summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pst-eucl/euclide_english.tex
blob: 69c0f0fda8af2520e036509330d8b267a8f745b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
\documentclass[12pt, draft]{report}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{euclide}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\title{The \texttt{pst-euclide} Package}
\author{\Version\\\\Dominique Rodriguez\thanks{domino.rodriguez@laposte.net}}
\date{\Date}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
\maketitle
\begin{abstract}
  The \texttt{pst-eucl} package allow the drawing of Euclidean
  geometric figures using \LaTeX\ macros for specifying mathematical
  constraints. It is thus possible to build point using common
  transformations or intersections. The use of coordinates is limited
  to points which controlled the figure.

  \vfill

  \begin{center}\bfseries
    Acknowledgements
  \end{center}

  I would like to thanks the following persons for the help they gave
  me for development of this package:

  \begin{itemize}
  \item Denis Girou pour ses critiques pertinentes et ses
    encouragement lors de la découverte de l'embryon initial et pour
    sa relecture du présent manuel ;
  \item Michael Vulis for his fast testing of the documentation using
    V\TeX\ which leads to the correction of a bug in the \PostScript\ code;
  \item Manuel Luque and Olivier Reboux for their remarks and their examples.
  \item Alain Delplanque for its modification propositions on automatic
    placing of points name and the ability of giving a list of points in
    \com{pstGeonode}.
  \end{itemize}
\end{abstract}
%%%%%%%%%%%%%%%%%%%%
\renewcommand{\abstractname}{WARNING}
\begin{abstract}
  This is the first release put on \texttt{CTAN} archives.

  \vfill

  \begin{center}\bfseries
    LICENSE
  \end{center}

  This program and its documentation can be redistributed and/or modified under the
  terms of the ``\LaTeX{} Project Public License'' Distributed from \texttt{CTAN}
  archives in directory \texttt{macros/latex/base/lppl.txt}. However, you may send me
  an Email with a small commentary. Then you should consider making a
  donation\footnote{especially if you use a purchased operating system!. Furthermore,
    do not forget that \LaTeX{} is freely usable and that many users buy several
    hundreds of euros (dollars, pounds) softwares of lower quality}:

\begin{enumerate}
\item directly to the \LaTeX3 team;
\item and/or to me for the support of this package\footnote{1~\MonEuro, £1 ou \$1 is
    OK, but I accept more.}.
\end{enumerate}

  A donation of time depending of competences is possible : correction of the
  documentation (especially this one), test of functionnalities, propositions of
  extensions, \ldots
\end{abstract}
\twocoltoc{}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\chapter{User's manual}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Special specifications}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{\PStricks\ Options}

The package activates the \com{SpecialCoor} mode. This mode extend the
coordinates specification. Furthermore the plotting type is set to
\texttt{dimen=middle}, which indicates that the position of the
drawing is done according to the middle of the line. Please look at
the user manual for more information about these setting.

At last, the working axes are supposed to be (ortho)normed.

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Conventions}

For this manual, I used the geometric French conventions for naming
the points:

\begin{itemize}
\item $O$ is a centre (circle, axes, symmetry, homothety, rotation);
\item $I$ defined the unity of the abscissa axe, or a midpoint;
\item $J$ defined the unity of the ordinate axe;
\item $A$, $B$, $C$, $D$ are points ;
\item $M'$ is the image of $M$ by a transformation ;
\end{itemize}

At last, although these are nodes in \PStricks, I treat them
intentionally as points.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Basic Objects}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Points}

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    \subsubsection{default axes}

\defcom[Creates a list of points using the common axis. \protect\ParamList{\param{PointName},
  \param{PointNameSep}, \param{PosAngle}, \param{PointSymbol}, \param{PtNameMath}}]
  {pstGeonode}{\OptArg{par}$(x_1,y_1)$\Arg{$A_1$}$(x_2,y_2)$\Arg{$A_2$}\ldots$(x_n,y_n)$\Arg{$A_n$}}

This command defines one or more geometrical points associated with a node. Each
point has a node name \Argsans{$A_i$} which defines the default label put on the
picture. This label is managed by default in mathematical mode, the boolean parameter
\param{PtNameMath} \DefaultVal{true} can modify this behavior and let manage the
label in normal mode.  It is placed at a distance of \cbstart\param{PointNameSep}
\DefaultVal{1em}\cbend{} of the center of the node with a angle of
\param{PosAngle}\DefaultVal{0}. It is possible to specify another label using the
parameter \param{PointName} \DefaultVal{default}, and an empty label can be specified
by selecting the value \texttt{none}, in that case the point will have no name on the
picture.

The point symbol is given by the parameter \param{PointSymbol} \DefaultVal{*}.  The
symbol is the same as used by the macro \com{pstdot}.  This parameter can be set to
\texttt{none}, which means that the point will not be drawn on the picture.

Here are the possible values for this parameter:

\begin{multicols}{3}
  \begin{itemize}\psset{dotscale=2}
  \item \param{*}: \psdots(.5ex,.5ex)
  \item \param{o}: \psdots[dotstyle=o](.5ex,.5ex)
  \item \param{+}: \psdots[dotstyle=+](.5ex,.5ex)
  \item \param{x}: \psdots[dotstyle=x](.5ex,.5ex)
  \item \param{asterisk} : \psdots[dotstyle=asterisk](.5ex,.5ex)
  \item \param{oplus}: \psdots[dotstyle=oplus](.5ex,.5ex)
  \item \param{otimes}: \psdots[dotstyle=otimes](.5ex,.5ex)
  \item \param{triangle}: \psdots[dotstyle=triangle](.5ex,.5ex)
  \item \param{triangle*}: \psdots[dotstyle=triangle*](.5ex,.5ex)
  \item \param{square}: \psdots[dotstyle=square](.5ex,.5ex)
  \item \param{square*}: \psdots[dotstyle=square*](.5ex,.5ex)
  \item \param{diamond}: \psdots[dotstyle=diamond](.5ex,.5ex)
  \item \param{diamond*}: \psdots[dotstyle=diamond*](.5ex,.5ex)
  \item \param{pentagon}: \psdots[dotstyle=pentagon](.5ex,.5ex)
  \item \param{pentagon*}: \psdots[dotstyle=pentagon*](.5ex,.5ex)
  \item \param{|}: \psdots[dotstyle=|](.5ex,.5ex)
  \end{itemize}
\end{multicols}

