summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/doc/generic/pgf/text-en/pgfmanual-en-tikz-coordinates.tex
blob: 448bd24a029f2ceda26964548071efed11fe3dfe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
% Copyright 2006 by Till Tantau
%
% This file may be distributed and/or modified
%
% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Free Documentation License.
%
% See the file doc/generic/pgf/licenses/LICENSE for more details.

\section{Specifying Coordinates}


\subsection{Overview}

A \emph{coordinate} is a position on the canvas on which your picture
is drawn. \tikzname\ uses a special syntax for specifying
coordinates. Coordinates are always put in round brackets. The general
syntax is 
\declare{|(|\opt{|[|\meta{options}|]|}\meta{coordinate  specification}|)|}. 

The \meta{coordinate specification} specified coordinates using one of
many different possible \emph{coordinate systems}. Examples are the
Cartesian coordinate system or polar coordinates or spherical
coordinates. No matter which coordinate system is used, in the end, a
specific point on the canvas is represented by the coordinate.

There are two ways of specifying which coordinate system should be used:
\begin{description}
\item[Explicitly] You can specify the coordinate system explicitly. To
  do so, you give the name of the coordinate system at the beginning,
  followed by |cs:|, which stands for ``coordinate system,'' followed
  by a specification of the coordinate using the key-value
  syntax. Thus, the general syntax for \meta{coordinate specification}
  in the explicit case is |(|\meta{coordinate system}| cs:|\meta{list
    of key-value pairs specific to the coordinate system}|)|.
\item[Implicitly] The explicit specification is often too verbose when
  numerous coordinates should be given. Because of this, for the
  coordinate systems that you are likely to use often a special syntax
  is provided. \tikzname\ will notice when you use a coordinate
  specified in a special syntax and will choose the correct coordinate
  system automatically.
\end{description}

Here is an example in which explicit the coordinate systems are
specified explicitly:
\begin{codeexample}[]
\begin{tikzpicture}
  \draw[help lines] (0,0) grid (3,2);
  \draw (canvas cs:x=0cm,y=2mm)
     -- (canvas polar cs:radius=2cm,angle=30);
\end{tikzpicture}
\end{codeexample}
In the next example, the coordinate systems are implicit:
\begin{codeexample}[]
\begin{tikzpicture}
  \draw[help lines] (0,0) grid (3,2);
  \draw (0cm,2mm) -- (30:2cm);
\end{tikzpicture}
\end{codeexample}

It is possible to give options that apply only to a single
coordinate, although this makes sense for transformation options
only. To give transformation options for a single coordinate, give
these options at the beginning in brackets:
\begin{codeexample}[]
\begin{tikzpicture}
  \draw[help lines] (0,0) grid (3,2);
  \draw      (0,0) -- (1,1);
  \draw[red] (0,0) -- ([xshift=3pt] 1,1);
  \draw      (1,0) -- +(30:2cm);
  \draw[red] (1,0) -- +([shift=(135:5pt)] 30:2cm);
\end{tikzpicture}
\end{codeexample}


\subsection{Coordinate Systems}

\subsubsection{Canvas, XYZ, and Polar Coordinate Systems}

Let us start with the basic coordinate systems.

\begin{coordinatesystem}{canvas}
  The simplest way of specifying a coordinate is to use the |canvas|
  coordinate system. You provide a dimension $d_x$ using the |x=|
  option and another dimension $d_y$ using the |y=| option. The position on
  the canvas is located at the position that is $d_x$ to the right and
  $d_y$ above the origin.

  \begin{key}{/tikz/cs/x=\meta{dimension} (initially 0pt)}
    Distance by which the coordinate
    is to the right of the origin. You can also write things like
    |1cm+2pt| since the mathematical engine is used to evaluate the
    \meta{dimension}.
  \end{key}

  \begin{key}{/tikz/cs/y=\meta{dimension} (initially 0pt)}
    Distance by which the coordinate
    is above the origin.
  \end{key}

\begin{codeexample}[]
\begin{tikzpicture}
  \draw[help lines] (0,0) grid (3,2);

  \fill (canvas cs:x=1cm,y=1.5cm)    circle (2pt);
  \fill (canvas cs:x=2cm,y=-5mm+2pt) circle (2pt);
\end{tikzpicture}
\end{codeexample}

  To specify a coordinate in the coordinate system implicitly, you use
  two dimensions that are separated by a comma as in |(0cm,3pt)| or
  |(2cm,\textheight)|. 
\begin{codeexample}[]
\begin{tikzpicture}
  \draw[help lines] (0,0) grid (3,2);

  \fill (1cm,1.5cm)    circle (2pt);
  \fill (2cm,-5mm+2pt) circle (2pt);
\end{tikzpicture}
\end{codeexample}
\end{coordinatesystem}


\begin{coordinatesystem}{xyz}
  The |xyz| coordinate system allows you to specify a point as a
  multiple of three vectors called the $x$-, $y$-, and
  $z$-vectors.  By default, the $x$-vector points 1cm to the right,
  the $y$-vector points 1cm upwards, but this can be changed
  arbitrarily as explained in Section~\ref{section-xyz}. The default
  $z$-vector points to $\bigl(-\frac{1}{\sqrt2}
  \textrm{cm},-\frac{1}{\sqrt2}\textrm{cm}\bigr)$.

