summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pst-cox/pst-coxeterp/pst-coxeterp_doc.tex
blob: 4cb0c32a187c2e6f151fa79820b22f975fb566e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%    pst-coxeter_parameter\pst-coxeterp_doc.tex
%    Authors:      J.-G. Luque and M. Luque
%    Purpose:      Documentation for the library pst-coxcoor
%    Created:      02/02/2008
%    License:      LGPL
%    Project:      PST-Cox V1.00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Copyright © 2008 Jean-Gabriel Luque, Manuel Luque.
% This work may be distributed and/or modified  under the condition of
% the Lesser GPL.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This file is part of PST-Cox V1.00.
%
%    PST-Cox V1.00 is free software: you can redistribute it and/or modify
%    it under the terms of the Lesser GNU General Public License as published by
%    the Free Software Foundation, either version 3 of the License, or
%    (at your option) any later version.
%
%    PST-Cox V1.00 is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    Lesser GNU General Public License for more details.
%
%    You should have received a copy of the Lesser GNU General Public License
%    along with PST-Cox V1.00.  If not, see <http://www.gnu.org/licenses/>.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass[a4paper]{article}
\usepackage[latin1]{inputenc}%
\usepackage[margin=2cm]{geometry}
\usepackage{pst-coxeterp}
\usepackage{multido}
\usepackage{amssymb}
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{graphics}
% d\'emonstration
% JG Luque 12 août 2003
\newtheorem{example}{Example}[section]
\newcount\ChoicePolytope
\def\C{{\mathbb C}}

\title{The Library {\tt pst-coxeterp}}
\author{Jean-Gabriel \textsc{Luque}\footnote{Universit\'e Paris-Est, Laboratoire d'informatique
de l'Institut-Gaspard Monge, Jean-Gabriel.Luque@univ-mlv.fr}  and
Manuel
 \textsc{Luque}\footnote{mluque5130@aol.com}}
\begin{document}
\maketitle
 \begin{abstract}
 We describe the {\tt LaTex} library {\tt pst-coxeterp} devoted to
 draw regular complex polytopes belonging in the infinite series.
 \end{abstract}
 \section{Introduction}
 Inspired by the dissertation of G.C. Shephard \cite{Sh}, Coxeter
 toke twenty years to write his most famous book {\em Regular Complex Polytopes} \cite{Cox}. But its
 interest for the polytope dates from the beginning of his career as
 shown his numerous publications on the subject (reader can refer to
 \cite{Reg} or \cite{Kalei}). According to the preface of
 \cite{Cox}, the term of complex polytopes is due to D.M.Y.
 Sommerville \cite{Som}. A complex polytope may have more than two
 vertices on an edge (and in particular the polygons may have more
 than two edges at a vertice). It is a finite set of flags of subspaces in $\C^n$
 with certain constraints
  which will be not explain here \footnote{For a precise
  definition, see \cite{Cox} Ch12}.
  In fact, a complex polytope can be generated  from one vertice by a finite number of pseudo-reflections.
 More precisely, as for the classical solids, it
 can be constructed from an arrangement of mirrors,
 considering a point in the intersection of all but one the mirrors
 and computing the orbit of this point by the pseudo-reflections generated by the mirrors. In the
 case of the real polytopes, one uses classical reflections which are
 involutions. It is not the case for general complex polytopes, since
 a reflection may include a component which is a rotation.
The classification of the complex polytopes is due to G.C. Shephard
\cite{Sh} and is closely related to the classification of the
complex unitary reflection groups \cite{ST}. This classification
includes four infinite series of polytopes: the well-known real
polygons (including the starry polygon) which have two parameters,
the series of simplices (triangle, tetrahedron, pentatope, sextatope
etc...) which have only one parameter, the dimension and to
reciprocal series $\gamma_n^p$ and $\beta_n^p$. The library
described here is a {\tt LaTex} package for drawing the polytopes of
these infinite series.
\section{Install {\tt pst-coxeterp}}
The package contains two files: A latex style file {\tt
pst-coxeterp.sty} which call the latex file {\tt pst-coxeterp.tex}
containing the description of the macros. The installation is very
simple. It suffices to copy the files {\tt pst-coxeterp.sty} and
{\tt pst-coxeterp.tex} in the appropriate directories.
\begin{example}\rm
The file {\tt pst-coxeterp.sty} may be copy in the directory \\ {\tt
c:/texmf/tex/latex/pst-coxeterp},\\
 the file {\tt pst-coxeterp.tex} in\\
{\tt c:/texmf/tex/generic/pst-coxeterp}
\end{example}
To use the package add the code
\begin{verbatim}
\usepackage{pst-coxeterp}
%\end{verbatim}
in the beginning of your LaTex-file.
\begin{example}\rm
\begin{verbatim}
\documentclass[a4paper]{article}
...
\usepackage{pst-coxeterp}
....
\end{verbatim}
\end{example}
The library needs the packages {\tt PSTrick} and {\tt pst-xkey}.%