\cbstart Furthermore, these symbols can be controlled with some others \PStricks,
several of these are :

\begin{itemize}
\item their scale with \param{dotscale}, the value of whom is either two numbers
  defining the horizontal and vertical scale factor, or one single value being the
  same for both,
\item their angle with parameter \param{dotangle}.
\end{itemize}

Please consult the \PStricks documentation for further details.\cbend

The parameters are specified explicitly in the \Argsans{par} part. The
parameters \param{PosAngle}, \param{PointSymbol}, \param{PointName} and
\param{PointNameSep} can be set to :

\begin{itemize}
\item either a single value, the same for all points ;
\item or a list of values delimited by accolads \texttt{\{ ... \}} and
  separated with comma \textit{without any blanks}, allowing to differenciate the
  value for each point.
\end{itemize}

In the later case, the list can have less values than point which means that the
last value is used for all the remaining points.

\cbstart At least, the parameter \param{CurveType} \DefaultVal{none} can be used to
draw a line between the points:

\begin{itemize}
\item opened \verb$polyline$ ;
\item closed \verb$polygon$ ;
\item open and curved \verb$curve$.
\end{itemize}\cbend

% EXEMPLE GEONODE
\tabex{geonode}

Obviously, the nodes appearing in the picture can be used as normal
\PStricks nodes. Thus, it is possible to reference a point from
\rnode{ici}{here}.
\nccurve[arrowscale=2]{->}{ici}{B_1}

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    \subsubsection{User defined axes}


\defcom[Creates a list of points in the landmark $(O;I;J)$.
        \protect\ParamList{\param{PointName}, \param{PointNameSep}, \param{PosAngle},
        \param{PointSymbol}, \param{PtNameMath}}]
   {pstOIJGeonode}
  {\OptArg{par}$(x_1,y_1)$\Arg{$A_1$}\Arg{$O$}\Arg{$I$}\Arg{$J$}$(x_2,y_2)$\Arg{$A_2$}\ldots$(x_n,y_n)$\Arg{$A_n$}}

This command allows the placement of points in any landmark(?) defined
by the three points $(O;I;J)$.

%% EXAMPLE
\tabex{oij}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Segment mark}

A segment can be drawn using the \com{ncline} command. However,
for marking a segment there is the following command:

\defcom[Marks segment \Segment{AB} in its middle with the mark given by
        \protect\param{SegmentSymbol}. \protect\ParamList{\param{SegmentSymbol}}]
  {pstMarkSegment}{\OptArg{par}\Arg{$A$}\Arg{$B$}}

The symbol drawn on the segment is given by the parameter
\param{SegmentSymbol}. Its value can be any valid command which can be
used in math mode. Its default value is \texttt{pstslashh},
which produced two slashes on the segment. The segment is drawn.

Several commands are predefined for marking the segment:

\begin{multicols}{3}
  \psset{PointSymbol=none, PointName=none, unit=.8}
  \newcommand{\Seg}[1]{%
    \com{#1} : \begin{pspicture}[.3](2,1)
                 \pstGeonode(0.3,.5){A}(1.7,.5){B}\pstSegmentMark[SegmentSymbol=#1]{A}{B}
               \end{pspicture}}%
  \begin{itemize}
  \item \Seg{pstslash} ;
  \item \Seg{pstslashh} ;
  \item \Seg{pstslashhh} ;
  \item \Seg{MarkHash} ;
  \item \Seg{MarkHashh} ;
  \item \Seg{MarkHashhh} ;
  \item \Seg{MarkCros} ;
  \item \Seg{MarkCross} ;
  \end{itemize}
\end{multicols}

The three commands of the family \texttt{MarkHash} draw a line whose inclination is
controled by the parameter \param{MarkAngle} \DefaultVal{45}. Their width and colour
depends of the width and color of the line when the drawing is done, ass shown is the
next example.

%% EXAMPLE
\tabex{segmentmark}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Triangles}

The more classical figure, it has its own macro for a quick definition:

\defcom[Draws a triangle.  \protect\ParamList{\param{PointName},
  \param{PointNameSep}, \param{PointSymbol}, \param{PointNameA},
  \param{PosAngleA}, \param{PointSymbolA}, \param{PointNameB},
  \param{PosAngleB}, \param{PointSymbolB}, \param{PointNameC},
  \param{PosAngleC}, \param{PointSymbolC}}]
  {pstTriangle}{%
  \OptArg{par}
  $(x_A;y_A)$\Arg{$A$}$(x_B;y_B)$\Arg{$B$}$(x_C;y_C)$\Arg{$C$}}

In order to accurately put the name of the points, there are three parameters
\param{PosAngleA}, \param{PosAngleB} and \param{PosAngleC}, which are associated
respectively to the nodes \Argsans{$A$}, \Argsans{$B$} et \Argsans{$C$}. Obviously
they have the same meaning as the parameter \param{PosAngle}. If no angle
is specified for a given point, its name is put on the bissector line.

In the same way there are parameters for controlling the symbol used
for each points: \param{PointSymbolA}, \param{PointSymbolB} and
\param{PointSymbolC}. They are equivalent to the parameter
\param{PointSymbol}. The management of the default value followed the
same rule.

\tabex{triangle}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Angles}

Each angle is defined with three points. The vertex is the second
point. Their order is important because it is assumed that the angle is
specified in the direct order. The first command is the marking of a
right angle:

\defcom[Marks the rigth angle \protect\Angle{ABC} given in direct
        order. \protect\ParamList{\param{RightAngleType}, \param{RightAngleSize},
        \param{RightAngleSize}}]
  {pstRightAngle}%
  {\OptArg{par}\Arg{$A$}\Arg{$B$}\Arg{$C$}}

\cbstart The symbol used is controlled by the parameter \param{RightAngleType}
\DefaultVal{default}. Its possible values are :

\begin{itemize}
\item \verb$default$ : standard symbol ;
\item \verb$german$ : german symbol (given by U. Dirr) ;
\item \verb$suisseromand$ : swiss romand symbol (given P. Schnewlin).
\end{itemize}\cbend

The only parameter controlling this command, excepting the ones which
controlled the line, is \param{RightAngleSize} which defines the size
of the symbol\DefaultVal{0.28 unit}.