  To specify the factors by which the vectors should be multiplied
  before being added, you use the following three options:  
  \begin{key}{/tikz/cs/x=\meta{factor} (initially 0)}
    Factor by which the $x$-vector is multiplied.
  \end{key}
  \begin{key}{/tikz/cs/y=\meta{factor} (initially 0)}
    Works like |x|.
  \end{key}
  \begin{key}{/tikz/cs/z=\meta{factor} (initially 0)}
    Works like |x|.
  \end{key}

\begin{codeexample}[]
\begin{tikzpicture}[->]
  \draw (0,0) -- (xyz cs:x=1);
  \draw (0,0) -- (xyz cs:y=1);
  \draw (0,0) -- (xyz cs:z=1);
\end{tikzpicture}
\end{codeexample}

  This coordinate system can also be selected implicitly. To do so,
  you just provide two or three comma-separated factors (not
  dimensions). 
\begin{codeexample}[]
\begin{tikzpicture}[->]
  \draw (0,0) -- (1,0);
  \draw (0,0) -- (0,1,0);
  \draw (0,0) -- (0,0,1);
\end{tikzpicture}
\end{codeexample}
\end{coordinatesystem}

\emph{Note:} It is possible to use coordinates like |(1,2cm)|, which
are neither |canvas| coordinates nor |xyz| coordinates. The rule is
the following: If a coordinate is of the implicit form
|(|\meta{x}|,|\meta{y}|)|, then \meta{x} and \meta{y} are checked,
independently, whether they have a dimension or whether they are
dimensionless. If both have a dimension, the |canvas| coordinate
system is used. If both lack a dimension, the |xyz| coordinate system
is used. If \meta{x} has a dimension and \meta{y} has not, then the
sum of two coordinate |(|\meta{x}|,0pt)| and |(0,|\meta{y}|)| is
used. If \meta{y} has a dimension and \meta{x} has not, then the sum
of two coordinate |(|\meta{x}|,0)| and |(0pt,|\meta{y}|)| is used.

\emph{Note furthermore:} An expression like |(2+3cm,0)| does
\emph{not} mean the same as |(2cm+3cm,0)|. Instead, if \meta{x} or
\meta{y} internally uses a mixture of dimensions and dimensionless
values, then all dimensionless values are ``upgraded'' to dimensions
by interpreting them as |pt|. So, |2+3cm| is the same dimension as
|2pt+3cm|. 

\begin{coordinatesystem}{canvas polar}
  The |canvas polar| coordinate system allows you to specify
  polar coordinates. You provide an angle using the |angle=| option
  and a radius using the |radius=| option. This yields the point on
  the canvas that is at the given radius distance from the origin at
  the given degree. A degree of zero points to the right, a degree of
  90 upward.
  \begin{key}{/tikz/cs/angle=\meta{degrees}}
    The angle of the coordinate.
    The angle must always be given in degrees and should be between
    $-360$ and $720$.
  \end{key}
  \begin{key}{/tikz/cs/radius=\meta{dimension}}
    The distance from the origin.
  \end{key}
  \begin{key}{/tikz/cs/x radius=\meta{dimension}}
    A polar coordinate is,
    after all, just a point on a circle of the given \meta{radius}. When
    you provide an $x$-radius and also a $y$-radius, you specify an
    ellipse instead of a circle. The |radius| option has the same effect
    as specifying identical |x radius| and |y radius| options.
  \end{key}
  \begin{key}{/tikz/cs/y radius=\meta{dimension}}
    Works like |x radius|.
  \end{key}
\begin{codeexample}[]
\tikz \draw (0,0) -- (canvas polar cs:angle=30,radius=1cm);
\end{codeexample}

  The implicit form for canvas polar coordinates is the following: 
  you specify the angle and the distance, separated by a colon as in
  |(30:1cm)|. 

\begin{codeexample}[]
\tikz \draw    (0cm,0cm) -- (30:1cm) -- (60:1cm) -- (90:1cm)
            -- (120:1cm) -- (150:1cm) -- (180:1cm);
\end{codeexample}

  Two different radii are specified by writing |(30:1cm and 2cm)|.

  For the implicit form, instead of an angle given as a number you can
  also use certain words. For example, |up| is the same as |90|, so
  that you can write |\tikz \draw (0,0) -- (2ex,0pt) -- +(up:1ex);|
  and get \tikz \draw (0,0) -- (2ex,0pt) -- +(up:1ex);. Apart from |up|
  you can use |down|, |left|, |right|, |north|, |south|, |west|, |east|,
  |north east|, |north west|, |south east|, |south west|, all of which
  have their natural meaning.
\end{coordinatesystem}

\begin{coordinatesystem}{xyz polar}
  This coordinate system work similarly to the |canvas polar|
  system. However, the radius and the angle are interpreted in the
  $xy$-coordinate system, not in the canvas system. More detailed,
  consider the circle or ellipse whose half axes are given by the
  current $x$-vector and the current $y$-vector. Then, consider the
  point that lies at a given angle on this ellipse, where an angle of
  zero is the same as the $x$-vector and an angle of 90 is the
  $y$-vector. Finally, multiply the resulting vector by the given
  radius factor. Voilà.
  \begin{key}{/tikz/cs/angle=\meta{degrees}}
    The angle of the coordinate
    interpreted in the ellipse whose axes are the $x$-vector and the
    $y$-vector.
  \end{key}
  \begin{key}{/tikz/cs/radius=\meta{factor}}
    A factor by which the $x$-vector
    and $y$-vector are multiplied prior to forming the ellipse.
  \end{key}
  \begin{key}{/tikz/cs/x radius=\meta{dimension}} A specific factor by
    which only the $x$-vector is multiplied.
  \end{key}
  \begin{key}{/tikz/cs/y radius=\meta{dimension}}
    Works like |x radius|.
  \end{key}
\begin{codeexample}[]
\begin{tikzpicture}[x=1.5cm,y=1cm]
  \draw[help lines] (0cm,0cm) grid (3cm,2cm);

