,mirrorHeight=7,mirrorDepth=0.75](A)(0,-0.9){P1}
\psOutLine[length=3](P1)(P1'){PEnd}\psBeforeLine[length=5,linestyle=dashed](P1)(P1'){PBegin}
\mirrorCVGRay[rayColor=red,mirrorHeight=7,mirrorDepth=0.75](A)(0,-0.2){P2}
\psOutLine[length=3](P2)(P2''){PEnd}\psBeforeLine[length=5,linestyle=dashed](P2)(P2'){PBegin}
%
\mirrorCVGRay[rayColor=red,mirrorHeight=7,mirrorDepth=0.75](B)(0,2.75){P3}
\psOutLine[length=3](P3)(P3'){PEnd}\psBeforeLine[length=5,linestyle=dashed](P3)(P3'){PBegin}
\mirrorCVGRay[rayColor=red,mirrorHeight=7,mirrorDepth=0.75](B)(0,1.8){P4}
\psOutLine[length=3](P4)(P4'){PEnd}\psBeforeLine[length=5,linestyle=dashed](P4)(P4'){PBegin}
\ABinterCD(P3)(P3')(P4)(P4'){A'}\ABinterCD(P1)(P1')(P2)(P2'){B'}
\psline[arrows=->,linewidth=4pt,linestyle=dashed](B')(A')
\nodeBetween(A')(B'){G''}\uput{0}[0](G''){\Huge G'}
\end{pspicture*}
\end{LTXexample}
\captionof{figure}{Example as a magnifier}\label{fig:DVGAnwendung}
\clearpage
\subsection{Drawing Rays in the Mirror Macros}
There are two different macros for drawing rays:
\begin{BDef}
\Lcs{mirrorCVGRay}\OptArgs\Largr{Node1}\Largr{Node2}\Largb{MirrorNode}\\
\Lcs{mirrorDVGRay}\OptArgs\Largr{Node1}\Largr{Node2}\Largr{MirrorNode}
\end{BDef}
The \Lnotation{MirrorNode} maybe :
\begin{tabularx}{\textwidth}{l|X}
\Lnotation{MirrorNode} & first point on the mirror\\
\Lnotation{MirrorNode'} & end node or second point on the mirror if one more reflection happens\\
\Lnotation{MirrorNode''} & end node for a second reflection
\end{tabularx}
If there are only one reflection, then \Lnotation{MirrorNode'} and \Lnotation{MirrorNode''} are the same.
\subsection{\nxLcs{planMirrorRay}}
The \Lcs{planMirrorRay}-Macro caculates the coordinates of a mirrored point. In
Figure~\ref{fig:planMirror} is a given node \verb|A|, whereas \verb|A'| is calculated by the macro. The syntax is:
\begin{BDef}
\Lcs{planMirrorRay}\Largr{Mirrorbegin}\Largr{Mirrorend}\Largr{Originalpoint}\Largb{New point}
\end{BDef}
The macro doesn't draw any lines, only the coordinates of the new point are saved by the new node name.
\subsection{\nxLcs{symPlan}}
\verb|\symPlan| allows to mirroring complete plain graphical objects along a virtual center line. Figure \ref{fig:symPlan} shows that this mirroring is a mathematical one and not a physical one. For more examples look at \cite{pstoptic:2001}. The syntax is:
\begin{BDef}
\Lcs{symPlan}\Largr{node1}\Largr{node2}\Largb{graphic object}
\end{BDef}
The two nodes define the mirror axis and the graphics object is in most cases a user defined macro, f.ex:
This example needs the package \LPack{pst-text} for the \Lcs{pstextpath} macro.
\begin{center}
\begin{LTXexample}[wide=false]
\newcommand{\dtk}{\pstextpath(0,0){%
\psplot[linestyle=none]{0}{8}{x sqrt sqrt 2 mul}}%
{\Large Die \TeX{}nische Kom\"odie von DANTE}}
\begin{pspicture}(-4.5,-2.5)(2.5,5)
\pnode(-4,-2){M1} \uput[-90](M1){M1}
\pnode(4,4){M2}\uput[90](M2){M2}
\psline[linewidth=5\pslinewidth,linecolor=lightgray](M1)(M2)
\rput(-3.5,-1.75){\dtk}
\symPlan(M1)(M2){\rput(-3.5,-1.75){\dtk}}
\end{pspicture}
\end{LTXexample}
\captionof{figure}{Demonstration of the \nxLcs{symPlan}-Macro} \label{fig:symPlan}
\end{center}
\clearpage
\subsection{Beam Light}
This macro is useful for the demonstration of high and low beam light. The syntax for this macro is:
\begin{BDef}
\Lcs{beamLight}\OptArgs
\end{BDef}
The predefined options especially for the \Lenv{pspicture}-coordinates are
\begin{lstlisting}[style=syntax]
\psset[pst-optic]{xLeft=-5,xRight=5,yBottom=-5,yTop=5,drawing=false}% the default
\end{lstlisting}
You can place this macro with the \Lcs{rput}-command at any place in your own \Lenv{pspicture}-environment.