For other angles, there is the command:

\defcom[Marks the angle \protect\Angle{ABC} given in direct order.
  \protect\ParamList{\param{MarkAngleRadius}, \param{LabelAngleOffset},
  \param{Mark}}]
  {pstMarkAngle}%
  {\OptArg{par}\Arg{$A$}\Arg{$B$}\Arg{$C$}}


The \param{label} can be any valid \TeX\ box, it is put at \param{LabelSep}
\DefaultVal{1 unit} of the node in the direction of the bisector of the angle
modified by \param{LabelAngleOffset}\DefaultVal{0} and positioned using
\param{LabelRefPt} \DefaultVal{c}. Furthermore the arc used for marking has a radius
of \param{MarkAngleRadius} \DefaultVal{.4~unit}.  At least, it is possible to place
an arrow using the parameter \param{arrows}.Finally, it is possible to mark
the angle by specifying a \TeX{} command as argument of parameter \param{Mark}.

\tabex{angle}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Lines, half-lines and segments}

The classical line!

\defcom[Draws line $(AB)$.]
  {pstLineAB}{\OptArg{par}\Arg{$A$}\Arg{$B$}}

In order to control its length\footnote{which is the comble for a
line!}, the two parameters \param{nodesepA} et \param{nodesepB}
specify the abscissa of the extremity of the drawing part of the line.
A negative abscissa specify an outside point, while a positive
abscissa specify an internal point. If these parameters have to be
equal, \param{nodesep} can be used instead. The default value of these
parameters is equal to 0.

\tabex{droite}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Circles}

A circle can be defined either with its center and a point of its
circumference, or with two diameterly opposed points. There is two
commands :

\renewcommand{\ComUnDescr}{Draws the circle of center $O$ crossing $A$. \protect\ParamList{\param{Radius},
  \param{Diameter}}.}
\renewcommand{\ComDeuxDescr}{Draws the circle of diameter $AB$. \protect\ParamList{\param{Radius},
  \param{Diameter}}.}
\defcomdeux{pstCircleOA}{\OptArg{par}\Arg{$O$}\Arg{$A$}}%
           {pstCircleAB}{\OptArg{par}\Arg{$A$}\Arg{$B$}}

For the first macro, it is possible to omit the second point and then
to specify a radius or a diameter using the parameters \param{Radius}
and \param{Diameter}. The values of these parameters must be specified
with one of the two following macros :

\renewcommand{\ComUnDescr}{Specifies distance $AB$ for the parameters
  \protect\param{Radius} and \protect\param{Diameter}. \protect\ParamList{\param{DistCoef}}.}
\renewcommand{\ComDeuxDescr}{Specifies a numerical value for the parameters
  \protect\param{Radius} and \protect\param{Diameter}. \protect\ParamList{\param{DistCoef}}.}
\defcomdeux{pstDistAB}{\OptArg{par}\Arg{$A$}\Arg{$B$}}%
           {pstDistVal}{\OptArg{par}\Arg{x}}

The first specifies a distance between two points. The parameter
\param{DistCoef} can be used to specify a coefficient to reduce or
enlarge this distance. To be taken into account this last parameter
must be specified before the distance. The second macro can be used to
specify an explicit numeric value.

We will see later how to draw the circle crossing three points.

\vspace{1.1\baselineskip}
\begin{minipage}[m]{.45\linewidth}
  With this package, it becomes possible to draw:

  \begin{itemize}
  \item {\color{red} the circle of center $A$ crossing $B$;}
  \item {\color{green} the circle of center $A$ whose radius is $AC$;}
  \item {\color{blue} the circle of center $A$ whose radius is $BC$;}
  \item {\color{Sepia} the circle of center $B$ whose radius is $AC$;}
  \item {\color{Aquamarine} the circle of center $B$ of diameter $AC$;}
  \item {\color{RoyalBlue} the circle whose diameter is $BC$.}
  \end{itemize}
\end{minipage}
%
\input{Exemples/cercle}

\smallverbatiminput{Exemples/cercle_in}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Circle arcs}

\renewcommand{\ComUnDescr}{Draws the circle arc of center $O$ and radius $OA$,
  delimited by the angle $\protect\Angle{AOB}$ in direct order.}
\renewcommand{\ComDeuxDescr}{Draws the circle arc of center $O$ and radius $OA$,
  delimited by the angle $\protect\Angle{AOB}$ in indirect order.}
\defcomdeux{pstArcOAB}{\OptArg{par}\Arg{$O$}\Arg{$A$}\Arg{$B$}}%
           {pstArcnOAB}{\OptArg{par}\Arg{$O$}\Arg{$A$}\Arg{$B$}}

These two macros draw circle arcs, $O$ is the center, the radius
defined by $OA$, the beginning angle given by $A$ and the final angle
by $B$. Finally, the first macro draws the arc in the direct way,
whereas the second in the indirect way. It is not necessary that the
two points are at the same distance of $O$.

\tabex{arc}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Curved abscissa}

A point can be positioned on a circle using its curved abscissa.

\defcom[Puts a point on a circle using an curves abscissa.
  \protect\ParamList{\param{PointSymbol}, \param{PosAngle},
  \param{PointName}, \param{PointNameSep}, \param{PtNameMath}, \param{CurvAbsNeg}}]
  {pstCurvAbsNode}{\OptArg{par}\Arg{$O$}\Arg{$A$}\Arg{$B$}\Arg{Abs}}

The point \Argsans{$B$} is positioned on the circle of center
\Argsans{$O$} crossing \Argsans{$A$}, with the curved abscissa
\Argsans{Abs}. The origin is \Argsans{$A$} and the direction is
anti-clockwise by default. The parameter \param{CurvAbsNeg}
\DefaultVal{false} can change this behavior.