  \draw (0,0) -- (xyz polar cs:angle=0,radius=1);
  \draw (0,0) -- (xyz polar cs:angle=30,radius=1);
  \draw (0,0) -- (xyz polar cs:angle=60,radius=1);
  \draw (0,0) -- (xyz polar cs:angle=90,radius=1);

  \draw (xyz polar cs:angle=0,radius=2)
     -- (xyz polar cs:angle=30,radius=2)
     -- (xyz polar cs:angle=60,radius=2)
     -- (xyz polar cs:angle=90,radius=2);
 \end{tikzpicture}
\end{codeexample}

  The implicit version of this option is the same as the implicit
  version of |canvas polar|, only you do not provide a unit.

\begin{codeexample}[]
\tikz[x={(0cm,1cm)},y={(-1cm,0cm)}]
  \draw  (0,0) -- (30:1) -- (60:1) -- (90:1)
             -- (120:1) -- (150:1) -- (180:1);
\end{codeexample}
\end{coordinatesystem}

\begin{coordinatesystem}{xy polar}
  This is just an alias for |xyz polar|, which some people might
  prefer as there is no z-coordinate involved in the |xyz polar|
  coordinates.   
\end{coordinatesystem}


\subsubsection{Barycentric Systems}
\label{section-barycentric-coordinates}

In the barycentric coordinate system a point is expressed as the
linear combination of multiple vectors. The idea is that you specify
vectors $v_1$, $v_2$, \dots, $v_n$ and numbers $\alpha_1$, $\alpha_2$,
\dots, $\alpha_n$. Then the barycentric coordinate specified by these
vectors and numbers is
\begin{align*}
  \frac{\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n}{\alpha_1
    + \alpha_2 + \cdots + \alpha_n}
\end{align*}

The |barycentric cs| allows you to specify such coordinates easily.

\begin{coordinatesystem}{barycentric}
  For this coordinate system, the \meta{coordinate specification}
  should be a comma-separated list of expressions of the form
  \meta{node name}|=|\meta{number}. Note that (currently) the list
  should not contain any spaces before or after the \meta{node name}
  (unlike normal key-value pairs). 

  The specified coordinate is now computed as follows: Each pair
  provides one vector and a number. The vector is the |center| anchor
  of the \meta{node name}. The number is the \meta{number}. Note that
  (currently) you cannot specify a different anchor, so that in order
  to use, say, the |north| anchor of a node you first have to create a
  new coordinate at this north anchor. (Using for instance
  \texttt{\string\coordinate (mynorth) at (mynode.north);}.)

\begin{codeexample}[]
\begin{tikzpicture}
  \coordinate (content)   at (90:3cm);
  \coordinate (structure) at (210:3cm);
  \coordinate (form)      at (-30:3cm);
    
  \node [above]       at (content)   {content oriented};
  \node [below left]  at (structure) {structure oriented};
  \node [below right] at (form)      {form oriented};

  \draw [thick,gray] (content.south) -- (structure.north east) -- (form.north west) -- cycle;

  \small
  \node at (barycentric cs:content=0.5,structure=0.1 ,form=1)    {PostScript};
  \node at (barycentric cs:content=1  ,structure=0   ,form=0.4)  {DVI};
  \node at (barycentric cs:content=0.5,structure=0.5 ,form=1)    {PDF};
  \node at (barycentric cs:content=0  ,structure=0.25,form=1)    {CSS};
  \node at (barycentric cs:content=0.5,structure=1   ,form=0)    {XML};
  \node at (barycentric cs:content=0.5,structure=1   ,form=0.4)  {HTML};
  \node at (barycentric cs:content=1  ,structure=0.2 ,form=0.8)  {\TeX};
  \node at (barycentric cs:content=1  ,structure=0.6 ,form=0.8)  {\LaTeX};
  \node at (barycentric cs:content=0.8,structure=0.8 ,form=1)    {Word};
  \node at (barycentric cs:content=1  ,structure=0.05,form=0.05) {ASCII};
\end{tikzpicture}
\end{codeexample}
\end{coordinatesystem}

\subsubsection{Node Coordinate System}
\label{section-node-coordinates}

In \pgfname\ and in \tikzname\ it is quite easy to define a node that you
wish to reference at a later point. Once you have defined a node,
there are different ways of referencing points of the node. To do so,
you use the following coordinate system:

\begin{coordinatesystem}{node}
  This coordinate system is used to reference a specific point inside
  or on the border of a previously defined node. It can be used in
  different ways, so let us go over them one by one.

  You can use three options to specify which coordinate you mean:
  \begin{key}{/tikz/cs/name=\meta{node name}}
    Specifies the node in which you which to specify a coordinate. The
    \meta{node name} is 
    the name that was previously used to name the node using the
    |name=|\meta{node name} option or the special node name syntax.
  \end{key}
  \begin{key}{/tikz/anchor=\meta{anchor}}
    Specifies an anchor of the node. Here is an example: 
\begin{codeexample}[]
\begin{tikzpicture}
  \node (shape)   at (0,2)  [draw] {|class Shape|};
  \node (rect)    at (-2,0) [draw] {|class Rectangle|};
  \node (circle)  at (2,0)  [draw] {|class Circle|};
  \node (ellipse) at (6,0)  [draw] {|class Ellipse|};