\section{The different families}
This library contains six macros for drawing polytopes belonging in
a infinite series.\\
The first macro, {\tt Polygon}, draws real (starry or not) polygon.
The polygon is defined by two parameters {\tt P} and {\tt Q} which
defines the angle $2\frac QP\Pi $ between the segment from the
center to the first vertices and the segment from the center to the
second vertices. By default the value of {\tt Q} is $1$.
\begin{example}
\begin{pspicture}(-2,-2)(2,2)
\Polygon[P=11,Q=1] %
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
\Polygon[P=11,Q=3]
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
 \Polygon[P=11,Q=4]
\end{pspicture}
\begin{verbatim}
\begin{pspicture}(-2,-2)(2,2)
\Polygon[P=11,Q=1] %
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
\Polygon[P=11,Q=3]
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
 \Polygon[P=11,Q=4]
\end{pspicture}
\end{verbatim}
\end{example}

The macro {\tt Simplex} draws simplices in dimension $n$. The
simplices are the real polytopes whose automorphism groups are the
symmetric groups. The dimension of the polytope can be chosen using
the parameter {\tt dimension}.
\begin{example}
\begin{pspicture}(-2,-2)(2,2)
\Simplex[dimension=2] %
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
\Simplex[dimension=3]
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
 \Simplex[dimension=5]
\end{pspicture}
\begin{verbatim}
\begin{pspicture}(-2,-2)(2,2)
\Simplex[dimension=2] %
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
\Simplex[dimension=3]
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
 \Simplex[dimension=5]
\end{pspicture}
\end{verbatim}
\end{example}

The  polytopes $\gamma_n^p$ forms a two parameters family which
contains as special case the hypercubes.  The parameter $n$ is the
dimension of the polytope and the parameter $p$ is the number of
vertices per edge. Use the macro {\tt gammapn} and the parameters
{\tt dimension} and {\tt P} to chose the characteristics of the
polytope.
\begin{example}
\begin{pspicture}(-2,-2)(2,2)
\gammapn[dimension=2,P=4] %
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
\gammapn[dimension=3,P=3,unit=0.7cm]
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
 \gammapn[dimension=5,P=2,unit=0.55cm]
\end{pspicture}
\begin{verbatim}
\begin{pspicture}(-2,-2)(2,2)
\gammapn[dimension=2,P=4] %
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
\gammapn[dimension=3,P=3,unit=0.7cm]
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
 \gammapn[dimension=5,P=2,unit=0.55cm]
\end{pspicture}
\end{verbatim}
\end{example}

The  polytopes $\beta_n^p$ forms a two parameters family which
contains as special case the hyperoctahedra.  The parameter $n$ is
the dimension of the polytope and the parameter $p$ is the number of
cells of dimension $n-1$ containing a cell of dimension $n-2$. Use
the macro {\tt betapn} and the parameters {\tt dimension} and {\tt
P} to chose the characteristics of the polytope.
\begin{example}
\begin{pspicture}(-2,-2)(2,2)
\betapn[dimension=2,P=4] %
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
\betapn[dimension=3,P=3]
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
 \betapn[dimension=5,P=2]
\end{pspicture}
\begin{verbatim}
\begin{pspicture}(-2,-2)(2,2)
\betapn[dimension=2,P=4] %
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
\betapn[dimension=3,P=3]
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
 \betapn[dimension=5,P=2]
\end{pspicture}
\end{verbatim}
\end{example}

The macro {\tt gammaptwo} draw the regular complex polytope
$\gamma_2^p$ which is a special case of  $\gamma_n^p$ for an other
projection. Use the parameter {\tt P} for setting the number of
vertices by edge.
\begin{example}
\begin{pspicture}(-2,-2)(2,2)
\gammaptwo[P=3] %
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
\gammaptwo[P=4]
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
 \gammaptwo[P=5]
\end{pspicture}
\begin{verbatim}
\begin{pspicture}(-2,-2)(2,2)
\gammaptwo[P=3] %
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
\gammaptwo[P=4]
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
 \gammaptwo[P=5]
\end{pspicture}
\end{verbatim}
\end{example}