If the parameter \param{PosAngle} is not specified, the point label is put
automatically in oirder to be alined with the circle center and the point.

\tabex{abscur}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Généric curve}

It is possible to generate a set of points using a loop, and to give
them a generic name defined by a radical and a number. The following
command can draw a interpolated curve crossing all such kind of
points.

\defcom[Draws an interpolate curve using a points family whose name has a
  naming convention using a prefix and a number.
  \protect\ParamList{\param{GenCurvFirst}, \param{GenCurvInc},
  \param{GenCurvLast}}]
  {pstGenericCurve}{\OptArg{par}\Arg{Radical}\Arg{$n_1$}\Arg{$n_2$}}

The curve is drawn on the points whose name is defined using the
radical \Argsans{Radical} followed by a number from \Argsans{$n_1$} to
\Argsans{$n_2$}. In order to manage side effect, the parameters
\param{GenCurvFirst} et \param{GenCurvLast} can be used to specified
special first or last point. The parameter \param{GenCurvInc} can be
used to modify the increment from a point to the next one
\DefaultVal{1}.

\tabex{gencur}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Geometric Transformations}

The geometric transformations are the ideal tools to construct geometric figures. All
the classical transformations are available with the following macros \cbstart which
share the same syntaxic scheme end two parameters.

The common syntax put at the end two point lists whose second is optional or with a
cardinal at least equal. These two lists contain the antecedent points and their
respective images. In the case no image is given for some points the a  default name
is build appending a \verb$'$ to the antecedent name.

The first shared parameter is \param{CodeFig} which draws the specific
constructions lines. Its default value is \param{false}, and a
\param{true} value activates this optional drawing.
The drawing is done using the line style \param{CodeFigStyle}
\DefaultVal{dashed}, with the color \param{CodeFigColor}
\DefaultVal{cyan}.

Their second shared parameter is \param{CurveType} which controls the drawing of a
line crossing all images, and thus allow a quick description of a transformed figure.\cbend

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Central symmetry}

\defcom[Builds the symetric point $M'_i$ of $M_i$ in relation to point $O$.
  \protect\ParamList{\param{PointSymbol}, \param{PosAngle},
  \param{PointName}, \param{PointNameSep}, \param{PtNameMath},
  \param{CodeFig}, \param{CodeFigColor}, \param{CodeFigStyle}}]{pstSymO}%
  {\OptArg{par}\Arg{$O$}\Arg{$M_1, M_2, \cdots, M_n$}\OptArg{$M'_1, M'_2, \cdots, M'_p$}}

Draw the symmetric point in relation to point $O$. The classical
parameter of point creation are usable here, and also for all the
following functions.

\tabex{symcentrale}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Orthogonal (or axial) symmetry}

\defcom[Builds the symetric point $M'_i$ of $M_i$ in relation to line $(AB)$.
  \protect\ParamList{\param{PointSymbol}, \param{PosAngle},
  \param{PointName}, \param{PointNameSep}, \param{PtNameMath},
  \param{CodeFig}, \param{CodeFigColor}, \param{CodeFigStyle}}]{pstOrtSym}%
  {\OptArg{par}\Arg{$A$}\Arg{$B$}\Arg{$M_1, M_2, \cdots, M_n$}\OptArg{$M'_1, M'_2, \cdots, M'_p$}}

Draws the symmetric point in relation to line $(AB)$.

\tabex{symorthogonale}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Rotation}

\defcom[Builds the image $M'_i$ of $M_i$ using a rotation around $O$ of \protect\param{RotAngle}
  degrees (direct).
  \protect\ParamList{\param{PointSymbol}, \param{PosAngle},
  \param{PointName}, \param{PointNameSep}, \param{PtNameMath}, \param{RotAngle}}]{pstRotation}%
  {\OptArg{par}\Arg{$O$}\Arg{$M_1, M_2, \cdots, M_n$}\OptArg{$M'_1, M'_2, \cdots, M'_p$}}

Draw the image of $M_i$ by the rotation of center $O$ and angle given by
the parameter \param{RotAngle}. This later can be an angle specified
by three points. In such a case, the following function must be used:

\defcom[Specifies the measure of \protect\Angle{AOB} (direct) for the parameter
  \protect\param{RotAngle}. \protect\ParamList{\param{AngleCoef}}]
  {pstAngleABC}{\Arg{$A$}\Arg{$B$}\Arg{$C$}}

Never forget to use the rotation for drawing a square or an equilateral
triangle.\cbstart The parameter \param{CodeFig} puts a bow with an arrow between the
point and its image, and if \param{TransformLabel} \DefaultVal{none}
contain some text, it is put on the corresponding angle in mathematical mode.

\tabex{rotation}\cbend

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Translation}

\defcom[Builds the translated $M'_i$ of $M_i$ using the vector \protect\Vecteur{AB}.
  \protect\ParamList{\param{PointSymbol}, \param{PosAngle},
  \param{PointName}, \param{PointNameSep}, \param{PtNameMath}, \param{DistCoef}}]
  {pstTranslation}%
  {\OptArg{par}\Arg{$A$}\Arg{$B$}\Arg{$M_1, M_2, \cdots, M_n$}\OptArg{$M'_1, M'_2, \cdots, M'_p$}}

Draws the translated $M'_i$ of $M_i$ using the vector \Vecteur{AB}. Useful for drawing a
parallel line.

\tabex{translation}

The parameter \param{DistCoef} can be used as a multiplicand
coefficient to modify the translation vector.\cbstart The parameter \param{CodeFig}
draws the translation vector le vecteur de translation between the
point and its image, labeled in its middle defaultly with the vector name or by the
text specified with \param{TransformLabel} \DefaultVal{none}.\cbend

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Homothetie}

\defcom[Builds the image $M'_i$ de $M_i$ using the homothetie of centre $O$ and coefficient
  \protect\param{HomCoef}.
  \protect\ParamList{\param{PointSymbol}, \param{PosAngle},
  \param{PointName}, \param{PointNameSep}, \param{PtNameMath}, \param{HomCoef}}]
  {pstHomO}%
  {\OptArg{par}\Arg{$O$}\Arg{$M_1, M_2, \cdots, M_n$}\OptArg{$M'_1, M'_2, \cdots, M'_p$}}

Draws $M'_i$ the image of $M_i$ by the homotethy of center $O$ and
coefficient specified with the parameter \param{HomCoef}.