  \draw (node cs:name=circle,anchor=north) |- (0,1);
  \draw (node cs:name=ellipse,anchor=north) |- (0,1);
  \draw[-open triangle 90] (node cs:name=rect,anchor=north)
        |- (0,1) -| (node cs:name=shape,anchor=south);
\end{tikzpicture}
\end{codeexample}
  \end{key}
  \begin{key}{/tikz/cs/angle=\meta{degrees}}
    It is also possible to provide an angle \emph{instead} of an
    anchor. This coordinate refers to a point of the node's
    border where a ray shot from the center
    in the given angle hits the border. Here is an example:
\begin{codeexample}[]
\begin{tikzpicture}
  \node (start) [draw,shape=ellipse] {start};
  \foreach \angle in {-90, -80, ..., 90}
    \draw (node cs:name=start,angle=\angle)
      .. controls +(\angle:1cm) and +(-1,0) .. (2.5,0);
  \end{tikzpicture}
\end{codeexample}
  \end{key}

  It is possible to provide \emph{neither} the |anchor=| option nor
  the |angle=| option. In this case, \tikzname\ will calculate an
  appropriate border position for you. Here is an example: 

\begin{codeexample}[]
\begin{tikzpicture}
  \path (0,0)  node(a) [ellipse,rotate=10,draw] {An ellipse}
        (3,-1) node(b) [circle,draw]            {A circle};
  \draw[thick] (node cs:name=a) -- (node cs:name=b);
\end{tikzpicture}
\end{codeexample}

  \tikzname\ will be reasonably clever at determining the border points that
  you ``mean,'' but, naturally, this may fail in some situations. If
  \tikzname\ fails to determine an appropriate border point, the center will
  be used instead.

  Automatic computation of anchors works only with the line-to operations
  |--|, the vertical/horizontal versions \verb!|-! and \verb!-|!, and
  with the curve-to operation |..|. For other path commands, such as
  |parabola| or |plot|, the center will be used. If this is not desired,
  you should give a named anchor or an angle anchor.
  
  Note that if you use an automatic coordinate for both the start and
  the end of a line-to, as in |--(node cs:name=b)--|, then \emph{two}
  border   coordinates are computed with a move-to between them. This
  is usually   exactly what you want.
  
  If you use relative coordinates together with automatic anchor
  coordinates, the relative coordinates are computed relative to
  the node's center, not relative to the border point. Here is an
  example:

\begin{codeexample}[]
\tikz \draw (0,0) node(x) [draw] {Text}
            rectangle (1,1)
            (node cs:name=x) -- +(1,1);
\end{codeexample}

Similarly, in the following examples both control points are $(1,1)$:

\begin{codeexample}[]
\tikz \draw (0,0) node(x) [draw] {X}
            (2,0) node(y) {Y}
            (node cs:name=x) .. controls +(1,1) and +(-1,1) ..
            (node cs:name=y);
\end{codeexample}

  The implicit way of specifying the node coordinate system is to
  simply use the name of the node in parentheses as in |(a)| or to
  specify a name together with an anchor or an angle separated by a
  dot as in |(a.north)| or |(a.10)|.

  Here is a more complete example:
\begin{codeexample}[]
\begin{tikzpicture}[fill=blue!20]
  \draw[help lines] (-1,-2) grid (6,3);
  \path (0,0)  node(a) [ellipse,rotate=10,draw,fill]    {An ellipse}
        (3,-1) node(b) [circle,draw,fill]               {A circle}
        (2,2)  node(c) [rectangle,rotate=20,draw,fill]  {A rectangle}
        (5,2)  node(d) [rectangle,rotate=-30,draw,fill] {Another rectangle};
  \draw[thick] (a.south) -- (b) -- (c) -- (d);
  \draw[thick,red,->] (a) |- +(1,3) -| (c) |- (b);       
  \draw[thick,blue,<->] (b) .. controls +(right:2cm) and +(down:1cm) .. (d);       
\end{tikzpicture}
\end{codeexample}
\end{coordinatesystem}


           
\subsubsection{Intersection Coordinate Systems}

Often you wish to specify a point that is on the
intersection of two lines or shapes. For this, the following
coordinate system is useful:

\begin{coordinatesystem}{intersection}
  First, you must specify two objects that should be
  intersected. These ``objects'' can either be lines or the shapes of
  nodes. There are two option to specify the first object:
  \begin{key}{/tikz/cs/first line={\ttfamily\char`\{}|(|\meta{first
          coordinate}|)--(|\meta{second coordinate}|)|{\ttfamily\char`\}}}
    Specifies that the first object is a line that goes from
    \meta{first coordinate} to meta{second coordinate}.
  \end{key}
  Note that you have to write |--| between the coordinate, but this
  does not mean that anything is added to the path. This is simply a
  special syntax.
  \begin{key}{/tikz/cs/first node=\meta{node}}
    Specifies that the first object is a previously defined node named
    \meta{node}.
  \end{key}
  
  To specify the second object, you use one of the following keys:
  \begin{key}{/tikz/cs/second line={\ttfamily\char`\{}|(|\meta{first
          coordinate}|)--(|\meta{second coordinate}|)|{\ttfamily\char`\}}}
    As above.
  \end{key}
  \begin{key}{/tikz/cs/second node=\meta{node}}
    Specifies that the second object is a previously defined node
    named \meta{node}.
  \end{key}

  Since it is possible that two objects have multiple intersections,
  you may need to specify which solution you want:
  \begin{key}{/tikz/cs/solution=\meta{number} (initially 1)}
    Specifies which solution should be used. Numbering starts with 1.
  \end{key}
  The coordinate specified in this way is the \meta{number}th
  intersection of the two objects.  If the objects do not intersect,
  an error may occur.

\begin{codeexample}[]
\begin{tikzpicture}
  \draw[help lines] (0,0) grid (3,2);
  \draw (0,0) coordinate (A) -- (3,2) coordinate (B)
        (1,2)                -- (3,0);