\begin{minipage}[b]{0.35\textwidth}
\begin{LTXexample}
\begin{pspicture}(-1,-3)(3,3)
\rput(0,0){\beamLight}
\end{pspicture}
\end{LTXexample}
\captionof{figure}{\nxLcs{beamLight} without any Options}
\end{minipage}\hfill%
\begin{minipage}[b]{0.5\textwidth}
\centering
\begin{LTXexample}
\begin{pspicture}(-1,-5.5)(5,5.5)
\rput(0,0){\beamLight[mirrorDepth=4.75,
mirrorWidth=0.1,mirrorHeight=10,
linecolor=lightgray]}
\end{pspicture}
\end{LTXexample}
\captionof{figure}{\nxLcs{beamLight} with Options}
\end{minipage}
\clearpage
\section{Refraction}
\section{\nxLcs{refractionRay}}
The syntax is
\begin{BDef}
\Lcs{refractionRay}\Largr{A}\Largr{B}\Largr{C}\Largr{D}\Largb{n1}\Largb{n2}\Largb{EndNode}
\end{BDef}
The macro uses the law of Snell
\begin{align}
\frac{n_1}{n_2}&=\frac{\sin \beta}{\sin \alpha}\label{snell}
\end{align}
where the $n_1$ and $n_2$ are the refraction numbers with the predefined values
\begin{align}
n_1 &= 1 \\
n_2 &= 1.41
\end{align}
and $\alpha$ the incoming abd $\beta$ the outgoing angle of the ray.
The refractionnumbers have the internal names \Lnotation{refractA} and \Lnotation{refractB}.
A total reflection instead of a refraction is possible,
when the ray starts in a medium with a higher refrectionnumber. This happens when
$\sin\beta>1$ in Equ.~\ref{snell}. In this case we have $\alpha =\beta$, a
total reflection.
\begin{LTXexample}[width=5cm,pos=l,wide=false]
\begin{pspicture}[showgrid=true](5,5)
\pnode(0.5,1.5){A}\qdisk(A){2pt}\uput[90](A){A}
\pnode(2,3){B}\qdisk(B){2pt}\uput[90](B){B}
\psline[linewidth=1.5pt,linecolor=red]{->}(A)(B)
\pnode(3,5){C}\qdisk(C){2pt}\uput[225](C){C}
\pnode(4,0){D}\qdisk(D){2pt}\uput[135](D){D}
\pspolygon[fillstyle=solid,fillcolor=lightgray,
linecolor=lightgray](C)(D)(5,0)(5,5)(C)
\psline[linewidth=1.5pt,linecolor=red](C)(D)
\rput(2,2){\Large$n_1$} \rput(4.5,2){\Large$n_2$}
\refractionRay(A)(B)(C)(D){1}{4}{E}
\psline[linestyle=dashed,linecolor=red](B)(E)
\psline[linestyle=dashed,linecolor=red](E)(E')
\qdisk(E){2pt}\uput[-20](E){E}
\qdisk(E'){2pt}\uput[-90](E'){E'}
\end{pspicture}
\end{LTXexample}
The macro needs the values for the four nodes, the two refractionnumbers and the name for
the end node. As you can see in the figure the end node of the ray is the intermediate
point between the linear ray and the linear medium. The end node of the refracted ray has
the same name with an additional single quotation mark. In the figure the macro was called as
\begin{BDef}
\Lcs{refractionRay}\Largr{A}\Largr{B}\Largr{C}\Largr{D}\Largb{1}\Largb{4}\Largb{E}
\end{BDef}
\begin{align}n_1&<n_2\end{align}
It is no problem to draw a ray which is going straight through another medium.
It can be done by using the macro twice as shown in the following examples.
\subsection{Total Reflection}
\begin{LTXexample}[width=5cm,pos=l,wide=false]
\begin{pspicture}[showgrid=true](5,5)
\pnode(0.5,1.5){A}\pnode(2,3){B}
\pnode(3,5){C} \pnode(4,0){D}
\pspolygon[fillstyle=solid,fillcolor=lightgray,
linecolor=lightgray](C)(D)(0,0)(0,5)(C)
\qdisk(A){2pt}\uput[90](A){A}
\qdisk(B){2pt}\uput[90](B){B}
\qdisk(C){2pt}\uput[225](C){C}
\qdisk(D){2pt}\uput[135](D){D}
\psline[linewidth=1.5pt,linecolor=red]{->}(A)(B)
\psline[linewidth=1.5pt,linecolor=red](C)(D)
\rput(2,2){\Large$n_1$}\rput(4.5,2){\Large$n_2$}
\refractionRay(A)(B)(C)(D){4}{1}{E}
\psline[linestyle=dashed,linecolor=red](B)(E)
\psline[linestyle=dashed,linecolor=red](E)(E')
\qdisk(E){2pt}\uput[-20](E){E}
\qdisk(E'){2pt}\uput[-90](E'){E'}
\end{pspicture}
\end{LTXexample}
In the figure the macro was called as
\begin{lstlisting}[style=syntax]
\refractionRay(A)(B)(C)(D){4}{1}{E}
\end{lstlisting}
\begin{align}n_1&>n_2\end{align}
\section{Prism}
This command allows to simulate the deviation of a mono-chromatic
light ray with a prism. There are only few parameters. The indicated
values are the default ones.