\tabex{homothetie}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Orthogonal projection}

\defcom[Build the projected point $M'_i$ of $M_i$ on line $(AB)$.
  \protect\ParamList{\param{PointSymbol}, \param{PosAngle},
  \param{PointName}, \param{PointNameSep}, \param{PtNameMath},
  \param{CodeFig}, \param{CodeFigColor}, \param{CodeFigStyle}}]
  {pstProjection}%
  {\OptArg{par}\Arg{$A$}\Arg{$B$}\Arg{$M_1, M_2, \cdots, M_n$}\OptArg{$M'_1, M'_2, \cdots, M'_p$}}

Projects orthogonally the point $M_i$ on the line $(AB)$. Useful for the altitude of a
triangle. The name is aligned with the point and the projected point as
shown in the exemple.

\tabex{projection}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Special object}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Midpoint}

\defcom[Build the middle $I$ of \Segment{AB}.
  \protect\ParamList{\param{PointSymbol}, \param{PosAngle},
  \param{PointName}, \param{PointNameSep}, \param{PtNameMath}, \param{SegmentSymbol},
  \param{CodeFig}, \param{CodeFigColor}, \param{CodeFigStyle}}]
  {pstMiddleAB}%
  {\OptArg{par}\Arg{$A$}\Arg{$B$}\Arg{$I$}}

Draw the midpoint $I$ of segment $[AB]$. By default, the point name is
automatically put below the segment.

\tabex{milieu}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Triangle center of gravity}

\defcom[Builds the centre of gravity $G$ of triangle $ABC$.
        \protect\ParamList{\param{PointName}, \param{PointNameSep}, \param{PosAngle},
        \param{PointSymbol}, \param{PtNameMath}}]
  {pstCGravABC}%
  {\OptArg{par}\Arg{$A$}\Arg{$B$}\Arg{$C$}\Arg{$G$}}

Draw the $ABC$ triangle centre of gravity $G$.

\tabex{grav}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Centre of the circumcircle of a triangle}

\defcom[Buids the center $O$ of the circumcircle of triangle $ABC$.
        \protect\ParamList{\param{PointName}, \param{PointNameSep}, \param{PosAngle},
        \param{PointSymbol}, \param{PtNameMath}, \param{DrawCirABC}, \param{CodeFig},
        \param{CodeFigColor}, \param{CodeFigStyle}, \param{SegmentSymbolA},
        \param{SegmentSymbolB}, \param{SegmentSymbolC}}]
  {pstCircleABC}{\OptArg{par}\Arg{$A$}\Arg{$B$}\Arg{$C$}\Arg{$O$}}
 
Draws the circle crossing three points (the circum circle) and put its center $O$.
The effective drawing is controlled by the boolean parameter \param{DrawCirABC}
\DefaultVal{true}.\cbstart Moreover the intermediate constructs (mediator lines) can
be drawn by setting the boolean parameter \param{CodeFig}. In that case the middle
points are marked on the segemnts using three different marks given by the parameters
\param{SegmentSymbolA}, \param{SegmentSymbolB} et \param{SegmentSymbolC}.\cbend

\tabex%
  [@{}m{.35\linewidth}@{\hspace{.013\linewidth}}>{\small}m{.627\linewidth}@{}]%
  {ccirc}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Perpendicular bisector of a segment}

\defcom[Builds the perpendicular bisector of the segment \Segment{AB}, its middle $I$
        and a point $M$ of the bisector wich is the image of $B$ using rotation.
        \protect\ParamList{\param{PointName}, \param{PointNameSep}, \param{PosAngle},
        \param{PointSymbol}, \param{PtNameMath}, \param{CodeFig},
        \param{CodeFigColor}, \param{CodeFigStyle}, \param{SegmentSymbol}}]
  {pstMediatorAB}{\OptArg{par}\Arg{$A$}\Arg{$B$}\Arg{$I$}\Arg{$M$}}

The perpendicular bisector of a segment is a line perpendicular to
this segment in its midpoint. The segment is $[AB]$, the midpoint $I$,
and $M$ is a point belonging to the perpendicular bisector line. It is
build by a rotation of $B$ of 90 degrees around $I$. This mean
that the order of $A$ and $B$ is important, it controls the position
of $M$. The command creates the two points $M$ end $I$. The
construction is controlled by the following parameters:

\begin{itemize}
\item \param{CodeFig}, \param{CodeFigColor} et \param{SegmentSymbol}
  for marking the right angle ;
\item \param{PointSymbol} et \param{PointName} for controlling the
  drawing of the two points, each of them can be specified
  separately with the parameters \param{...A} et \param{...B} ;
\item parameters controlling the line drawing.
\end{itemize}

\tabex%
  [@{}m{.35\linewidth}@{\hspace{.013\linewidth}}>{\small}m{.627\linewidth}@{}]%
  {mediator}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Bisectors of angles}

\defcom[Builds the internal bisector of angle \protect\Angle{BAC} and one of its point
  $M$, image of $B$ by rotation around $A$.
  \protect\ParamList{\param{PointSymbol}, \param{PosAngle},
  \param{PointName}, \param{PointNameSep}, \param{PtNameMath}}]
  {pstBissectBAC}{\OptArg{par}\Arg{$B$}\Arg{$A$}\Arg{$C$}\Arg{$N$}}

\defcom[Builds the external bisector of angle \protect\Angle{BAC} and one of its point
  $M$, image of $B$ by rotation around $A$.
  \protect\ParamList{\param{PointSymbol}, \param{PosAngle},
  \param{PointName}, \param{PointNameSep}, \param{PtNameMath}}]
  {pstOutBissectBAC}{\OptArg{par}\Arg{$B$}\Arg{$A$}\Arg{$C$}\Arg{$N$}}

there are two bisectors for a given geometric angle: the inside one and
the outside one; this is why there is two commands. The angle is
specified by three points specified in the trigonometric direction
(anti-clockwise). The result of the commands is the specific line and
a point belonging to this line. This point is built by a rotation of
point $B$.