  \fill[red] (intersection cs:
    first line={(A)--(B)},
    second line={(1,2)--(3,0)}) circle (2pt);
\end{tikzpicture}
\end{codeexample}

  The implicit way of specifying this coordinate system is to write
  \declare{|(intersection |\opt{\meta{number}}| of |\meta{first
      object}%
    | and |\meta{second object}|)|}. Here, \meta{first obejct} either
  has the form \meta{$p_1$}|--|\meta{$p_2$} or it is just a node
  name. Likewise for \meta{second object}. Note that there are \emph{no}
  parentheses around the $p_i$. Thus, you would write
  |(intersection of A--B and 1,2--3,0)|  for the intersection of the
  line through the coordinates |A| and |B| and the line through the
  points $(1,2)$ and $(3,0)$. You would write 
  |(intersection 2 of c_1 and c_2)| for the second
  intersection of the node named |c_1| and the node named
  |c_2|.

  \tikzname\ needs an explicit algorithm for computing the
  intersection of two shapes and such an algorithm is available only
  for few shapes. Currently, the following intersection will be
  computed correctly:
  \begin{itemize}
  \item a line and a line
  \item a |circle| node and a line (in any order)
  \item a |circle| and a |circle|
  \end{itemize}
\begin{codeexample}[]
\begin{tikzpicture}[scale=.25]
  \coordinate [label=-135:$a$] (a) at ($ (0,0)   + (rand,rand) $);
  \coordinate [label=45:$b$]   (b) at ($ (3,2) + (rand,rand) $);

  \coordinate [label=-135:$u$] (u) at (-1,1);
  \coordinate [label=45:$v$]   (v) at (6,0);

  \draw (a) -- (b)
        (u) -- (v);

  \node (c1) at (a) [draw,circle through=(b)] {};
  \node (c2) at (b) [draw,circle through=(a)] {};

  \coordinate [label=135:$c$] (c) at (intersection 2 of c1 and c2);
  \coordinate [label=-45:$d$] (d) at (intersection of u--v and c2);
  \coordinate [label=135:$e$] (e) at (intersection of u--v and a--b);

  \foreach \p in {a,b,c,d,e,u,v}
    \fill [opacity=.5] (\p) circle (8pt);
\end{tikzpicture}
\end{codeexample}
\end{coordinatesystem}

A frequent special case of intersections is the intersection of a
vertical line going through a point $p$ and a horizontal line going
through some other point $q$. For this situation there is another
coordinate system.

\begin{coordinatesystem}{perpendicular}
  This coordinate system works the same way as |intersection|, only
  the lines are specified differently:

  \begin{key}{/tikz/cs/horizontal line through={\ttfamily\char`\{}|(|\meta{coordinate}|)|{\ttfamily\char`\}}}
    Specifies that one line is a horizontal line that goes through the
    given coordinate.
  \end{key}
  \begin{key}{/tikz/cs/vertical line through={\ttfamily\char`\{}|(|\meta{coordinate}|)|{\ttfamily\char`\}}}
    Specifies that the other line is vertical and goes through the
    given coordinate.  
  \end{key}

  The implicit syntax is to write \declare{|(|\meta{p}\verb! |- !\meta{q}|)|} or
  \declare{|(|\meta{q}\verb! -| !\meta{p}|)|}.

  For example, \verb!(2,1 |- 3,4)! and  \verb!(3,4 -| 2,1)! both yield
  the same as \verb!(2,4)! (provided the $xy$-coordinate system has not
  been modified). 

  The most useful application of the syntax is to draw a line up to some
  point on a vertical or horizontal line. Here is an example:

\begin{codeexample}[]
\begin{tikzpicture}
  \path (30:1cm) node(p1) {$p_1$}   (75:1cm) node(p2) {$p_2$};

  \draw (-0.2,0) -- (1.2,0) node(xline)[right] {$q_1$};
  \draw (2,-0.2) -- (2,1.2) node(yline)[above] {$q_2$};

  \draw[->] (p1) -- (p1 |- xline);
  \draw[->] (p2) -- (p2 |- xline);
  \draw[->] (p1) -- (p1 -| yline);
  \draw[->] (p2) -- (p2 -| yline);
\end{tikzpicture}
\end{codeexample}
\end{coordinatesystem}

           
\subsubsection{Tangent Coordinate Systems}

\begin{coordinatesystem}{tangent}
  This coordinate system, which is available only when the \tikzname\
  library |calc| is loaded, allows you to compute the point that lies
  tangent to a shape. In detail, consider a \meta{node} and a
  \meta{point}. Now, draw a straight line from the \meta{point} so
  that it ``touches'' the \meta{node} (more formally, so that it is
  \emph{tangent} to this \meta{node}). The point where the line
  touches the shape is the point referred to by the |tangent|
  coordinate system.

