summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pst-cox/pst-coxeterp/Gallery.tex
blob: 7d47fd13eb0155aca0871cc9bbc98539ca7236c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%    pst-coxeter_parameter\Gallery.tex
%    Authors:      J.-G. Luque and M. Luque
%    Purpose:      Demonstration of the library pst-coxeterp
%    Created:      02/02/2008
%    License:      LGPL
%    Project:      PST-Cox V1.00
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Copyright © 2008 Jean-Gabriel Luque, Manuel Luque.
% This work may be distributed and/or modified  under the condition of
% the Lesser GPL.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This file is part of PST-Cox V1.00.
%
%    PST-Cox V1.00 is free software: you can redistribute it and/or modify
%    it under the terms of the Lesser GNU General Public License as published by
%    the Free Software Foundation, either version 3 of the License, or
%    (at your option) any later version.
%
%    PST-Cox V1.00 is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    Lesser GNU General Public License for more details.
%
%    You should have received a copy of the Lesser GNU General Public License
%    along with PST-Cox V1.00.  If not, see <http://www.gnu.org/licenses/>.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass[a4paper]{article}
\usepackage[latin1]{inputenc}%
\usepackage[margin=2cm]{geometry}
\usepackage{pst-coxeterp}
\usepackage{multido}
\usepackage{amssymb}
\usepackage{amsfonts}
\usepackage{amsmath}
\usepackage{graphics}
% d\'emonstration
% JG Luque 12 août 2003
\newcount\ChoicePolytope
\def\S{\mbox{\goth S}}
\def\Sym{{\bf Sym}}
\def\sym{{\sl Sym}}
\def\QSym{{QSym}}
\def\N{{\mathbb N}}\def\L{{\mathbb L}}
\def\C{{\mathbb C}}
\def\Z{{\mathbb Z}}
\def\R{{\mathbb R}}
\def\Q{{\mathbb Q}}
\def\demoPolytopes#1{%}
\begin{center}
\ifcase\ichoice\or  \def\polname{$2\{3\}3$}\def\ep{0.5mm}
 \or \def\polname{$3\{3\}2$}\def\ep{0.3mm}\or
\def\polname{$3\{3\}3$}\def\ep{0.3mm}\or
 \def\polname{$3\{4\}2$}\def\ep{0.3mm}\or \def\polname{$3\{4\}4$}\def\ep{0.1mm}
 \or \def\polname{$3\{4\}3$}\def\ep{0.1mm}\or \def\polname{$4\{3\}4$}\def\ep{0.1mm}\or
\def\polname{$2\{4\}3\{3\}3$}\def\ep{0.1mm}\or \def\polname{ Hessien}\def\ep{0.1mm}
 \or  \def\polname{$3\{3\}3\{4\}2$}\def\ep{0.1mm}
 \or \def\polname{de Witting} \def\ep{0.01mm} \or
 \def\polname{$3\{8\}2$} \def\ep{0.1mm} \or
 \def\polname{$2\{8\}3$} \def\ep{0.1mm}  \or
  \def\polname{$3\{5\}3$} \def\ep{0.1mm}
 \or\def\polname{$4\{4\}3$} \def\ep{0.1mm}
 \or\def\polname{$4\{3\}2$} \def\ep{0.1mm}
 \or\def\polname{$2\{3\}4$} \def\ep{0.1mm}
 \or\def\polname{$2\{6\}4$} \def\ep{0.1mm}
 \or\def\polname{$4\{6\}2$} \def\ep{0.1mm}
  \or\def\polname{$5\{3\}5$} \def\ep{0.1mm}
  \or\def\polname{$2\{10\}3$} \def\ep{0.1mm}
  \or\def\polname{$3\{10\}2$} \def\ep{0.1mm}
  \or\def\polname{$2\{5\}3$} \def\ep{0.1mm}
  \or\def\polname{$3\{5\}2$} \def\ep{0.1mm}
  \or\def\polname{$2\{4\}3$} \def\ep{0.1mm}
  \or\def\polname{$2\{3\}2\{4\}3$} \def\ep{0.1mm}
   \or\def\polname{$3\{4\}2\{3\}2$} \def\ep{0.1mm}
   \or\def\polname{$3\{4\}2\{3\}2\{3\}2$} \def\ep{0.1mm}
   \or\def\polname{$2\{3\}2\{3\}2\{4\}3$} \def\ep{0.1mm}
   \fi {\Huge Polytope \polname}