The macro {\tt betaptwo} draw the regular complex polytope
$\beta_2^p$ which is a special case of  $\beta_n^p$ for an other
projection (the same than for {\tt gammaptwo}). Use the parameter
{\tt P} for setting the number of vertices by edge.
\begin{example}
\begin{pspicture}(-2,-2)(2,2)
\betaptwo[P=3] %
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
\betaptwo[P=4]
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
 \betaptwo[P=5]
\end{pspicture}
\begin{verbatim}
\begin{pspicture}(-2,-2)(2,2)
\betaptwo[P=3] %
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
\betaptwo[P=4]
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
 \betaptwo[P=5]
\end{pspicture}
\end{verbatim}
\end{example}

\section{Graphical parameters}
\subsection{The components of a polytope}
 The library {\tt pst-coxeterrep.sty} contains  macros for
drawing the vertices, the edges and the centers of the edges of
polytopes of the infinite series of regular complex polytopes.

It is possible to choice which components of the polytope will be
drawn. It suffices to use the boolean parameters {\tt drawedges},
{\tt drawvertices} and  {\tt drawcenters}.

 By default the values of the parameters {\tt
drawedges}, {\tt drawvertices}, {\tt drawcenters} are set to {\tt
true}.
\begin{example}
\rm
\[
\begin{pspicture}(-2,-2)(2,2)
\Polygon[P=5,Q=2,drawcenters=false] %
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
\Simplex[dimension=3,drawvertices=false] %
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
\psset{unit=0.5}
 \gammapn[P=4,dimension=4,drawedges=false]
\end{pspicture}
\]
\begin{verbatim}
\begin{pspicture}(-2,-2)(2,2)
\Polygon[P=5,Q=2,drawcenters=false] %
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
\Simplex[dimension=3,drawvertices=false] %
\end{pspicture}
\begin{pspicture}(-2,-2)(2,2)
\psset{unit=0.5}
 \gammapn[P=4,dimension=4,drawedges=false]
\end{pspicture}\end{verbatim}
\end{example}
\section{Graphical properties}
It is possible to change the graphical characteristics of a
polytope.\\
The size of the polytope depends on the parameter {\tt unit}.
\begin{example}
\rm
 \[
  \begin{pspicture}(-1,-1)(1,1)
\gammaptwo[P=4,unit=0.5cm] %
\end{pspicture}
 \begin{pspicture}(-2,-2)(2,2)
\gammaptwo[P=4,unit=1cm] %
\end{pspicture}
 \begin{pspicture}(-4,-4)(4,4)
\gammaptwo[P=4,unit=2cm] %
\end{pspicture}
\]
\begin{verbatim}
 \begin{pspicture}(-1,-1)(1,1)
\gammaptwo[P=4,unit=0.5cm] %
\end{pspicture}
 \begin{pspicture}(-2,-2)(2,2)
\gammaptwo[P=4,unit=1cm] %
\end{pspicture}
 \begin{pspicture}(-4,-4)(4,4)
\gammaptwo[P=4,unit=2cm] %
\end{pspicture}
\end{verbatim}
\end{example}
Classically, one can modify the color and the width of the edges
using the parameter {\tt linecolor} and {\tt linewidth}.
\begin{example}
\rm
 \[
\begin{pspicture}(-2,-2)(2,2)
\psset{unit=0.8,linewidth=0.01,linecolor=red}
\betaptwo[P=5] %
\end{pspicture}
 \begin{pspicture}(-2,-2)(2,2)
\betaptwo[P=5] %
\end{pspicture}
\]
\begin{verbatim}
\begin{pspicture}(-2,-2)(2,2)
\psset{unit=0.8,linewidth=0.01,linecolor=red}
\betaptwo[P=5] %
\end{pspicture}
 \begin{pspicture}(-2,-2)(2,2)
\betaptwo[P=5] %
\end{pspicture}
\end{verbatim}
\end{example}
The color, the style and the size of the vertices can be modify
using the parameters {\tt colorVertices}, {\tt styleVertices} and
{\tt sizeVertices}. The style of the vertices can be chosen in the
classical dot styles.
\begin{example}
\rm
 \[
\begin{pspicture}(-2,-2)(2,2)
\psset{unit=1.5cm,colorVertices=blue,styleVertices=pentagon,sizeVertices=0.2}
\betapn[P=5,dimension=4] %
\end{pspicture}
 \begin{pspicture}(-2,-2)(2,2)
\psset{unit=1.5cm,colorVertices=magenta,sizeVertices=0.1,styleVertices=triangle} %
\betapn[P=5,dimension=4]
\end{pspicture}
 \begin{pspicture}(-2,-2)(2,2)
\psset{unit=1.5cm,colorVertices=red,styleVertices=+,sizeVertices=0.2} %
\betapn[P=5,dimension=4]
\end{pspicture}
\]
\begin{verbatim}
\begin{pspicture}(-2,-2)(2,2)
\psset{unit=1.5cm,colorVertices=blue,styleVertices=pentagon,sizeVertices=0.2}
\betapn[P=5,dimension=4] %
\end{pspicture}
 \begin{pspicture}(-2,-2)(2,2)
\psset{unit=1.5cm,colorVertices=magenta,sizeVertices=0.1,styleVertices=triangle} %
\betapn[P=5,dimension=4]
\end{pspicture}
 \begin{pspicture}(-2,-2)(2,2)
\psset{unit=1.5cm,colorVertices=red,styleVertices=+,sizeVertices=0.2} %
\betapn[P=5,dimension=4]
\end{pspicture}
\end{verbatim}
\end{example}
The color, the style and the size of the centers of the edges can be
modify using the parameters {\tt colorCenters}, {\tt styleCenters}
and {\tt sizeCenters}.
\begin{example}
\rm
 \[
\begin{pspicture}(-2,-2)(2,2)
\psset{unit=0.5cm,colorCenters=blue,styleCenters=pentagon,sizeCenters=0.2} %
\gammapn[P=5,dimension=4] %
\end{pspicture}
 \begin{pspicture}(-2,-2)(2,2)
\psset{unit=0.5cm,colorCenters=magenta,sizeCenters=0.1,styleCenters=triangle} %
\gammapn[P=5,dimension=4] %
\end{pspicture}
 \begin{pspicture}(-2,-2)(2,2)
\psset{unit=0.5cm,colorCenters=red,styleCenters=+,sizeCenters=0.2} %
\gammapn[P=5,dimension=4] %
\end{pspicture}
\]
\begin{verbatim}
\begin{pspicture}(-2,-2)(2,2)
\psset{unit=0.5cm,colorCenters=blue,styleCenters=pentagon,sizeCenters=0.2} %
\gammapn[P=5,dimension=4] %
\end{pspicture}
 \begin{pspicture}(-2,-2)(2,2)
\psset{unit=0.5cm,colorCenters=magenta,sizeCenters=0.1,styleCenters=triangle} %
\gammapn[P=5,dimension=4] %
\end{pspicture}
 \begin{pspicture}(-2,-2)(2,2)
\psset{unit=0.5cm,colorCenters=red,styleCenters=+,sizeCenters=0.2} %
\gammapn[P=5,dimension=4] %
\end{pspicture}
\end{verbatim}
\end{example}