\smallskip\noindent
\begin{tabularx}{\linewidth}{@{} l X l @{}}
\emph{name} & \emph{meaning} & \emph{default} \\\hline
\Lkeyword{AnglePrism} & The angle to the top of prism. & 60\\
\Lkeyword{AnglePlan1} & The angle between the plane (1), where the tranmitter takes
place, and the vertical. Negative values are allowed. & 25 \\
\Lkeyword{AnglePlan2} & The angle between the plane (2) (the screen), and the vertical.
Negative values are allowed. & 55\\
\Lkeyword{k} & Position of transmitter relative to choosen origin $C_1$ on the
plane : $\overrightarrow{C_1E_1} = k\overrightarrow{u_1}$. & 1 \\
\Lkeyword{lambda} & The wavelength , in nm. & 632.8 \\
\Lkeyword{notations} & The plane where transmitting source takes place, with all
indications, origin, angle, etc., as well as the screen are
displayed by default. This can be useful in order to finalize a
figure, but it is possible to deactivate this feature with the
option. & \false\\\hline
\end{tabularx}
\bigskip
With \Lkeyword{AnglePlan1} the incident ray direction can be changed. The incidence spot changes according to \Lkeyword{k}.
The outline of processing we have adopted is the Gernot Hoffmann
one. For more details look into the document:
\url{http://www.fho-emden.de/~hoffmann/prism16072005.pdf}
\subsection{Figure with default values and construction indications}
\begin{LTXexample}[wide=false]
\begin{pspicture*}(-8,0)(8,8)
\psprism
\end{pspicture*}
\end{LTXexample}
\subsection{Figure with default values, without construction indications}
\begin{LTXexample}[wide=false]
\begin{pspicture*}(-8,0)(8,6)
\psprism[notations=false]
\end{pspicture*}
\end{LTXexample}
\subsection{Color matches wavelength}
\begin{LTXexample}[wide=false]
\begin{pspicture*}(-8,0)(8,8)
\psprism[lambda=530]%
\end{pspicture*}
\end{LTXexample}
Note: we have not planned physical impossibilities. When $r_2$ is greater
than the limit angle, there is no transmission in air, and it's
impossible to calculate $i_2$. Then, we have a PostScript message:
\begin{lstlisting}
Displaying page 1
Displaying page 2
Displaying page 3
Displaying page 4
Error: /rangecheck in --sqrt--
Operand stack:
alpha2 -1.02701 -0.0547467
\end{lstlisting}
We remind you that \Lkeyword{alpha2} is $i_2$.
For instance, \Lkeyword{AnglePrism}=65, other default parameters remains unchanged.
\begin{LTXexample}[wide=false]
\begin{pspicture*}(-7,-0.2)(7,8)
\psprism[AnglePrism=65]
\end{pspicture*}
\end{LTXexample}
It will become right when we change the incident ray slope:
\begin{LTXexample}[wide=false]
\begin{pspicture*}(-8,-0.2)(8,8)
\psprism[AnglePrism=65,AnglePlan1=51,k=-1.5]
\end{pspicture*}
\end{LTXexample}
We choose \Lkeyword{k}=-1.5 in order to have a incident ray
which strikes (?) the input side roudly in its center. But, in these
particular cases, the physicist know-how is important (\emph{bis repetita}). Isn't it?
\section{Spherical Optic}
\subsection{\nxLcs{lensSPH}}
The syntax is
\begin{BDef}
\Lcs{lensSPH}\OptArgs
\end{BDef}
It changes some default values for the options to:
\begin{center}
\begin{tabular}{@{} lll @{}}
\textbf{meaning} & \textbf{name} & \textbf{default}\\\hline
Object Distance in cm & \Lkeyword{OA} & -7 \\
Lens Height in cm & \Lkeyword{lensHeight} & 6 \\
Lens Width in cm & \Lkeyword{lensWidth} & 1.5\\
Refraction Number $n_2$ & \Lkeyword{refractB} & 2
\end{tabular}
\end{center}
\subsubsection{Convergent Lens}
Without any option it draws a spherical convergent lens. \Lcs{lensSPH} is equivilant to
\Lcs{lensSPH}\Largs{\Lkeyset{lensType=CVG}}.
\begin{LTXexample}[wide=false]
\lensSPH
\end{LTXexample}
\subsubsection{Divergent Lens}
The syntax is
\begin{BDef}
\Lcs{lensSPH}\OptArg{\Lkeyset{lensType=DVG},\ldots}
\end{BDef}
It draws a spherical divergent lens:
\begin{LTXexample}[wide=false]
\lensSPH[lensType=DVG,lensWidth=0.5]
\end{LTXexample}
It changes some default values for the options in the same way as for the convergent lens.