\begin{pspicture}(-9,-9)(9,9)
\psset{unit=3cm,linewidth=0.01mm}
\CoxeterCoordinates[choice=#1,linewidth=\ep] % par défaut choice=1 (332)
\end{pspicture}

$\backslash$\texttt{CoxeterCoordinates[choice=#1]}
\end{center}
\begin{center}
\begin{tabular}{ccc}
\begin{pspicture}(-2,-2)(2,2)
\psset{unit=0.7cm}
\CoxeterCoordinates[drawvertices=false,choice=#1,linewidth=0.01mm] %
\end{pspicture}
&
\begin{pspicture}(-2,-2)(2,2)
\psset{unit=0.7cm}
\CoxeterCoordinates[drawcenters=false,choice=#1,linewidth=0.01mm] %
\end{pspicture}
&
\begin{pspicture}(-2,-2)(2,2)
\psset{unit=0.7cm}
\CoxeterCoordinates[drawedges=false,choice=#1,linewidth=0.01mm] %
\end{pspicture}\\
\texttt{[drawvertices=false,choice=#1]}
&
\texttt{[drawcenters=false,choice=#1]}
&
\texttt{[drawedges=false,choice=#1]}
\end{tabular}
\end{center}}
%
\title{The Gallery of Infinite Series}
\author{Jean-Gabriel \textsc{Luque}\footnote{Jean-Gabriel.Luque@univ-mlv.fr},
Manuel \textsc{Luque}\footnote{manuel.luque27@gmail.com}}
\begin{document}
\maketitle
\newpage
\section{Real polygons}
There are the polytopes $2\{\frac pq\}2$ (with $p$ and $q$ in $\N$)
in the notation of Coxeter. Use the command:
\begin{verbatim}
\psset{unit=1.5cm}\Polygon[P=p,Q=q]
\end{verbatim}
\[\begin{array}{|c|c|c|}
\hline 2&3&4\\
\hline \begin{pspicture}(-1.5,-3)(1.5,3)
\psset{unit=1.5cm}\Polygon[P=2,Q=1]
\end{pspicture}&\begin{pspicture}(-3,-3)(3,3)
\psset{unit=1.5cm}\Polygon[P=3]
\end{pspicture}&\begin{pspicture}(-3,-3)(3,3)
\psset{unit=1.5cm}\Polygon[P=4]
\end{pspicture}\\
\hline 5&\frac52&6\\
\hline \begin{pspicture}(-1.5,-3)(1.5,3)
\psset{unit=1.5cm}\Polygon[P=5,Q=1]
\end{pspicture}&\begin{pspicture}(-3,-3)(3,3)
\psset{unit=1.5cm}\Polygon[P=5,Q=2]
\end{pspicture}&\begin{pspicture}(-3,-3)(3,3)
\psset{unit=1.5cm}\Polygon[P=6]
\end{pspicture}\\
\hline 7&\frac72&\frac73\\
\hline \begin{pspicture}(-1.5,-3)(1.5,3)
\psset{unit=1.5cm}\Polygon[P=7]
\end{pspicture}&\begin{pspicture}(-3,-3)(3,3)
\psset{unit=1.5cm}\Polygon[P=7,Q=2]
\end{pspicture}&\begin{pspicture}(-3,-3)(3,3)
\psset{unit=1.5cm}\Polygon[P=10,Q=3]
\end{pspicture}\\
\hline
\end{array}
\]
\newpage
\section{Simplices }
There are the real polytopes $2\{3\}2\cdots2\{3\}2$ in dimension $n$
(tetrahedron, pentatope, sextatope etc...) in the notation of
Coxeter. Use the command:
\begin{verbatim}
\psset{unit=1.5cm}\Simplex[dimension=n]
\end{verbatim}
\[\begin{array}{|c|c|c|}
\hline 2&3&4\\
\hline \begin{pspicture}(-1.5,-3)(1.5,3)
\psset{unit=1.5cm}\Simplex[dimension=2]
\end{pspicture}&\begin{pspicture}(-3,-3)(3,3)
\psset{unit=1.5cm}\Simplex[dimension=3]
\end{pspicture}&\begin{pspicture}(-3,-3)(3,3)
\psset{unit=1.5cm}\Simplex[dimension=4]
\end{pspicture}\\
\hline 5&6&7\\
\hline \begin{pspicture}(-1.5,-3)(1.5,3)
\psset{unit=1.5cm}\Simplex[dimension=5]
\end{pspicture}&\begin{pspicture}(-3,-3)(3,3)
\psset{unit=1.5cm}\Simplex[dimension=6]
\end{pspicture}&\begin{pspicture}(-3,-3)(3,3)
\psset{unit=1.5cm}\Simplex[dimension=7]
\end{pspicture}\\
\hline 8&9&10\\
\hline \begin{pspicture}(-1.5,-3)(1.5,3)
\psset{unit=1.5cm}\Simplex[dimension=8]
\end{pspicture}&\begin{pspicture}(-3,-3)(3,3)
\psset{unit=1.5cm}\Simplex[dimension=9]
\end{pspicture}&\begin{pspicture}(-3,-3)(3,3)