  The following options may be given:
  \begin{key}{/tikz/cs/node=\meta{node}}
    This key specifies the node on whose border the tangent should
    lie. 
  \end{key}
  \begin{key}{/tikz/cs/point=\meta{point}}
    This key speicifes the point through which the tangent should go.
  \end{key}
  \begin{key}{/tikz/cs/solution=\meta{number}}
    Specifies which solution should be used if there are more than one.
  \end{key}

  As for intersection coordinate system, a special algorithm is needed
  in order to compute the tangent for a given shape. Currently,
  tangents can be computed for nodes whose shape is one of the
  following:
  \begin{itemize}
  \item |coordinate|
  \item |circle|
  \end{itemize}

\begin{codeexample}[]
\begin{tikzpicture}
  \draw[help lines] (0,0) grid (3,2);

  \coordinate (a) at (3,2);

  \node [circle,draw] (c) at (1,1) [minimum size=40pt] {$c$};
  
  \draw[red] (a)  -- (tangent cs:node=c,point={(a)},solution=1) --
       (c.center) -- (tangent cs:node=c,point={(a)},solution=2) -- cycle;
\end{tikzpicture}
\end{codeexample}

  There is no implicit syntax for this coordinate system.
\end{coordinatesystem}

\subsubsection{Defining New Coordinate Systems}

While the set of coordinate systems that \tikzname\ can parse via
their special syntax is fixed, it is possible and quite easy to define
new explicitly named coordinate systems. For this, the following
commands are used:

\begin{command}{\tikzdeclarecoordinatesystem\marg{name}\marg{code}}
  This command declares a new coordinate system named \meta{name} that
  can later on be used by writing
  |(|\meta{name}| cs:|\meta{arguments}|)|. When \tikzname\ encounters a coordinate
  specified in this way, the \meta{arguments} are passed to
  \meta{code} as argument |#1|.

  It is now the job of \meta{code} to make sense of the
  \meta{arguments}. At the end of \meta{code}, the two \TeX\ dimensions
  |\pgf@x| and |\pgf@y| should be have the $x$- and $y$-canvas
  coordinate of the coordinate.

  It is not necessary, but customary, to parse \meta{arguments} using
  the key-value syntax. However, you can also parse it in any way you
  like.

  In the following example, a coordinate system |cylindrical| is
  defined.
\begin{codeexample}[]
\makeatletter
\define@key{cylindricalkeys}{angle}{\def\myangle{#1}}    
\define@key{cylindricalkeys}{radius}{\def\myradius{#1}}    
\define@key{cylindricalkeys}{z}{\def\myz{#1}}
\tikzdeclarecoordinatesystem{cylindrical}%
{%
  \setkeys{cylindricalkeys}{#1}%
  \pgfpointadd{\pgfpointxyz{0}{0}{\myz}}{\pgfpointpolarxy{\myangle}{\myradius}}
}
\begin{tikzpicture}[z=0.2pt]
  \draw [->] (0,0,0) -- (0,0,350);
  \foreach \num in {0,10,...,350}
    \fill (cylindrical cs:angle=\num,radius=1,z=\num) circle (1pt);
\end{tikzpicture}
\end{codeexample}
\end{command}

\begin{command}{\tikzaliascoordinatesystem\marg{new name}\marg{old name}}
  Creates an alias of \meta{old name}.  
\end{command}




\subsection{Relative and Incremental Coordinates}


\subsubsection{Specifying Relative Coordinates}

You can prefix coordinates by |++| to make them ``relative.'' A
coordinate such as |++(1cm,0pt)| means ``1cm to the right of the
previous position.'' Relative coordinates are often useful in
``local'' contexts:

\begin{codeexample}[]
\begin{tikzpicture}
  \draw (0,0)     -- ++(1,0) -- ++(0,1) -- ++(-1,0) -- cycle;
  \draw (2,0)     -- ++(1,0) -- ++(0,1) -- ++(-1,0) -- cycle;
  \draw (1.5,1.5) -- ++(1,0) -- ++(0,1) -- ++(-1,0) -- cycle;
\end{tikzpicture}
\end{codeexample}

Instead of |++| you can also use a single |+|. This also specifies a
relative coordinate, but it does not ``update'' the current point for
subsequent usages of relative coordinates. Thus, you can use this
notation to specify numerous points, all relative to the same
``initial'' point:

\begin{codeexample}[]
\begin{tikzpicture}
  \draw (0,0)     -- +(1,0) -- +(1,1) -- +(0,1) -- cycle;
  \draw (2,0)     -- +(1,0) -- +(1,1) -- +(0,1) -- cycle;
  \draw (1.5,1.5) -- +(1,0) -- +(1,1) -- +(0,1) -- cycle;
\end{tikzpicture}
\end{codeexample}

There is a special situation, where relative coordinates are
interpreted differently. If you use a relative coordinate as a control
point of a Bézier curve, the following rule applies: First, a relative
first control point is taken relative to the beginning of the
curve. Second, a relative second control point is taken relative to
the end of the curve. Third, a relative end point of a curve is taken
relative to the start of the curve.

This special behavior makes it easy to specify that a curve should
``leave or arrives from a certain direction'' at the start or end. In
the following example, the curve ``leaves'' at $30^\circ$ and
``arrives'' at $60^\circ$: 

\begin{codeexample}[]
\begin{tikzpicture}
  \draw (1,0) .. controls +(30:1cm) and +(60:1cm) .. (3,-1);
  \draw[gray,->] (1,0) -- +(30:1cm);
  \draw[gray,<-] (3,-1) -- +(60:1cm);
\end{tikzpicture}
\end{codeexample}


\subsubsection{Relative Coordinates and Scopes}
\label{section-scopes-relative}
An interesting question is, how do relative coordinates behave in the
presence of scopes? That is, suppose we use curly braces in a path to
make part of it ``local,'' how does that affect the current position?
On the one hand, the current position certainly changes since the
scope only affects options, not the path itself. On the other hand, it
may be useful to ``temporarily escape'' from the updating of the
current point.