\subsection{Options}
The macro uses the law of Snell
\begin{align}
\frac{n_1}{n_2}&=\frac{\sin \beta}{\sin \alpha}
\end{align}
where the $n_1$ and $n_2$ are the refraction numbers with the predefined values
\begin{align}
n_1 &= 1 \\
n_2 &= 1.41
\end{align}
and $\alpha$ the incoming abd $\beta$ the outgoing angle of the ray.
The refractionnumbers have the internal names \Lnotation{refractA} and \Lnotation{refractB}.
\clearpage
\section{\nxLcs{mirrorCVG}}
The syntax is
\begin{BDef}
\Lcs{mirrorCVG}\OptArg{\Lkeyset{mirrorType=SPH}}
\end{BDef}
\resetOpticOptions
\begin{LTXexample}[wide=false]
\mirrorCVG[mirrorType=SPH]
\end{LTXexample}
Without the option \Lkeyset{mirrorType=SPH} you'll get a parabolic mirror, which is the default.
\section{\nxLcs{mirrorDVG}}
The syntax is
\begin{BDef}
\Lcs{mirrorDVG}\OptArg{\Lkeyset{mirrorType=SPH}}
\end{BDef}
\begin{LTXexample}[wide=false]
\mirrorDVG[mirrorType=SPH]
\end{LTXexample}
Without the option \Lkeyset{mirrorType=SPH} you'll get a parabolic mirror (option PARA).
\section{\nxLcs{ABinterSPHLens}}
The syntax is
\begin{LTXexample}[wide=false]
\begin{pspicture}[showgrid=true](-6,-3)(6,3)
\rput(0,0){\lensSPH[lensType=CVG,lensHeight=8,lensWidth=3,drawing=false]}
\qdisk(Center){2pt}\uput[-90](Center){Center}
\qdisk(Center'){2pt}\uput[-90](Center'){Center'}
\pnode(-5,1){A}\qdisk(A){2pt}\uput[90](A){A}
\pnode(-3,0){B}\qdisk(B){2pt}\uput[90](B){B}
\psline[linewidth=1.5pt,linecolor=red]{->}(A)(B)
\pnode(5,-2.5){C}\qdisk(C){2pt}\uput[90](C){C}
\pnode(3,-2){D}\qdisk(D){2pt}\uput[90](D){D}
\psline[linewidth=1.5pt,linecolor=red]{->}(C)(D)
\rput(-4.5,2){\Large $n_1$}\rput(0,2){\Large $n_2$}\rput(4.5,2){\Large $n_1$}
\ABinterSPHLens(A)(B)(Center'){E}\ABinterSPHLens(C)(D)(Center){F}
\psline[linestyle=dashed,linecolor=red](B)(E)
\psline[linestyle=dashed,linecolor=red](D)(F)
\qdisk(E){2pt}\uput[-20](E){E}\qdisk(F){2pt}\uput[-90](F){F}
\end{pspicture}
\end{LTXexample}
The macro needs two nodes for the rays, the coordinates/nodes of the center/middle of the
sperical lens and a name of the intermediate node.In the figure the macro was called as
\begin{lstlisting}[style=syntax]
\ABinterSPHLens(A)(B)(Center'){E}
\ABinterSPHLens(C)(D)(Center){F}
\end{lstlisting}
\section{\nxLcs{lensSPHRay}}
The syntax is
\begin{BDef}
\Lcs{lensSPHRay}\OptArgs\Largr{A}\Largr{B}\Largb{refractA}\Largb{refractB}\Largb{NodeName}
\end{BDef}
This macro calculates the coordinates of the given ray $\overline{\mathrm{AB}}$ on its way
into the lens. The only possible option \Lkeyword{rightRay}=\false|\true\footnote{Default is \texttt{false}}
enables rays from the right to the left. There are still some problems with this option but try it out.