\tabex%
  [@{}m{.35\linewidth}@{\hspace{.013\linewidth}}>{\small}m{.627\linewidth}@{}]%
  {bissec}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Intersections}

Points can be defined by intersections. Six intersection types  are
managed:

\begin{itemize}
\item line-line;
\item line-circle;
\item circle-circle;
\item function-function;
\item function-line;
\item function-circle.
\end{itemize}

An intersection can not exist: case of parallel lines. In such a case,
the point(s) are positioned at the origin. In fact, the user has to
manage the existence of these points.

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Line-Line}

\defcom[Puts a point at the intersection of the two lines $(AB)$ et $(CD)$.
  \protect\ParamList{\param{PointSymbol}, \param{PosAngle},
  \param{PointName}, \param{PointNameSep}, \param{PtNameMath}}]
  {pstInterLL}%
  {\OptArg{par}\Arg{$A$}\Arg{$B$}\Arg{$C$}\Arg{$D$}\Arg{$M$}}

Draw the intersection point between lines $(AB)$ and $(CD)$.

\begin{description}
\item[basique]

  \tabex{interDD}

\item[Horthocentre]

  \tabex%
  [@{}m{.35\linewidth}@{\hspace{.013\linewidth}}>{\small}m{.627\linewidth}@{}]
    {orthocentre}

\end{description}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Circle--Line}

\defcom[Puts the intersection point(s) between $(AB)$ and the circle of
        centre $O$ crossing $C$.
        \protect\ParamList{\param{PointSymbol}, \param{PosAngle},
        \param{PointName}, \param{PointNameSep}, \param{PtNameMath},
        \param{PointSymbolA}, \param{PosAngleA}, \param{PointNameA},
        \param{PointSymbolB}, \param{PosAngleB}, \param{PointNameB}, 
        \param{Radius}, \param{Diameter}}]
  {pstInterLC}%
  {\OptArg{par}\Arg{$A$}\Arg{$B$}\Arg{$O$}\Arg{$C$}%
    \Arg{$M_1$}\Arg{$M_2$}}

Draw the one or two intersection point(s) between the line  $(AB)$ and
the circle of centre $O$ and with radius $OC$.

The circle is specified with its center and either a point of its
circumference or with a radius specified with parameter \param{radius}
or its diameter specified with parameter \param{Diameter}. These two
parameters can be modify by coefficient \param{DistCoef}.


The position of the wo points is such that the vectors \Vecteur{AB} abd
\Vecteur{M_1M_2} are in the same direction. Thus, if the points
definig the line are switch, then the resulting points will be also
switched. If the intersection is void, then the points are positionned
at the center of the circle.


\tabex
  [@{}m{.4\linewidth}@{\hspace{.013\linewidth}}>{\small}m{.5777\linewidth}@{}]
  {interDC}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Circle--Circle}

\defcom[Put the intersection point(s) between the circle of centre $O_1$ passant
        par $B$ et le cercle de centre $O_2$ passant par $C$.]
  {pstInterCC}%
  {\OptArg{par}\Arg{$O_1$}\Arg{$B$}\Arg{$O_2$}\Arg{$C$}%
    \Arg{$M_1$}\Arg{$M_2$}}

This function is similar to the last one. The boolean parameters
\param{CodeFigA} et \param{CodeFigB} allow the drawing of the arcs
at the intersection. In order to get a coherence \param{CodeFig} allow
the drawing of both arcs. The boolean parameters \param{CodeFigAarc} and
\param{CodeFigBarc} specified the direction of these optional arcs:
trigonometric (by default) or clockwise. Here is a first example.

\tabex{interCC}

And a more complete one, which includes the special circle
specification using radius and diameter. For such specifications it
exists the parameters \param{RadiusA}, \param{RadiusB},
\param{DiameterA} and \param{DiameterB}.

\begin{center}
  \rule[-.5cm]{0pt}{8cm}
  \begin{pspicture}(-3,-4)(7,3)\psgrid
    \input{Exemples/interCC_bis_in}
  \end{pspicture}
\end{center}

\smallverbatiminput{Exemples/interCC_bis_in}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Function--function}

\defcom[Puts an intersection point between two function curves.]
  {pstInterFF}{\OptArg{par}\Arg{$f$}\Arg{$g$}\Arg{$x_0$}\Arg{$M$}}

This function put a point at the intersection between two curves
defined by a function. $x_0$ is an intersection approximated value of
the abscissa. It is obviously possible to ise this function several
time if more than one intersection is present. Each function is
describerd in \PostScript in the same way as the description used by
the \com{psplot} macro of \PStricks. A constant function can be
specified, and then seaching function root is possible.

The Newton algorithm is used for the research, and the intersection
may not to be found. In such a case the point is positionned at the
origin. On the other hand, the research can be trapped (in a local
extremum near zero).

\tabex{interFF}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Function--line}

\defcom[Puts an intersection point between one function curve and the line $(AB)$.]
  {pstInterFL}{\OptArg{par}\Arg{$f$}\Arg{$A$}\Arg{$B$}\Arg{$x_0$}\Arg{$M$}}

Puts a point at the intersection between the function $f$ and the line
$(AB)$.

\tabex{interFL}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \subsection{Function--circle}

\defcom[Puts an intersection point between one function curve and a circle.]
  {pstInterFC}{\OptArg{par}\Arg{$f$}\Arg{$O$}\Arg{$A$}\Arg{$x_0$}\Arg{$M$}}

Puts a point at the intersection between the function $f$ and the circle
of centre $O$ and radius $OA$.