Since both interpretations of how the current point and scopes should
``interact'' are useful, there is a (local!) option that allows you to
decide which you need.

\begin{key}{/tikz/current point is local=\opt{\meta{boolean}} (initially
    false)}
  Normally, the scope path operation has no effect on the current
  point. That is, curly braces on a path have no effect on the current
  position:
\begin{codeexample}[]
\begin{tikzpicture}
  \draw      (0,0) -- ++(1,0)   -- ++(0,1)   -- ++(-1,0);
  \draw[red] (2,0) -- ++(1,0) { -- ++(0,1) } -- ++(-1,0);
\end{tikzpicture}
\end{codeexample}
  If you set this key to |true|, this behaviour changes. In this case,
  at the end of a group created on a path, the last current position
  reverts to whatever value it had at the beginning of the scope. More
  precisely, when \tikzname\ encounters |}| on a path, it checks
  whether at this particular moment the key is set to |true|. If so,
  the current position reverts to the value is had when the matching
  |{| was read.
\begin{codeexample}[]
\begin{tikzpicture}
  \draw      (0,0) -- ++(1,0)   -- ++(0,1)   -- ++(-1,0);
  \draw[red] (2,0) -- ++(1,0)
     { [current point is local] -- ++(0,1) } -- ++(-1,0);
\end{tikzpicture}
\end{codeexample}  
  In the above example, we could also have given the option outside
  the scope, for instance as a parameter to the whole scope.
\end{key}


\subsection{Coordinate Calculations}

\begin{tikzlibrary}{calc}
  You need to load this library in order to use the coordinate
  calculation functions described in the present section.
\end{tikzlibrary}


It is possible to do some basic calculations that involve
coordinates. In essence, you can add and subtract coordinates, scale
them, compute midpoints, and do projections. For instance,
|($(a) + 1/3*(1cm,0)$)| is the coordinate that is $1/3$cm to the right
of the point |a|:
\begin{codeexample}[]
\begin{tikzpicture}
  \draw [help lines] (0,0) grid (3,2);

  \node (a) at (1,1) {A};
  \fill [red] ($(a) + 1/3*(1cm,0)$) circle (2pt);
\end{tikzpicture}
\end{codeexample}



\subsubsection{The General Syntax}

The general syntax is the following:

\begin{quote}
  \declare{|(|\opt{|[|\meta{options}|]|}|$|\meta{coordinate computation}|$)|}. 
\end{quote}

As you can see, the syntax uses the \TeX\ math symbol |$| to %$
indicate that a ``mathematical computation'' is involved. However, the |$| %$
has no other effect, in particular, no mathematical text is typeset.

The \meta{coordinate computation} has the following structure:
\begin{enumerate}
\item
  It starts with
  \begin{quote}
    \opt{\meta{factor}|*|}\meta{coordinate}\opt{\meta{modifiers}} 
  \end{quote}
\item
  This is optionally followed by |+| or |-| and then another
  \begin{quote}
    \opt{\meta{factor}|*|}\meta{coordinate}\opt{\meta{modifiers}} 
  \end{quote}
\item
  This is once more followed by |+| or |-| and another of the above
  modified coordinate; and so on.
\end{enumerate}

In the following, the syntax of factors and of the different modifiers
is explained in detail.


\subsubsection{The Syntax of Factors}

The \meta{factor}s are optional and detected
by checking whether the \meta{coordinate computation} starts with a
|(|. Also, after each $\pm$ a \meta{factor} is present if, and only
if, the |+| or |-| sign is not directly followed by~|(|.

If a \meta{factor} is present, it is evaluated using the
|\pgfmathparse| macro. This means that you can use pretty complicated
computations inside a factor. A \meta{factor} may even contain opening
parentheses, which creates a complication: How does \tikzname\ know
where a \meta{factor} ends and where a coordinate starts? For
instance, if the beginning of a \meta{coordinate computation} is
|2*(3+4|\dots, it is not clear whether |3+4| is part of a
\meta{coordinate} or part of a \meta{factor}. Because of this, the
following rule is used: Once it has been determined, that a
\meta{factor} is present, in principle, the \meta{factor} contains
everything up to the next occurrence of |*(|. Note that there is no
space between the asterisk and the parenthesis.

It is permissible to put the \meta{factor} is curly braces. This can
be used whenever it is unclear where the \meta{factor} would end. 

Here are some examples of coordinate specifications that consist of
exactly one \meta{factor} and one \meta{coordinate}:
\begin{codeexample}[]
\begin{tikzpicture}
  \draw [help lines] (0,0) grid (3,2);

  \fill [red] ($2*(1,1)$) circle (2pt);
  \fill [green] (${1+1}*(1,.5)$) circle (2pt);
  \fill [blue] ($cos(0)*sin(90)*(1,1)$) circle (2pt);
  \fill [black] (${3*(4-3)}*(1,0.5)$) circle (2pt);
\end{tikzpicture}
\end{codeexample}



\subsubsection{The Syntax of Partway Modifiers}

A \meta{coordinate} can be followed by different \meta{modifiers}. The
first kind of modifier is the \emph{partway modifier}. The syntax
(which is loosely inspired by Uwe Kern's |xcolor| package) is the
following:
\begin{quote}
  \meta{coordinate}\declare{|!|\meta{number}|!|\opt{\meta{angle}|:|}\meta{second coordinate}}
\end{quote}
One could write for instance
\begin{codeexample}[code only]
(1,2)!.75!(3,4)
\end{codeexample}
The meaning of this is: ``Use the coordinate that is three quarters on
the way from |(1,2)| to |(3,4)|.'' In general, \meta{coordinate
  x}|!|\meta{number}|!|\meta{coordinate y} yields the coordinate
$(1-\meta{number})\meta{coordinate x} + \meta{number} \meta{coordinate
  y}$. Note that this is a bit different from the way the
\meta{number} is interpreted in the |xcolor| package: First, you use a
factor between $0$ and $1$, not a percentage, and, second, as the
\meta{number} approaches $1$, we approach the second coordinate, not
the first. It is permissible to use \meta{numbers} that are smaller
than $0$ or larger than $1$. The \meta{number} is evaluated using the
|\pgfmathparse| command and, thus, it can involve complicated
computations. 