\begin{LTXexample}
\begin{pspicture*}[showgrid=true](-5,-3)(7,3)
\rput(0,0){\lensSPH[lensType=CVG,lensHeight=8,lensWidth=3,drawing=false]}
\qdisk(Center){2pt}\uput[-90](Center){Center}
\qdisk(Center'){2pt}\uput[-90](Center'){Center'}
\pnode(-4,1){A}\qdisk(A){2pt}\uput[90](A){A}
\pnode(-2,0.5){B}\qdisk(B){2pt}\uput[90](B){B}
\rput(-4.5,2.5){\Large $n_1$}\rput(0,2.5){\Large $n_2=1.5$}\rput(4,2.5){\Large $n_1=1$}
\multido{\rA=3+-0.5,\rB=2.5+-0.5}{9}{%
\lensSPHRay[rightRay=false](-4,\rA)(-2,\rB){1}{1.5}{F}
\psline[linewidth=1.5pt,linecolor=red]{->}(-4,\rA)(F)
\psline[linestyle=dashed,linecolor=red](-4,\rA)(F)(F')(F'')
\psOutLine[linestyle=dashed,linecolor=red,length=4.5](F')(F''){FEnd}}
\psline[linewidth=1.5pt,linecolor=blue]{->}(A)(B)
\lensSPHRay[lensType=CVG](A)(B){1}{1.5}{E}
\psline[linestyle=dashed,linecolor=blue](B)(E)(E')(E'')
\qdisk(E){2pt}\uput[-20](E){E}\qdisk(E'){2pt}\uput[-20](E'){E'}
\qdisk(E''){2pt}\uput[-20](E''){E''}
\end{pspicture*}
\end{LTXexample}
And the same with $n_2=3$:
\begin{LTXexample}
\begin{pspicture*}[showgrid=true](-5,-3)(7,3)
\rput(0,0){\lensSPH[lensType=CVG,lensHeight=8,lensWidth=3,drawing=false]}
\qdisk(Center){2pt}\uput[-90](Center){Center}
\qdisk(Center'){2pt}\uput[-90](Center'){Center'}
\pnode(-4,1){A}\qdisk(A){2pt}\uput[90](A){A}
\pnode(-2,0.5){B}\qdisk(B){2pt}\uput[90](B){B}
\rput(-4.5,2.5){\Large $n_1$}\rput(0,2.5){\Large $n_2=3$}\rput(4,2.5){\Large $n_1=1$}
\multido{\rA=3+-0.5,\rB=2.5+-0.5}{11}{%
\lensSPHRay[rightRay=false](-4,\rA)(-2,\rB){1}{3}{F}
\psline[linewidth=1.5pt,linecolor=red]{->}(-4,\rA)(F)
\psline[linestyle=dashed,linecolor=red](-4,\rA)(F)(F')(F'')
\psOutLine[linestyle=dashed,linecolor=red](F')(F''){FEnd}}
\psline[linewidth=1.5pt,linecolor=blue]{->}(A)(B)
\lensSPHRay[lensType=CVG](A)(B){1}{3}{E}
\psline[linestyle=dashed,linecolor=blue](B)(E)(E')(E'')
\qdisk(E){2pt}\uput[-20](E){E}\qdisk(E'){2pt}\uput[-20](E'){E'}
\qdisk(E''){2pt}\uput[-20](E''){E''}
\end{pspicture*}
\end{LTXexample}
\clearpage
\section{\nxLcs{reflectionRay}}
The syntax is
\begin{BDef}
\Lcs{reflectionRay}\OptArgs\Largr{A}\Largr{B}\Largb{NodeName}
\end{BDef}
This macro calculates the coordinates of the given ray $\overline{\mathrm{AB}}$
on its way out of the mirror. The only senseful option is \Lkeyset{mirrorType=CVG} or \Lkeyset{mirrorType=DVG}.
The most important fact is that the point \verb|B| must be the one on the mirror.
If you do not know it's coordinates you can use the macro
\verb|ABinterSPHLens[lensType=CVG](A1)(A2)(Center){NodeName)|, which calculates the coordinates of the intermediate point.
\begin{LTXexample}
\begin{pspicture*}[showgrid=true](-1,-3)(6,3)
\rput(0,0){%
\mirrorCVG[mirrorType=SPH,mirrorHeight=5,mirrorWidth=0.2,yBottom=-3,yTop=3,drawing=false,mirrorDepth=3]
\qdisk(Center){2pt}\qdisk(Focus){2pt}\uput[-90](Center){Center}\uput[-90](Focus){F}
\psline(O)(xRight)}
\ABinterSPHLens(5,1)(3,1)(Center){C}
\reflectionRay[mirrorType=CVG-SPH](5,1)(C){D}
\qdisk(5,1){2pt}\uput[-90](5,1){A}\qdisk(3,1){2pt}\uput[-90](3,1){B}
\qdisk(C){2pt}\uput[180](C){C}\qdisk(D){2pt}\uput[45](D){D}
\psset{linewidth=1.5pt,linecolor=red,arrows=->}
\psline(5,1)(3,1)\psline(3,1)(C)\psline(C)(D)
\end{pspicture*}
\end{LTXexample}
\clearpage
\subsection{Refraction at a Spherical surface}
Construction for finding the position of the image point P' of a point object P formed by refraction at a sperical surface.
\begin{LTXexample}
\begin{pspicture*}[showgrid=true](-10,-4)(3,4)
\rput(0,0){%
\lensSPH[lensType=CVG,lensHeight=12,lensWidth=10,yBottom=-6,yTop=6,xLeft=-6,xRight=6,drawing=false]}
\psset{linecolor=red,linewidth=1.5pt,dotstyle=|}
\pnode(-9,0){P}\psdots(P)\uput[-90](P){P}\psline(P)(xRight)
\lensSPHRay(P)(-5,2){1}{9}{Q} \psline(P)(Q)(Q') \psdots(Q)\uput[90](Q){B}
\ABinterCD(Q)(Q')(0,0)(5,0){P'}\psdots(Q')\uput[-90](P'){P'}
\psline[linewidth=0.5pt,linecolor=black](Center')(Q)\psline[linewidth=0.5pt,linecolor=black](Q)(Q|0,0)
\psdots(Center')\uput[-90](Center'){C}
\end{pspicture*}
\end{LTXexample}
\clearpage
Construction for determining the height of an image formed by refraction at a sperical surface.