\tabex{interFC}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\chapter{Examples gallery}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \section{Basic geometry}

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    \subsection{Drawing of the bissector}
    \nopagebreak[4]

\tabex{gal_biss}


    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    \cbstart\subsection{Transformation de polygones et courbes}

Here is an example of the use of \param{CurveType} with transformation.
\nopagebreak[4]

\begin{center}
\input{Exemples/curvetype}
\end{center}\nopagebreak[4]

\smallverbatiminput{Exemples/curvetype_in}\cbend

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    \subsection{Triangle lines}

\begin{center}
\psset{unit=2cm}
\input{Exemples/remarq}
\end{center}\nopagebreak[4]

\smallverbatiminput{Exemples/remarq_in}

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    \subsection{Euler circle}

\begin{center}
\psset{unit=2cm}
\input{Exemples/euler}
\end{center}\nopagebreak[4]

\smallverbatiminput{Exemples/euler_in}

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    \subsection{Orthocenter and hyperbola}

The orthocenter of a triangle whose points are on the branches of the
hyperbola ${\mathscr H} : y=a/x$ belong to this hyperbola.
\nopagebreak[4]

\begin{center}
\psset{unit=.5cm}
\input{Exemples/orthoethyper}
\end{center}\nopagebreak[4]

\smallverbatiminput{Exemples/orthoethyper_in}

\pagebreak[4]

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    \subsection{17 sides regular polygon}

Striking picture created by K. F. Gauss.
he also prooved that it is possible to build the regular polygons which
have $2^{2^p}+1$ sides, the following one has 257 sides!
\nopagebreak[4]

\begin{center}
\psset{unit=1.5cm, CodeFig=true, RightAngleSize=.14, CodeFigColor=red,
  CodeFigB=true, linestyle=dashed, dash=2mm 2mm}
\input{Exemples/gauss}
\end{center}

\pagebreak[4]

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    \subsection{Circles \& tangents}

The drawing of the circle tangents which crosses a given point.
\nopagebreak[4]

\begin{center}
\input{Exemples/tg1c}
\end{center}

The drawing of the common tangent of two circles.
\nopagebreak[4]

\begin{center}
\input{Exemples/tg2c}
\end{center}

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    \subsection{Fermat's point}

Drawing of Manuel Luque.\nopagebreak[4]

\begin{center}
\input{Exemples/ptfermat}
\end{center}

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    \subsection{Escribed and inscribed circles of a triangle}

%% cercles inscrit et exinscrits d'un triangle
\begin{center}
\psset{unit=1cm, dash=5mm 4mm}%, PointSymbolA=none, PointSymbolB=none}
\input{Exemples/cinscex}
\end{center}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \section{Some locus points}

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    \subsection{Parabola}

\begin{minipage}[m]{.33\linewidth}
The parabola is the set of points which are at the same distance
between a point and a line.
\end{minipage}
\newcommand{\NbPt}{11}
\input{Exemples/parabole}\nopagebreak[4]

\smallverbatiminput{Exemples/parabole_in}

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    \subsection{Hyperbola}

\begin{minipage}[b]{.55\linewidth}
The hyperbola is the set of points whose difference between their
distance of two points (the focus) is constant.
\begin{verbatim}
%% QQ RAPPELS : a=\Sommet, c=\PosFoyer,
%% b^2=c^2-a^2, e=c/a
%% pour une hyperbole -> e>1, donc c>a,
%% ici on choisi a=\sqrt{2}, c=2, e=\sqrt{2}
%% M est sur H <=> |MF-MF'|=2a
\end{verbatim}
\end{minipage}
%% QQ DEFINITIONS
\input{Exemples/hyperbole}\nopagebreak[4]

\smallverbatiminput{Exemples/hyperbole_in}

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    \subsection{Cycloid}

The wheel rolls from $M$ to $A$. The circle points are on a
cycloid.\nopagebreak[4]

\begin{center}
\input{Exemples/cyclo}
\end{center}\nopagebreak[4]

\smallverbatiminput{Exemples/cyclo_in}

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    \subsection{Hypocycloids (Astroid and Deltoid)}

A wheel rolls inside a circle, and depending of the radius ratio, it
is an astroid, a deltoid and in the general case hypo-cycloids.
\nopagebreak[4]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% ASTROIDE
\input{Exemples/hypocyclo}
%%%%%%%%%%%%%%%%%%%%
\begin{center}
\input{Exemples/astro}\input{Exemples/delto}
\end{center}

\smallverbatiminput{Exemples/hypocyclo}
\smallverbatiminput{Exemples/astro_in}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \section{Lines and circles envelope}

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    \subsection{Conics}

Let's consider a circle and a point $A$ not on the circle. The
set of all the mediator lines of segments defined by $A$ and the
circle points, create two conics depending of the position of $A$:

\begin{itemize}
\item inside the circle: an hyperbola;
\item outside the circle: an ellipse.
\end{itemize}

(figure of O. Reboux).

\begin{center}\input{Exemples/envellipse}\end{center}

\smallverbatiminput{Exemples/envellipse_in}

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    \subsection{Cardioid}

The cardioid is defined by the circles centered on a circle and
crossing a given point.

%\begin{center}\input{Exemples/envcardi}\end{center}

\tabex%
  [@{}m{.5\linewidth}@{\hspace{.013\linewidth}}>{\small}m{.627\linewidth}@{}]%
  {envcardi}

%\smallverbatiminput{Exemples/envcardi_in}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \section{Homotethy and fractals}

\tabex{fracthom}

  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \section{hyperbolic geometry: a triangle and its altitudes}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Tracé de géodésique en géométrie hyperbolique
%% Attention ne fonctionne que si les points ne sont pas alignés avec O
%% Ceci est un cas particulier, je ne crois pas que les hauteurs
%% soient concourantes pour tous les triangles hyperboliques.
\input{Exemples/geohyper}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\appendix
\chapter{Glossaire des commandes}%%\markboth{GLOSSAIRE DES COMMANDES}{\thepage}%
%%\addcontentsline{toc}{chapter}{\protect\numberline{}Glossaire des commandes}%

Here is the complete macros list defined by \texttt{pst-eucl}. Each is shown with a
short description and its parameters which control it. It is obvious that some over
\PStricks parameters can be used, especially the ones which control the drawing of
the line (width, style, color).