\begin{codeexample}[]
\begin{tikzpicture}
  \draw [help lines] (0,0) grid (3,2);

  \draw (1,0) -- (3,2);
  
  \foreach \i in {0,0.2,0.5,0.9,1}
    \node at ($(1,0)!\i!(3,2)$) {\i};
\end{tikzpicture}
\end{codeexample}

The \meta{second coordinate} may be prefixed by an \meta{angle},
separated with a colon, as in |(1,1)!.5!60:(2,2)|. The general meaning
of \meta{a}|!|\meta{factor}|!|\meta{angle}|:|\meta{b} is ``First,
consider the line from \meta{a} to \meta{b}. Then rotate this line by
\meta{angle} \emph{around the point \meta{a}}. Then the two endpoints
of this line will be \meta{a} and some point \meta{c}. Use this point
\meta{c} for the subsequent computation, namely the partway
computation.''

Here are two examples:
\begin{codeexample}[]
\begin{tikzpicture}
  \draw [help lines] (0,0) grid (3,3);

  \coordinate (a) at (1,0);
  \coordinate (b) at (3,2);

  \draw[->] (a) -- (b);

  \coordinate (c) at ($ (a)!1! 10:(b) $);

  \draw[->,red] (a) -- (c);

  \fill ($ (a)!.5! 10:(b) $) circle (2pt);
\end{tikzpicture}
\end{codeexample}


\begin{codeexample}[]
\begin{tikzpicture}
  \draw [help lines] (0,0) grid (4,4);

  \foreach \i in {0,0.1,...,2}
    \fill ($(2,2) !\i! \i*180:(3,2)$) circle (2pt);
\end{tikzpicture}
\end{codeexample}


You can repeatedly apply modifiers. That is, after any modifier
you can add another (possibly different) modifier.

\begin{codeexample}[]
\begin{tikzpicture}
  \draw [help lines] (0,0) grid (3,2);

  \draw (0,0) -- (3,2);
  \draw[red] ($(0,0)!.3!(3,2)$) -- (3,0);
  \fill[red] ($(0,0)!.3!(3,2)!.7!(3,0)$) circle (2pt);
\end{tikzpicture}
\end{codeexample}


\subsubsection{The Syntax of Distance Modifiers}

A \emph{distance modifier} has nearly the same syntax as a partway
modifier, only you use a \meta{dimension} (something like |1cm|)
instead of a \meta{factor} (something like |0.5|):
\begin{quote}
  \meta{coordinate}\declare{|!|\meta{dimension}|!|\opt{\meta{angle}|:|}\meta{second coordinate}}
\end{quote}

When you write \meta{a}|!|\meta{dimension}|!|\meta{b}, this means the
following: Use the point that is distanced \meta{dimension} from
\meta{a} on the straight line from \meta{a} to \meta{b}. Here is an example:
\begin{codeexample}[]
\begin{tikzpicture}
  \draw [help lines] (0,0) grid (3,2);

  \draw (1,0) -- (3,2);
  
  \foreach \i in {0cm,1cm,15mm}
    \node at ($(1,0)!\i!(3,2)$) {\i};
\end{tikzpicture}
\end{codeexample}

As before, if you use a \meta{angle}, the \meta{second coordinate} is
rotated by this much around the \meta{coordinate} before it is used.

The combination of an \meta{angle} of |90| degrees with a distance can
be used to ``offset'' a point relative to a line. Suppose, for
instance, that you have computed a point |(c)| that lies somewhere on
a line from |(a)| to~|(b)| and you now wish to offset this point by
|1cm| so that the distance from this offset point to the line is
|1cm|. This can be achieved as follows:
\begin{codeexample}[]
\begin{tikzpicture}
  \draw [help lines] (0,0) grid (3,2);

  \coordinate (a) at (1,0);
  \coordinate (b) at (3,1);

  \draw (a) -- (b);

  \coordinate (c) at ($ (a)!.25!(b) $);
  \coordinate (d) at ($ (c)!1cm!90:(b) $);

  \draw [<->] (c) -- (d) node [sloped,midway,above] {1cm};
\end{tikzpicture}
\end{codeexample}



\subsubsection{The Syntax of Projection Modifiers}

The projection modifier is also similar to the above modifiers: It also
gives a point on a line from the \meta{coordinate} to the \meta{second
  coordinate}. However, the \meta{number} or \meta{dimension} is replaced by a
\meta{projection coordinate}:
\begin{quote}
  \meta{coordinate}\declare{|!|\meta{projection coordinate}|!|\opt{\meta{angle}|:|}\meta{second coordinate}}
\end{quote}

Here is an example:
\begin{codeexample}[code only]
(1,2)!(0,5)!(3,4)
\end{codeexample}

The effect is the following: We project the \meta{projection
  coordinate} orthogonally onto to the line from \meta{coordinate} to
\meta{second coordinate}. This makes it easy to compute projected
points: 
\begin{codeexample}[]
\begin{tikzpicture}
  \draw [help lines] (0,0) grid (3,2);

  \coordinate (a) at (0,1);
  \coordinate (b) at (3,2);
  \coordinate (c) at (2.5,0);

  \draw (a) -- (b) -- (c) -- cycle;

  \draw[red]    (a) -- ($(b)!(a)!(c)$);
  \draw[orange] (b) -- ($(a)!(b)!(c)$);
  \draw[blue]   (c) -- ($(a)!(c)!(b)$);
\end{tikzpicture}
\end{codeexample}