\psset{unit=1.5cm}\Simplex[dimension=10]
\end{pspicture}\\
\hline
\end{array}
\]\newpage
\section{The infinite series $\gamma_n^p$}
It is an infinite series of polytopes with two parameters $p$ and
$n$. The parameter $n$ is the dimension of the polytope. In the
notation of Coxeter, its name reads $p\{4\}2\{3\}\dots\{3\}2$. In
the case $p=2$, we recovers the family of the hypercubes. Use the
command:
 \begin{verbatim}
 \gammapn[P=p,dimension=n]
 \end{verbatim}
\[\begin{array}{|c|c|c|}
\hline \gamma_2^2&\gamma_2^3&\gamma_2^4\\
\hline \begin{pspicture}(-2,-3)(2,3)
\psset{unit=1.2cm}\gammapn[dimension=2,P=2,linewidth=0.01mm]
\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
\psset{unit=1.2cm}\gammapn[P=3,dimension=2,linewidth=0.01mm]
\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
\psset{unit=1cm}\gammapn[P=4,dimension=2,linewidth=0.01mm]
\end{pspicture}\\
\hline \gamma_3^2&\gamma_3^3&\gamma_3^4\\ \hline
\begin{pspicture}(-2,-3)(2,3)
\psset{unit=1cm}\gammapn[P=2,dimension=3,linewidth=0.01mm]
\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
\psset{unit=0.8cm}\gammapn[P=3,dimension=3,linewidth=0.01mm]
\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
\psset{unit=0.7cm}\gammapn[P=4,dimension=3,linewidth=0.01mm]
\end{pspicture}\\
\hline \gamma_4^2&\gamma_4^3&\gamma_4^4\\
\hline \begin{pspicture}(-2,-3)(2,3)
\psset{unit=0.8cm}\gammapn[P=2,dimension=4,linewidth=0.01mm]
\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
\psset{unit=0.6cm}\gammapn[P=3,dimension=4,linewidth=0.01mm]
\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
\psset{unit=0.55cm}\gammapn[P=4,dimension=4,linewidth=0.01mm]
\end{pspicture}\\
\hline
\end{array}
\]%
\newpage
\section{The infinite series $\beta_n^p$}
It is an infinite series of polytopes with two parameters $p$ and
$n$ reciprocals of $\gamma_n^p$. The parameter $n$ is the dimension
of the polytope. In the notation of Coxeter, its name reads
$2\{3\}2\{3\}\dots\{3\}2\{4\}p$. In the case $p=2$, we recovers the
family of the $2^n$-topes which generalizes the tetrahedron for
higher dimension. Use the command:
 \begin{verbatim}
 \betapn[P=p,dimension=n]
 \end{verbatim}
\[\begin{array}{|c|c|c|}
\hline \beta_2^2&\beta_2^3&\beta_2^4\\
\hline \begin{pspicture}(-2,-3)(2,3)
\psset{unit=2cm}\betapn[dimension=2,P=2]
\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
\psset{unit=1.5cm}\betapn[P=3,dimension=2,linewidth=0.01mm]
\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
\psset{unit=1.4cm}\betapn[P=4,dimension=2,linewidth=0.01mm]
\end{pspicture}\\
\hline \beta_3^2&\beta_3^3&\beta_3^4\\ \hline
\begin{pspicture}(-2,-3)(2,3)
\psset{unit=2cm}\betapn[P=2,dimension=3,linewidth=0.01mm]
\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
\psset{unit=1.5cm}\betapn[P=3,dimension=3,linewidth=0.01mm]
\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
\psset{unit=1.4cm}\betapn[P=4,dimension=3,linewidth=0.01mm]
\end{pspicture}\\
\hline \beta_4^2&\beta_4^3&\beta_4^4\\
\hline \begin{pspicture}(-2,-3)(2,3)
\psset{unit=2cm}\betapn[P=2,dimension=4,linewidth=0.01mm]
\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
\psset{unit=1.5cm}\betapn[P=3,dimension=4,linewidth=0.01mm]