\begin{LTXexample}
\begin{pspicture*}[showgrid=true](-13,-3)(3,5)
\rput(0,0){%
\lensSPH[lensType=CVG,lensHeight=12,lensWidth=10,yBottom=-4,yTop=4,xLeft=-5,xRight=5,drawing=false]}
\psset{linecolor=red,linewidth=1.5pt,dotstyle=|}
\pnode(-12,0){P}\psdots(P)\uput[-90](P){P}\pnode(-12,4){Q}\psdots(Q)\uput[90](Q){Q}
\psline[linecolor=blue,linewidth=3pt,arrows=->](P)(Q)\psline(P)(xRight)
\lensSPHRay(Q)(Center'){1}{9}{S1}\lensSPHRay(Q)(-5,0){1}{9}{S2}%
\psline(Q)(S1')\psline(Q)(S2)(S2')\ABinterCD(Q)(S1')(S2)(S2'){Q'}\pnode(Q'|0,0){P'}
\psline[linecolor=blue,linewidth=3pt,arrows=->](P')(Q')
\uput[90](P'){P'}\uput[-90](Q'){Q'}\psdots(Center')\uput[90](Center'){C}
\end{pspicture*}
\end{LTXexample}
\section{Utility Macros}
\subsection{\nxLcs{eye}}
Syntax:
\begin{BDef}
\Lcs{eye}
\end{BDef}
There are no Options for this symbol of an human eye (Figure~\ref{fig:auge}).
Use the \Lcs{rput}-macro to put the eye elsewhere.
\begin{LTXexample}[width=2cm,pos=l,wide=false]
\begin{pspicture}(-1,-0.75)(1,0.75)
\rput(1,0){\eye}
\end{pspicture}
\end{LTXexample}
\section{\nxLcs{Arrows}}
Syntax wirh the following options:
\begin{BDef}
\Lcs{Arrows}\OptArgs\Largr{NodeA}\Largr{NodeB}
\end{BDef}
\begin{center}
\begin{tabular}{@{} l l l @{}}
\emph{Option} & \emph{Name} & \emph{Standard}\\\hline
Offset for arrow start in cm & \Lkeyword{posStart} & 0\\
Length of the arrow in cm & \Lkeyword{length} & 2\\\hline
\end{tabular}
\end{center}
\begin{LTXexample}[width=6cm,pos=l]
\begin{pspicture}[showgrid=true](-3,-3)(3,3)
\psset{linecolor=red}
\Arrows[posStart=2,length=4](-3,-3)(3,3)
\qdisk(-3,-3){2pt}\uput[45](-3,-3){A}
\qdisk(3,3){2pt}\uput[-90](3,3){B}
\psset{linecolor=green}
\Arrows[linewidth=3pt,length=2](0,-3)(0,0.5)
\qdisk(0,-3){2pt}\uput[45](0,-3){A}
\qdisk(0,0.5){2pt}\uput[-90](0,0.5){B}
\psset{linecolor=blue}
\Arrows[linewidth=5pt,linestyle=dashed](3,0)(2,3)
\qdisk(3,0){2pt}\uput[-90](3,0){A}
\qdisk(2,3){2pt}\uput[-90](2,3){B}
\psset{linecolor=black}
\Arrows[posStart=1,linewidth=5pt,linestyle=dotted,
length=3](-3,2)(1,2)
\qdisk(-3,2){2pt}\uput[-45](-3,2){A}
\qdisk(1,2){2pt}\uput[-90](1,2){B}
\end{pspicture}
\end{LTXexample}
\section{\nxLcs{psOutLine} and \nxLcs{psBeforeLine}}
Syntax:
\begin{BDef}
\Lcs{psOutLine}\OptArgs\Largr{NodeA}\Largr{NodeB}\Largb{EndNode}\\
\Lcs{psBeforeLine}\OptArgs\Largr{NodeA}\Largr{NodeB}\Largb{StartNode}
\end{BDef}
The only special option is \Lkeyword{length}=\Larga{value}. All other which are possible for
\Lcs{psline} can be used, too.