\input{euclide_english_macros.ind}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\chapter{The parameters of \texttt{pst-eucl}}

\begin{longtable}{|l|l|p{10cm}|}
  \hline
  \multicolumn{1}{|c|}{\textbf{Paramètre}} &
  \multicolumn{1}{c|}{\textbf{Défaut}} &
  \multicolumn{1}{c|}{\textbf{Signification}} \\\hline\hline
  \endfirsthead
  \hline
  \multicolumn{1}{|c|}{\textbf{Paramètre}} &
  \multicolumn{1}{c|}{\textbf{Défaut}} &
  \multicolumn{1}{c|}{\textbf{Signification}} \\\hline\hline
  \endhead
  \hline
  \multicolumn{3}{|c|}{$\ldots$ à suivre $\ldots$}\\
  \hline
  \endfoot
  \hline
  \endlastfoot
  \param{PointSymbol}&\verb$default$&Symbol used for drawing a point.\\\hline
  \param{PointSymbolA}&\verb$default$&idem for the first point of several.\\\hline
  \param{PointSymbolB}&\verb$default$&for the second\ldots\\\hline
  \param{PointSymbolC}&\verb$default$&for the third\ldots\\\hline
  \param{PointName}&\verb$default$&Point's label.\\\hline
  \param{PointNameA}&\verb$default$&idem for the first point of several.\\\hline
  \param{PointNameB}&\verb$default$&for the second\ldots\\\hline
  \param{PointNameC}&\verb$default$&for the third\ldots\\\hline
  \param{PtNameMath}&\verb$true$&boolean parameter for (de)-activate the math style
  for the point name..\\\hline
  \param{SegmentSymbol}&\verb$default$&Symbol used for marking a segment\\\hline
  \param{SegmentSymbolA}&\verb$default$&idem for the first segment of a macro which
  marks several.\\\hline
  \param{SegmentSymbolB}&\verb$default$&for the second\ldots\\\hline
  \param{SegmentSymbolC}&\verb$default$&for the third\ldots\\\hline
  \param{Mark}&\verb$default$&the mark symbol for an angle.\\\hline
  \param{MarkAngle}&\verb$default$&angle for the precedent symbol.\\\hline
  \param{PointNameSep}&\verb$1em$&Distance from the label and a point.\\\hline
  \param{PosAngle}&\verb$undef$&Label position around the point.\\\hline
  \param{PosAngleA}&\verb$undef$&idem for the first point.\\\hline
  \param{PosAngleB}&\verb$undef$&for the second\ldots\\\hline
  \param{PosAngleC}&\verb$undef$&for the third\ldots\\\hline
  \param{RightAngleSize}&\verb$.4$&size for the right angle symbol\\\hline
  \param{RightAngleType}&\verb$default$&Right angle type, possible value:
  \verb$german$ et \verb$suisseromand$\\\hline
  \param{MarkAngleRadius}&\verb$.4$&Radius of the angle mark.\\\hline
  \param{LabelAngleOffset}&\verb$0$&Angular offset for the angle label.\\\hline
  \param{LabelSep}&\verb$1$&Distance from the label and the angle top and its label.\\\hline
  \param{LabelRefPt}&\verb$c$&Reference point \TeX\ used for the angle label.\\\hline
  \param{HomCoef}&\verb$.5$&Homothetie angle.\\\hline
  \param{RotAngle}&\verb$60$&Rotation angle.\\\hline
  \param{DrawCirABC}&\verb$true$&Boolean parameter driving the drawing of the circumcircle.\\\hline
  \param{CodeFig}&\verb$false$&Boolean parameter driving the coding of the construct.\\\hline
  \param{CodeFigA}&\verb$false$&idem for the first\ldots\\\hline
  \param{CodeFigB}&\verb$false$&idem for the second\ldots\\\hline
  \param{CodeFigColor}&\verb$cyan$&Line color for the coding.\\\hline
  \param{CodeFigStyle}&\verb$dashed$&Line style for the coding.\\\hline
  \param{CodeFigAarc}&\verb$true$&Boolean parameter driving the drawing of the bows
  around the first intersection.\\\hline
  \param{CodeFigBarc}&\verb$true$&idem for the second\ldots\\\hline
  \param{Radius}&\verb$none$&Circle radius.\\\hline
  \param{RadiusA}&\verb$undef$&For the first circle.\\\hline
  \param{RadiusB}&\verb$undef$&For the second circle.\\\hline
  \param{Diameter}&\verb$none$&Circle diameter.\\\hline
  \param{DiameterA}&\verb$undef$&For the first circle.\\\hline
  \param{DiameterB}&\verb$undef$&For the second circle.\\\hline
  \param{DistCoef}&\verb$none$&Coefficient for modifying a distance/vector.\\\hline
  \param{AngleCoef}&\verb$none$&Coefficient for modifying an angle.\\\hline
  \param{CurvAbsNeg}&\verb$false$&Boolean parameter driving the direction of curved abscissa.\\\hline
  \param{GenCurvFirst}&\verb$none$&Name of the first point of a generic curve (side effect).\\\hline
  \param{GenCurvLast}&\verb$none$&Name of the last point of a generic curve (side effect).\\\hline
  \param{GenCurvInc}&\verb$none$&Increment value for a generic curve.\\\hline
  \cbstart%
  \param{CurveType}&\verb$none$&Drawing mode for a list of points.\\\hline
  \param{TransformLabel}&\verb$none$&Label to be used for the rotation or the translation.\\\hline
\end{longtable}

\cbend

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\cbstart\chapter{Compatibilité ascendantes de \texttt{pst-eucl}}

Especially for this release, some macros have their syntax changed without changing
their name, this mean that upward compatibility is not maintained. However, in order
to help users it is possible to reactivate the old syntax by setting the option
\texttt{old} when using the package \verb$\usepackage[old]{pst-eucl}$. For this
release this concern the macros for geometric transformations. You must refer to the
latter manual for the syntax.

\cbend
\end{document}