 \begin{thebibliography}{ABC}

\bibitem{Reg} H. S. M. Coxeter, {\em Regular polytopes}, Third
Edition, Dover Publication Inc., New-York, 1973.
%
\bibitem{Cox}
H. S. M. Coxeter, {\em Regular Complex Polytopes}, Second Edition,
Cambridge University Press, 1991 .
%
\bibitem{Kalei}
 H.S.M. Coxeter, {\em Kaleidoscopes, selected writing of H.S.M.
 Coxeter by F.A. Sherk, P. McMullen, A.C. Thompson, A. Ivi\'c Weiss}, Canadian Mathematical Society Series of Monographs and
 Advanced texts, Published in conjunction with the fiftieth anniversary of
 the canadian mathematical society, J. M. Borwein and P. B. Borwein
 Ed., A Wiley-Interscience publication, 1995.
%
\bibitem{Sh} G.C. Shephard, {\em Regular Complex Polytopes},
Proceeding of the London Mathermatical Society (3), 2 82-97.
%
\bibitem{ST} G.C. Shephard and J.A. Todd, {\it Finite unitary
reflection groups}, Canadian Journal of Mathematics 6, 274-304,
1954.
%
\bibitem{Som} M.Y. Sommerville, {\it Geometry of $n$ dimension},
Methuen, Lodon, 1929.
\end{thebibliography}

 \end{document}