\begin{LTXexample}[width=6cm,pos=l]
\begin{pspicture}[showgrid=true](-3,-3)(3,3)
\psset{linecolor=red, linewidth=1.5pt}
\psOutLine[length=3](-2,-2)(0,0){End}
\qdisk(-2,-2){2pt}\uput[80](-2,-2){A}
\qdisk(0,0){2pt}\uput[-45](0,0){B}
\qdisk(2.12,2.12){2pt}\uput[90](2.12,2.12){END}
%
\psset{linecolor=blue}
\psBeforeLine[length=3](1,0)(3,2){START}
\qdisk(3,2){2pt}\uput[80](3,2){B}
\qdisk(1,0){2pt}\uput[-45](1,0){A}
\qdisk(-1.12,-2.12){2pt}\uput[-90](-1.12,-2.12){START}
\end{pspicture}
\end{LTXexample}
\section{\nxLcs{Parallel}}
Syntax:
\begin{BDef}
\Lcs{Parallel}\OptArgs\Largr{NodeA}\Largr{NodeB}\Largr{StartNode}\Largb{End node}
\end{BDef}
The only special option for \Lcs{Parallel} is \Lkeyword{length}=\Larga{value}.
The nodes \verb|nodeA| and \verb|nodeB| are known nodes of a given line
and \verb|Start node| is the given node of a parallel line. \verb|End node| is
the name of the calculated line end.
\begin{LTXexample}
\begin{pspicture*}[showgrid=true](-5,-3.5)(5,3.5)
\pnode(2,-2){FF}\qdisk(FF){1.5pt} \pnode(-5,5){A} \pnode(0,0){O}
\multido{\nCountA=-2.4+0.4}{9}{%
\Parallel[linecolor=red,length=9](O)(A)(0,\nCountA){P1}
\psline[linecolor=red](0,\nCountA)(FF)
\psOutLine[linecolor=red,length=9](0,\nCountA)(FF){P2}}
\psline[linecolor=blue](A)(FF)
\psOutLine[linecolor=blue,length=5](A)(FF){END1}
\rput(0,0){\lens[yBottom=-3.5,yTop=3.5,lensGlass=true,lensHeight=6.5,drawing=false,
spotFi=315,lensWidth=0.5]
\psline[linewidth=1pt](xLeft)(xRight)
\psline[length=2,linewidth=2pt,arrows=->](F')(FF)}
\end{pspicture*}
\end{LTXexample}
\section{\nxLcs{ABinterCD} and \Lcs{nodeBetween}}
This macro is used by the \Lcs{telescop} macro. It determines the intersection
point of two lines, in this case a ray and the mirror axis.
The following figure shows a part of figure~\ref{fig:defaultTele}. Given are
the points A, B (focus), C/D (mirror axis). We need the point E to draw the other
rays for the ocular, which can be done with the \Lcs{ABinterCD} macro. The syntax is:
\begin{BDef}
\Lcs{ABinterCD}\Largr{A}\Largr{B}\Largr{C}\Largr{D}\Largb{E}\\
\Lcs{nodeBetween}\Largr{A}\Largr{B}\Largb{C}
\end{BDef}
\begin{LTXexample}
\begin{pspicture*}(-0.5,-2.25)(9,2.25)
\rput(0,0){\mirrorCVG[mirrorHeight=4,mirrorWidth=0.25,mirrorDepth=0.25,drawing=false]}
\mirrorCVGRay[mirrorHeight=4,mirrorWidth=0.25,mirrorDepth=0.25,drawing=false](8,1.25)(2,1.25){A}
\psline[linewidth=0.5\pslinewidth](9,0)
\rput{-45}(6,0){\mirrorTwo}
\qdisk(A){2pt}\uput[30](A){A}\pnode(8,0){B}\qdisk(B){2pt}\uput[-45](B){B}
\pnode(! 6 1 45 cos mul sub 1 45 sin mul){C}
\qdisk(C){2pt}\uput[90](C){C}\pnode(! 6 1 45 cos mul add 1 45 sin mul neg){D}
\uput[-45](D){D}\qdisk(D){2pt}\psline[linestyle=dashed](A)(B)
\ABinterCD(A)(B)(C)(D){Inter1}\qdisk(A){2pt}
\nodeBetween(A)(B){M}\qdisk(M){2pt}
{\psset{linecolor=red}
\qdisk(Inter1){2pt}\uput[220](Inter1){E}\uput[220](M){M}}
\end{pspicture*}
\end{LTXexample}
\section{\nxLcs{rotateNode}}
The syntax is
\begin{BDef}
\Lcs{rotateNode}\Largb{NodeName}\Largb{Degrees}
\end{BDef}
The coordinates of the node \verb|A| are changed to the new ones. Negative values are possible for rotating clockwise.
\begin{LTXexample}[width=4cm,pos=l]
\begin{pspicture}[showgrid=true](4,4)
\pnode(3,1){A}\qdisk(A){2pt}\uput[20](A){A}
\rotateNode(A){45}
\qdisk(A){2pt}\uput[20](A){A}
\psarc[linecolor=red,
linewidth=0.5pt]{->}(0,0){3.16}{19.47}{64.47}
\end{pspicture}
\end{LTXexample}
\section{\nxLcs{rotateTriangle}}
The syntax is
\begin{BDef}
\Lcs{rotateNode}\Largb{NodeNameA}\Largb{NodeNameB}\Largb{NodeNameC}\Largb{Degrees}
\end{BDef}
The coordinates of the nodes \verb|A,B,C| are changed to the new ones. Negative values are possible for rotating clockwise.