\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
\psset{unit=1.4cm}\betapn[P=4,dimension=4,linewidth=0.01mm]
\end{pspicture}\\
\hline
\end{array}
\]%
\newpage
\section{The infinite series $\gamma_2^p$}
It is a special case of the series $\gamma_n^p$ for $n=2$. In this
case, the polytopes are complex polygons. The projection used here
is different than the projection used with {\tt gammapn}. Use the
command:
\begin{verbatim}
\gammaptwo[P=p]
\end{verbatim}
\[\begin{array}{|c|c|c|}
\hline \gamma_2^3&\gamma_2^4&\gamma_2^5\\
\hline \begin{pspicture}(-2,-3)(2,3) \psset{unit=1cm}\gammaptwo[P=3]
\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
\psset{unit=1cm}\gammaptwo[P=4,linewidth=0.01mm]
\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
\psset{unit=1cm}\gammaptwo[P=5,linewidth=0.01mm]
\end{pspicture}\\
\hline \gamma_2^6&\gamma_2^7&\gamma_2^8\\ \hline
\begin{pspicture}(-2,-3)(2,3)
\psset{unit=1cm}\gammaptwo[P=6,linewidth=0.01mm]
\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
\psset{unit=0.8cm}\gammaptwo[P=7,linewidth=0.01mm]
\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
\psset{unit=0.7cm}\gammaptwo[P=8,linewidth=0.01mm]
\end{pspicture}\\
\hline \gamma_2^9&\gamma_2^{10}&\gamma_2^{11}\\
\hline \begin{pspicture}(-2,-3)(2,3)
\psset{unit=0.8cm}\gammaptwo[P=9,linewidth=0.01mm]
\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
\psset{unit=0.7cm}\gammaptwo[P=10,linewidth=0.01mm]
\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
\psset{unit=0.7cm}\gammaptwo[P=11,linewidth=0.01mm]
\end{pspicture}\\
\hline
\end{array}
\]%
\newpage
\section{The infinite series $\beta_2^p$}
It is a special case of the series $\beta_n^p$ for $n=2$. In this
case, the polytopes are complex polygons. The projection used here
is different than the projection used with {\tt betapn}. Use the
command:
\begin{verbatim}
\betaptwo[P=p]
\end{verbatim}
\[\begin{array}{|c|c|c|}
\hline \beta_2^3&\beta_2^4&\beta_2^5\\
\hline \begin{pspicture}(-2,-3)(2,3)
\psset{unit=1.5cm}\betaptwo[P=3]
\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
\psset{unit=1.5cm}\betaptwo[P=4,linewidth=0.01mm]
\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
\psset{unit=1.5cm}\betaptwo[P=5,linewidth=0.01mm]
\end{pspicture}\\
\hline \beta_2^6&\beta_2^7&\beta_2^8\\ \hline
\begin{pspicture}(-2,-3)(2,3)
\psset{unit=1.5cm}\betaptwo[P=6,linewidth=0.01mm]
\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
\psset{unit=1.5cm}\betaptwo[P=7,linewidth=0.01mm]
\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
\psset{unit=1.5cm}\betaptwo[P=8,linewidth=0.01mm]
\end{pspicture}\\
\hline \beta_2^9&\beta_2^{10}&\beta_2^{11}\\
\hline \begin{pspicture}(-2,-3)(2,3)
\psset{unit=1.5cm}\betaptwo[P=9,linewidth=0.01mm]
\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
\psset{unit=1.5cm}\betaptwo[P=10,linewidth=0.01mm]
\end{pspicture}&\begin{pspicture}(-2,-3)(2,3)
\psset{unit=1.5cm}\betaptwo[P=11,linewidth=0.01mm]
\end{pspicture}\\
\hline
\end{array}
\]%
\begin{thebibliography}{ABC}
%
\bibitem{Cox1}
H. S. M. Coxeter, {\em Regular Complex Polytopes}, Second Edition,
Cambridge University Press, 1991 .
%
\end{thebibliography}
\end{document}