\begin{LTXexample}[width=5cm,pos=l]
\begin{pspicture}[showgrid=true](-1,0)(4,4)
\pnode(1,1){A}\pnode(3,1){B}\pnode(2,3){C}
\qdisk(A){2pt}\uput[180](A){A}\qdisk(B){2pt}\uput[0](B){B}
\qdisk(C){2pt}\uput[90](C){C}
\psline(A)(B)(C)(A) \rotateTriangle(A)(B)(C){45}
\qdisk(A){2pt}\uput[180](A){A}\qdisk(B){2pt}\uput[0](B){B}
\qdisk(C){2pt}\uput[90](C){C}\psline[linecolor=red](A)(B)(C)(A)
\psarc[linecolor=red,linewidth=0.5pt]{->}(0,0){3.16}{19.47}{64.47}
\psarc[linecolor=red,linewidth=0.5pt]{->}(0,0){1.41}{45}{90}
\psarc[linecolor=red,linewidth=0.5pt]{->}(0,0){3.61}{56.31}{101.31}
\end{pspicture}
\end{LTXexample}
\section{\nxLcs{rotateFrame}}
The syntax is
\begin{BDef}
\Lcs{rotateFrame}\Largb{NodeNameA}\Largb{NodeNameB}\Largb{NodeNameC}\Largb{NodeNameD}\Largb{Degrees}
\end{BDef}
The coordinates of the nodes \verb|A,B,C,D| are changed to the new ones. Negative values are possible for rotating clockwise.
\begin{LTXexample}[width=6cm,pos=l]
\begin{pspicture}[showgrid=true](-2,0)(4,5)
\pnode(1,1){A}\pnode(3,1){B}\pnode(3,3){C}\pnode(1,3){D}
\qdisk(A){2pt}\uput[180](A){A}\qdisk(B){2pt}\uput[0](B){B}
\qdisk(C){2pt}\uput[90](C){C} \qdisk(D){2pt}\uput[180](D){D}
\psline(A)(B)(C)(D)(A)
\rotateFrame(A)(B)(C)(D){45}
\qdisk(A){2pt}\uput[180](A){A}\qdisk(B){2pt}\uput[0](B){B}
\qdisk(C){2pt}\uput[90](C){C} \qdisk(D){2pt}\uput[180](D){D}
\psline[linecolor=red](A)(B)(C)(D)(A)
\psarc[linecolor=red,linewidth=0.5pt]{->}(0,0){3.16}{19.47}{64.47}
\psarc[linecolor=red,linewidth=0.5pt]{->}(0,0){1.41}{45}{90}
\psarc[linecolor=red,linewidth=0.5pt]{->}(0,0){4.24}{45}{90}
\psarc[linecolor=red,linewidth=0.5pt]{->}(0,0){3.16}{71.57}{116.57}
\end{pspicture}
\end{LTXexample}
\section{\nxLcs{arrowLine}}
The syntax is
\begin{BDef}
\Lcs{arrowLine}\OptArgs\Largr{Start}\Largr{End}\Largb{ArrowNumber}
\end{BDef}
Draws a line from \verb|Start| to \verb|End| with \verb|ArrowNumber| arrows inside.
\begin{LTXexample}[width=4cm,pos=l]
\begin{pspicture}[showgrid=true](4,4)
\arrowLine[linecolor=red](0,0)(4,3){3}
\arrowLine[linecolor=green,arrowsize=6pt,arrows=-|](0,0)(3,1){2}
\arrowLine[linecolor=blue,arrowOffset=0.75,arrowsize=6pt](4,0)(0,3){3}
\end{pspicture}
\end{LTXexample}
\subsection{Options}
A special option is \Lkeyword{arrowOffset}, which makes it possible to draw lines with
different arrows. By default the arrows are placed symetrically. This can be moved by
\Lkeyword{arrowOffset}. Additionally all other valid options for pslines are possible her, too.
\begin{LTXexample}[width=4cm,pos=l]
\begin{pspicture}[showgrid=true](4,2)
\arrowLine[arrowsize=6pt,linecolor=red](0,0.5)(4,0.5){3}
\arrowLine[arrowsize=6pt,linecolor=red,
arrows=<-](0,1)(4,1){3}
\arrowLine[arrowsize=6pt,linecolor=red](0,1.5)(4,1.5){3}
\arrowLine[arrowsize=6pt,linecolor=blue,arrows=<-,
arrowOffset=0.2](0,1.5)(4,1.5){3}
\end{pspicture}
\end{LTXexample}
\clearpage
\section{List of all optional arguments for \texttt{pst-optic}}
\xkvview{family=pst-optic,columns={key,type,default}}
\bgroup
\raggedright
\nocite{*}
\bibliographystyle{plain}
\bibliography{pst-optic-doc}
\egroup
\printindex
\end{document}
|